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Abstract. Nanoparticles (NPs) are one of the promising 
strategies to deal with bacterial infections. As the main subset 
of NPs, metal and metal oxide NPs show destructive power 
against bacteria by releasing metal ions, direct contact of cell 
membranes and antibiotic delivery. Recently, a number of 
researchers have focused on the antibacterial activity of zinc 
oxide nanoparticles (ZnO NPs) against Staphylococcus aureus 
(S. aureus). Currently, there is a lack of a comprehensive review 
on ZnO NPs against S. aureus. Therefore, in this review, the 
antibacterial activity against S. aureus of ZnO NPs made by 
various synthetic methods was summarized, particularly the 
green synthetic ZnO NPs. The synergistic antibacterial effect 
against S. aureus of ZnO NPs with antibiotics was also summa‑
rized. Furthermore, the present review also emphasized the 
enhanced activities against S. aureus of ZnO nanocomposites, 
nano‑hybrids and functional ZnO NPs.
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1. Introduction

Staphylococcus aureus (S. aureus) is a gram‑positive 
pathogen that can lead to numerous infectious diseases, 
such as pneumonia, endocarditis, osteomyelitis, skin and 
soft tissue infections, bacteremia and sepsis (1). At the same 
time, the threat caused by S. aureus infections has increased 
significantly in humans as well as in animals (2,3). In clinical 
practices, antibiotics are effective way to treat S. aureus 
infections. With the use of antibiotics (especially overuse or 
misuse of antibiotics), antibiotic resistant S. aureus strains, 
such as methicillin‑resistant S. aureus (MRSA), have spread 
both in hospitals and communities and also persist in the 
home environment, which poses a great threat to human 
health (4,5). It is estimated that 700,000 persons succumb 
to antibiotic‑resistance bacteria including MRSA and this 
number is predicted to grow to 10 million by 2050 (3). In order 
to deal with this, increasing efforts have been made to discover 
new therapeutic strategies to fight against S. aureus infections, 
such as bacteriophage (6,7), vaccines (8‑10), monoclonal 
antibodies (11,12), recombinant endolysins (13), anti‑persistent 
bacteria therapies (14), antibacterial peptide (15,16), natural 
plant components (17‑19) and nanoparticles (NPs) (20,21).

NPs, being <100 nm, are one of the novel promising 
methods to deal with bacterial infections, including S. aureus 
infections (22,23). The antibacterial activity of NPs is 
mostly attributed to their special characteristics, such as 
well‑distributed size, perfect spherical shape, positive surface 
charge and hydrophobicity (24,25). NPs begin their antibacte‑
rial effects by the direct interplay with cell surface, involving 
the destruction of cell wall peptidoglycan and membrane 
protein and interference in energy metabolism (ATPase 
inhibition and electron transport disruption). Then, NPs can 
penetrate into cytoplasm and cause great damage to intracel‑
lular components, including nucleic acids, proteins, lysosomes 
and ribosomes (26). Additionally, oxidative stress induced by 
excess releasing of reactive oxygen species (ROS) also plays a 
substantial role in inducing lipid peroxidation on the bacterial 
cell membrane (27). As well as the aforementioned mechanism, 
metal NPs have specific ways to resist pathogenic micro‑
organisms by releasing metal ions and producing different 
ROS (28). Several metal (gold, silver, copper and zinc) NPs 
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and their metal oxide NPs have been reported to have distinc‑
tive antimicrobial properties against S. aureus (29,30) and they 
were also shown to be the carriers that can deliver antibiotics 
to target sites (22,31). Fig. 1 shows the properties, antibacterial 
mechanism against S. aureus and antibiotics delivery ability of 
zinc oxide nanoparticles (ZnO NPs).

There are a number of studies reporting the antibacterial 
property of ZnO NPs against S. aureus (32‑34). ZnO NPs reduce 
the biofilm of S. aureus by inhibiting biofilm genes expression, 
such as ica A, ica D and fnb A (35). In Kahandal et al (36), 
the biofilm formation of S. aureus was inhibited markedly by 
95.39 % when treated with 125 µg/ml of ZnO NPs for 5 h. 
Abdelraheem et al (37) observed that ZnO NPs presented anti‑
bacterial activity against multidrug resistant S. aureus, such 
as methicillin, vancomycin and linezolid resistant S. aureus. 
Irfan et al (38) confirmed the antibacterial activity of ZnO NPs 
against S. aureus and MRSA with the zone of inhibition (ZOI) 
of 21±2 and 17±2 mm, respectively. El‑Masry et al (39) also 
reported that ZnO NPs (20 nm and concentration of 20 mM) 
inhibited 105 and 107 CFU/ml S. aureus with ZOI of 26 and 
22 mm, respectively. Currently, there is a lack of a compre‑
hensive review on ZnO NPs against S. aureus. Therefore, 
the present study reviewed the antibacterial activity against 
S. aureus of ZnO NPs fabricated by various synthetic ways, 
especially the green synthetic ZnO NPs. It also summarized 
the synergistic antibacterial effects against S. aureus of 
ZnO NPs in combination with antibiotics. Furthermore, it 
highlighted the enhanced activities against S. aureus of ZnO 
nanocomposites, nano‑hybrids and functional ZnO NPs.

2. Chemically and physically synthesized ZnO NPs against 
S. aureus

Commonly, ZnO NPs can be synthesized by using top‑down 
and bottom‑up methods that include diverse physical and 
chemical ways (40) (Fig. 2). Top‑down approaches cut 
massive materials into NPs physically, including ball milling, 
ion sputtering, laser ablation, metal etching and pyrolysis. 
According to Massoudi et al (41) research, ZnO NPs made by 
high‑speed ball milling inhibit S. aureus with the largest ZOI 
of ~13.5±0.5 mm. It was also found that ZnO NPs synthesized 
by microwave heating displayed the ZOI of ~16 mm against 
S. aureus (42). Bottom‑up ways fabricated atoms and molecules 
into nano‑sized particles, which included chemical reduction, 
sol‑gel method, chemical vapor deposition, molecular conden‑
sation and even green synthesis (43). Different synthesis 
processes bring about various physicochemical properties of 
metal NPs such as size, shape, dispersity and stabilization 
diversity, which determine the antibacterial efficiency (44,45). 
Table I shows the characteristics and anti‑S. aureus capacity 
of ZnO NPs made by several methods. In Bai et al (46), small 
molecule ligand solvothermal synthesized ZnO NPs showed 
size‑related antibacterial effect and the minimum inhibitory 
concentration (MIC) of 4 nm ZnO NPs against S. aureus was 
6.25 µg/ml, which is lower than the MIC of 10 nm ZnO NPs 
at ~25 µg/ml. In an antimicrobial test of solution‑polymer‑
ization‑method synthesized ZnO NPs, it was discovered that 
S. aureus was more susceptible to nanoparticle size than 
E. coli (47). The co‑precipitation method is also frequently 
used to synthesize ZnO NPs that show the lowest MIC against 

S. aureus compared with other bacteria (48). Moreover, by 
using an easy chemical method, diethylene‑glycol‑mediated 
ZnO NPs were made and they had antibacterial activity 
against S. aureus with the ZOI of 14 mm and showed the 
excellent S. aureus biofilm control (49). It was also reported 
that S. aureus cell leakage was observed after exposure to 
mechano‑chemical synthesized ZnO NPs (50). Although a 
great number of physicochemical synthetic methods have 
been found to make ZnO NPs for S. aureus treatment, some 
demerits such as high cost, toxicity and instability still place 
restrictions on their large‑scale antibacterial applications (43).

3. Green‑synthesized ZnO NPs against S. aureus

Recently, green biological materials drew much attention to 
researchers for their environment‑friendly, cost‑effective, 
low‑toxicity and useful properties to make ZnO NPs (26). 
There are a number of types of biological materials such as 
bacteria, fungi, algae and plant extracts (51,52) (Fig. 3), which 
serve as reducing agents, capping agents, stabilizers and 
ligands during the synthesis of ZnO NPs (26) and their effects 
are ion reduction, size and shape control, NPs surface stabili‑
zation, metal passivation and coating, respectively, which are 
important to the antimicrobial properties of ZnO NPs (26,53). 
The antibacterial properties of green‑synthesized ZnO NPs 
against S. aureus are in Table II.

Plant extracts synthesis. Due to different synthetic raw mate‑
rials, plant‑derived ZnO NPs are provided with multifarious 
characteristics. Triangle‑like M‑ZnO‑NPs and B‑ZnO‑NPs 
were made by Mentha spicata and Ocimum basilicum 
acting as capping, stabilizing and reducing agents with size 
of 24.5 and 26.7 nm, respectively. These types of ZnO NPs 
had antibacterial properties against S. aureus (ATCC 25923) 
with a 14.73 mm ZOI with 0.01 g/ml M‑ZnO‑NPs (54). In 
Sachin et al (55), ZnO NPs synthesized by using lychee peel 
extract were spherical and small (<10 nm) and were also 
proved to combat S. aureus (ATCC25923) with 15 mm ZOI 
of 100 µg/ml ZnO NPs. In Mohammed et al (56), zinc nitrate 
hexahydrate and Cymbopogon citratus extracts were used 
to synthesize ZnO NPs, which killed S. aureus cells with a 
MIC of 88.13±0.35 µg/ml. In Mushtaq et al (57), methanol and 
water leaf extracts of Viscum album were applied to fabricate 
ZnO NPs that were quasi‑spherical with size of 13.5 nm 
and which showed considerable inhibitory effects against 
S. aureus with a ZOI of 39±0.3 and 40±0.3 mm, respectively. 
Due to having a higher content of DNA gyrase‑B inhibitor, 
the water extracts of ZnO NPs were proved to be more effec‑
tive in limiting bacterial growth. ZnO NPs with flower‑shaped 
structures were created by a green nanotechnology facility in 
Hasan et al (58) and showed 90.9% inhibition against S. aureus. 
It is noteworthy that the ZnO NPs showed more durable anti‑
microbial activity than Ag NPs in in vivo tests, which may 
be attributed to their distinctive morphology and massive 
active surface sites. In Irfan et al (59), green‑synthesized ZnO 
NPs by Gum Acacia modesta expressed antimicrobial ability 
against MRSA with a ZOI of 16±2 mm. Alallam et al (60) also 
observed that ZnO NPs made by pure curcumin had a great 
ability to combat MRSA. Notably, these green‑synthesized 
ZnO NPs showed a minimal cytotoxicity compared with 
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chemically synthesized ZnO NPs (61). Furthermore, in 
Ting et al (53), ZnO NPs biosynthesized by using the aqueous 
extract of Andrographis paniculata leaves demonstrated a 
high inhibition on S. aureus and then controlled periimplan‑
titis. ZnO NPs synthesized by using ethanolic extracts of 
Eupatorium odoratum are reported to show more than 97% 
biofilm inhibition of S. aureus that could be applied to reduce 
central venous catheter associated infections (61).

Algae synthesis. Algae are known as ‘bio‑nano‑factories’ due 
to their various properties, such as low risk of environmental 
toxicity, simple processing methods and the ability to redox 

metals (62). In addition, algal extracts are full of bioac‑
tive molecules that can be used as reducing and stabilizing 
agents. The biosynthesis of ZnO NPs using microalgae was 
authenticated to be a cost‑effective method and the ZAA2 
strain microalgae‑synthesized ZnO NPs showed outstanding 
antibacterial activity with the largest ZOI of ~20 mm against 
S. aureus (63). In addition, by using Chlorella vulgaris as green 
resource, biogenic ZnO NPs were produced having significant 
antibacterial activity against MRSA, attributed to their excel‑
lent size distribution and surface energy (64). Researchers 
have also investigated the phyco‑synthesis of UFD‑ZnO NPs 
using extract of Ulva fasciata Delile. The destructive power 

Figure 1. The excellent properties, antibacterial mechanism against S. aureus and antibiotics delivery ability of ZnO NPs. ZnO NPs, zinc oxide nanoparticles; 
S. aureus, Staphylococcus aureus; ROS. reactive oxygen species.

Figure 2. Top‑down and bottom‑up synthesis methods of ZnO NPs. ZnO NPs, zinc oxide nanoparticles.

https://www.spandidos-publications.com/10.3892/br.2024.1849
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of UFD‑ZnO NPs against S. aureus (ATCC 25923) was 
time‑dependent, while the MIC and ZOI were recorded at 
~17.5 µg/ml and 24.9±1.5 mm, respectively (65). In a recent 
study, Sargassum extracts have been used to synthesize ZnO 
NPs and the ultrasound‑assisted green synthesized ZnO 
NPs showed the highest inhibition against S. aureus by 99% 
compared with ZnO NPs alone (66). As one of the phototrophic 
bacteria, cyanobacteria are the source of bioactive compounds 
as well as the raw material of ZnO NPs synthesis. By using 
cell extract of a new cyanobacterial strain Desertifilum sp. 
EAZ03, ZnO NPs have been made that possess considerable 
antibiofilm and antimicrobial effects against S. aureus (ATCC 
59223) with an MIC value of 32 µg/ml and the minimum 
bactericidal concentration value of 64 µg/ml (67). Similarly, 
Ebadi et al (68) synthesized ZnO NPs using the cell extract of 
the cyanobacterium Nostoc sp. EA03, which were also discov‑
ered to destroy S. aureus biofilms and had low cytotoxicity on 
lung fibroblast cells.

Bacterial synthesis. With their lower purification cost and 
higher productivity compared with other microorganisms, 
bacteria are also considered as the raw materials to create ZnO 
NPs (69,70). According to a biosynthesis test of Yusof et al (71), 
Lactobacillus plantarum TA4, a microorganism isolated from 
fermented food, was proved to synthesize ZnO NPs with 
concentration‑ and shape‑dependent antibacterial capacity. In 
addition, cell‑free supernatant (CFS) and cell‑biomass (CB) 
taken from L. plantarum TA4 were used as reducing agents 
to synthesize ZnO NPs, respectively. Although the MIC value 
to inhibit S. aureus of ZnO NPs‑CB was lower compared with 
ZnO NPs‑CFS, ZnO NPs were more conveniently purified by 
CFS (71). From this, it is indispensable to weigh up the pros 

and cons of different synthetic materials in order to choose 
the optimal raw material under different demands and experi‑
mental environments. In Rehman et al (72), Bacillus haynesii 
isolated from date palm plant was employed as the reducing 
agent to establish an eco‑friendly nanobiofactory. ZnO NPs 
mediated by Bacillus cereus showed a spherical shape with 
median size of 50±5 nm, which damaged S. aureus cell 
surface by direct contact (72). Streptomyces purified from 
waste soil can be used to biosynthesize ZnO NPs and the 
antibacterial effects were identified to combat multiple isolates 
of S. aureus (73). Taran et al (74) explored the optimum condi‑
tion to biosynthesize ZnO NPs by using Halomonas elongata 
IBRC‑M 10214 through the Taguchi method (75). Results 
showed that these ZnO NPs were stable, pure and nontoxic, able 
to fight against multi‑drug resistant bacteria such as S. aureus 
ATCC 43300. Strain C2 isolated from the genus Leuconostoc 
of lactic acid bacteria has been employed to biosynthesize 
metal NPs, including ZnO NPs and Au NPs. According to 
Kang et al (76), the C2‑ZnO NPs expressed a lower MIC value 
of 512 µg/ml compared with C2‑Au NPs (MIC: 1024 µg/ml) 
against S. aureus.

Fungal synthesis. A number of studies have reported that fungi 
can be used for synthesizing ZnO NPs. Sharma et al (77) 
used Phanerochaete chrysosporium to make ZnO NPs with 
advantages in terms of stability, simple processing, antimi‑
crobial activity and non‑cytotoxicity. Mohamed et al (78) 
produced fungal‑synthesized ZnO NPs of 9‑35 nm by using 
Penicillium chrysogenum and found that the ZnO NPs had anti‑
bacterial and antibiofilm activities against S. aureus. ZnO NPs 
synthesized by a simple, non‑toxic method using fungal filtrate 
of Xylaria acuta were promising antimicrobial agents that 

Figure 3. Raw materials classifications and functions of green synthesis for ZnO NPs. ZnO NPs, zinc oxide nanoparticles.

https://www.spandidos-publications.com/10.3892/br.2024.1849
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exhibited an MIC value of 15.6 µg/ml against S. aureus (79). 
Abdelkader et al (80) synthesized ZnO NPs using Aspergillus 
niger Endophytic fungal extract with characteristics of 
stability and antibiofilm activity. It was demonstrated that ZnO 
NPs reduced the number of biofilm‑forming S. aureus from 
50‑20.83% and the MIC of ZnO NPs against multiple S. aureus 
strains ranged from 8‑128 µg/ml (80). In Motazedi et al (81), 
the extracellular extract of Saccharomyces cerevisiae was 
used to create spherical ZnO NPs with dose‑dependent anti‑
bacterial ability against S. aureus.

4. ZnO NPs cooperating with antibiotics for S. aureus 
treatment

At present, one of the most serious issues of global health must 
be antibiotics resistance. The synergy between antibiotics and 
ZnO NPs attracts much attention and would be a practicable 
treatment against multi‑drug resistant bacteria (82,83). It has 
been found that ciprofloxacin in conjunction with ZnO@
Glu‑TSC (thiosemicarbazide‑conjugated and glutamic 
acid‑functionalized ZnO NPs) could significantly inhibit 
the expression of efflux pump genes, which is a vital factor 
towards antibiotics resistance (84). In addition, ZnO NPs can 
be excellent drug carriers to target antibacterial agents to the 
action sites and still achieve desired therapeutic effects for 
a decreased drug dosage, thus enhancing the antimicrobial 
efficacy (22). In Habib et al (85), using ZnO NPs combined 
with ciprofloxacin and imipenem, the ZOI of S. aureus was 
17 mm higher than that of E. coli (12 mm). By using ZnO NPs 
in conjunction with antibiotics to defeat S. aureus, the MICs of 
six clinical common antibiotics were reduced, which reflected 
an effective antibacterial cooperation. Furthermore, the 
anti‑biofilm efficacy was also investigated and was enhanced 
from 34‑37% (antibiotics alone) to 65‑85% (antibiotics and 
ZnO NPs combination) (86).

Hemmati et al (87) synthesized and characterized the 
chitosan‑ZnO nanocomposites loading with gentamicin, 
which caused MIC reduction by four‑fold and biofilm reduc‑
tion by 77% in S. aureus by contrast with the gentamicin 
alone. Notably, drug‑loaded ZnO NPs were shown to exhibit 
negligible toxicity to human cells (82). Thus, the synergy 
of ZnO NPs and antibiotics can be applied to a variety of 
antibacterial circumstances. In an infection model of rats, 
azithromycin‑loaded ZnO NPs displayed enhanced ability to 
clear MRSA (88). Phytomolecules‑coated ZnO NPs combined 
with tobramycin and gallic acid were synthesized and shown 
to be an excellent material for contact lenses, expressing a 
maximum log10 reduction of 5.7±0.02 CFU/ml in the growth 
of S. aureus and contributed to disruption of bacterial cell wall 
and membrane, leading to the leakage of cytoplasm and bacte‑
rial death (89). These drug‑hybrid NPs such as cefazolin‑hybrid 
ZnO NPs are also used to post‑operative antimicrobial therapy 
due to their inhibitory actions against S. aureus both in vitro 
and in vivo (90).

5. ZnO nanocomposites/hybrids against S. aureus

Non‑metal	ZnO	nano‑composites/hybrids	against	S.	aureus.	
In order to improve the antibacterial activity of ZnO NPs, 
various non‑metal substances have been used to prepare 

ZnO nanocomposites. In Oves et al (91), the combination 
of graphene, curcumin and ZnO NPs showed enhanced 
inhibition against S. aureus more than five‑fold compared 
with graphene‑ZnO NPs and the ZnO nanocomposites also 
suppressed MRSA (ATCC 43300) effectively. Zhai et al (92) 
designed ZnO‑graphene nanocomposites that could enhance 
rapid antibiosis due to the separation of ZnO electron‑hole 
pairs and increased active sites by transforming the shape of 
ZnO. Silica nanorattles (SNs) combined with ZnO NPs were 
reported to exhibit an improved antibacterial activity against 
MRSA with a lower MIC of 6.25 µg/ml compared with free 
ZnO NPs in vitro and in vivo. Since the SNs surface protected 
and amassed the ZnO NPs, the free radicals offered by ZnO 
NPs had an enhanced efficacy in combating MRSA (93). 
Vinotha et al (94) developed the Btp‑Ac‑ZnO nanocomposites 
by using Acorus calamus extract and bacterial toxic protein 
(Cry) and they demonstrated the concentration‑dependent 
biofilm inhibition of the synthesized nanocomposites against 
S. aureus (MTCC 9542). ZnO NPs can also be supported by 
4A zeolite, controlling the release of ZnO NPs and enhancing 
the antibacterial properties (95). It has been shown that 
pancreatin‑doped ZnO nanocomposites have improved perfor‑
mances, such as low‑toxicity to human cells and anti‑biofilm 
and anti‑motility abilities against MRSA and increased sensi‑
tivity for vancomycin against MRSA (96). Canales et al (97) 
demonstrated that the electrospun scaffolds based on poly 
(lactic acid), bioglass and ZnO NPs showed biocidal properties 
against S. aureus with bacteria decreasing by 30%, which may 
be useful for tissue engineering. Hydroxypropyl methylcellu‑
lose film combined with ZnO NPs and carboxymethyl starch 
have been shown to have excellent antibacterial ability against 
S. aureus and no toxicity to human HaCat cells and so can be 
used for wound dressing (98). Majeed et al (99) found that ZnO 
NPs doped with selenium showed strong inhibition to MRSA, 
however, teratogenicity was also revealed, which means that it 
is important to use them cautiously.

Nano‑hybrids are also recommended as a good replacement 
for conventional antibacterial ZnO NPs and have enhanced 
antibacterial efficacy and low‑toxicity on normal cells (100). 
According to Karthikeyan et al (101), in order to develop 
nanomaterials with high antibacterial ability compared with 
antibiotics, the alginate‑ZnO hybrid nanomaterials have been 
synthesized with good inhibition effects on MRSA and low 
cytotoxicity to human cells. Kang et al (102) reported that 
the dispersibility of ZnO could be improved by the hybridiza‑
tion of ZnO NPs with nanocellulose and increasing bacterial 
inhibition rates were shown in S. aureus. Furthermore, in the 
research of AbouAitah et al (103), a hybrid nano‑formulation 
was developed from ZnO NPs and protocatechuic acid 
and offered a sustained‑release antibacterial effect toward 
S. aureus (Fig. 4).

Metal‑doped	ZnO	nanocomposites	 against	 S.	 aureus.	The 
activities of metal ions can be improved by the amalgamation 
of metal NPs. For instance, the release of more zinc and copper 
ions has been confirmed by ICP‑OES analysis in Cu‑doped ZnO 
nanocomposites, which caused enhanced antibacterial activity 
against S. aureus (104). In Rao et al (105), Na‑doped ZnO NPs 
expressed enhanced inhibition activity against S. aureus with 
Na‑concentration dependence. By using a scaled‑up green 
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strategy, cellulose‑based Ag‑ZnO nanocomposites (AZC) 
were prepared, which demonstrated good stability. It was also 
reported that the AZC films showed greater inhibition against 
S. aureus than E. coli (106). Hu et al (107) revealed that ZnO/Ag 
bimetallic nanocomposites showed significant inhibition against 
S. aureus compared with single metal nanomaterials and the 
cytotoxicity to fibroblasts was reduced by a ZnO and Ag complex. 
Mohammadi‑Aloucheh et al (108) reported that ZnO/CuO nano‑
composites synthesized using fruit extracts could lead to the 
disruption of bacterial membranes and enhanced anti‑bacterial 
ability compared with ZnO NPs alone. Bahari et al (109) synthe‑
sized Fe3O4/ZnO nanocomposite by the sol‑gel method and the 
molar ratio of 1:10 showed the best antimicrobial performance 
against S. aureus with a ZOI of 11.5±0.7 mm. AlSalhi et al (110) 
used the co‑precipitation technique to make magnetic 

ZnO/ZnFe2O4 nanohybrids that were good photocatalytic 
material and it was discovered that the membrane of S. aureus 
collapsed after exposure to the nanohybrids. Lee et al (111) made 
a multi‑metal oxide nanocomposite including ZrO, ZnO and 
TiO2. It was observed that these nanocomposites demonstrated 
a killing efficiency of 72.4% against S. aureus. Poly (vinyl 
alcohol)‑based compositions were developed with addition of 
silver, copper and ZnO NPs, which had the feature of solidifying 
to be peeled off along with the impaired bacterial film, thereby 
decreasing the number of S. aureus (112).

6. Functional ZnO NPs for S. aureus treatment

In order to optimize the performance of ZnO NPs to combat 
pathogenic microorganisms, researchers have given attention 

Figure 4. Substances that combined with ZnO NPs were used to make ZnO nanocomposites/nanohybrids. ZnO NPs, zinc oxide nanoparticles.

https://www.spandidos-publications.com/10.3892/br.2024.1849
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to functionalized, modified or capped ZnO NPs (34,113). 
Choi et al (114) created novel ZnO NPs functionalized 
with caffeic acid, which expressed enhanced antibacte‑
rial efficiency against S. aureus and three MRSA strains. 
The amino‑functionalized hydrophilic ZnO NPs induced 
the destruction of respiratory electron transformation, 
generation of intracellular ROS and depolarization of cell 
membrane in S. aureus (115). Charoensri et al (116) prepared 
polyaniline‑functionalized ZnO NPs by a simple impregna‑
tion method; not only did the synthesized ZnO NPs films 
show enhanced water hydrophobicity, but also expressed 
increased antibacterial ability against S. aureus, which will 
make it possible to develop antibacterial biodegradable 
materials. Lee et al (117) prepared gallic acid functionalized 
ZnO NPs that had high bacterial cell membrane affinity and 
showed enhanced bactericidal activity against S. aureus and 
higher selective inhibition to MRSA strains compared with 
non‑functionalized ZnO NPs. According to Chen et al (118), 
photosensitizers‑functionalized ZnO NPs demonstrated 
marked S. aureus inhibition and showed low‑toxicity on 
endothelial cells and erythrocyte. In Yuan et al (119), lyso‑
zyme‑modified ZnO NPs expressed excellent antibacterial 
activity against S. aureus and MRSA due to their small size, 
membrane permeability and enzyme‑mediated ROS genera‑
tion and even had lower cytotoxicity than gentamycin at the 
same concentration.

7. Conclusion and perspectives

In the present study, ZnO NPs synthesized by different 
methods and their antibacterial activity against S. aureus 
have been summarized. Taken together, the anti‑S. aureus 
efficacy of ZnO NPs mainly relies on their basic characteris‑
tics, especially size and shape. Spherical shape and small size 
are ideal features of ZnO NPs to combat bacteria that lead 
to high specific surface areas and more chances to contact 
with pathogens. In Babayevska et al (24), ZnO NPs with the 
highest specific surface area showed the size <10 nm. It is also 
reported that spherical ZnO NPs had the minimal size (31 nm) 
and higher anti‑S. aureus activity (6‑7 log CFU ml−1 reduc‑
tion) compared with flower‑shaped particles (3‑4 log CFU ml−1 
reduction for S. aureus) (44). The detail of ZnO NPs synthe‑
sized by various physical and chemical methods has been the 
subject of recent research (40). Some studies also revealed that 
these traditional synthesized methods had various shortcom‑
ings, such as being environment‑contaminating, expensive 
and energy‑intensive (43,120,121). Green synthesis has been 
emphasized due of its environment‑friendly, easy‑acquired 
and low‑toxicity features. Some studies also noted that these 
green materials had antibacterial abilities already, such as 
mint (122), aloe (123) and curcumin (124), and they endow 
ZnO NPs with enhanced and steady antibacterial activity 
against S. aureus (125). Physical or chemical processes are 
the indispensable part in NPs synthesis. However, ZnO NPs 
made only by physicochemical ways are cannot compare with 
biogenic, functional or compound ZnO NPs when they are 
further applied to clinical antibacterial situations.

ZnO NPs can be used in a number of pre‑clinical 
and clinical antimicrobial fields, including surgical 
operation (59), post‑operative anti‑bacterial therapy (90), 

anti‑inflammatory (80) and ophthalmic treatment (126). 
For example, suture coated by green synthetic ZnO NPs 
demonstrated excellent tensile strength and wound healing 
ability in an incision wound rat model (59). An infection 
model in mice showed that ZnO NPs originating from fungi 
could significantly decrease hepatic inflammatory markers, 
restrain congestion and fibrosis in tissues and improve liver 
function (80). Sindelo et al (127) made the phthalocyanines 
link to the amino‑functionalized ZnO NPs and these nano‑
composites showed considerable activities of photodynamic 
antimicrobial chemotherapy and multi‑microbial biofilms 
eradication. Considering that ZnO NPs had an excellent anti‑
bacterial activity against S. aureus and good biocompatibility, 
a chitosan‑ZnO/selenium nanoparticles scaffold was devel‑
oped to be used for infected wound healing and postoperative 
treatment of pediatric fractures (128). Ismail et al (129) also 
reported that ZnO NPs could be used as the hand sanitation 
in the future, which present improved anti‑MRSA activity 
compared with the commonly used alcohol sanitation.

As one of the primary metal oxide NPs, ZnO NPs 
express excellent ability against S. aureus, but they still have 
drawbacks to be widely used as antibiotics replacements in 
clinical contexts. A few trials in vivo suggested that different 
metal oxide NPs damage cells to different degrees (45). 
Venkatraman et al (130) noted the toxicity of ZnO NPs to 
RAW264 macrophage cells, with half maximal inhibitory 
concentration (IC50) of 494 µg/ml. Although electrospun 
scaffolds based on ZnO NPs showed increasing antibacte‑
rial activity, it is also reported that cytotoxicity was related 
to high ZnO content (97). According to Pereira et al (131), 
erythrocyte changes were also discovered in reptile expo‑
sure to ZnO NPs at the dose of 440 µg/kg. Yang et al (132) 
repor ted that ZnO NPs could induce apoptosis of 
mouse‑derived spermatogonia cell line GC‑1 spg cells. In 
Al‑Zahaby et al (133), ZnO NPs (0.69 mg/l) mediated ROS 
that induced cell apoptosis and caused sensory toxicity 
effect on zebrafish olfactory organs. ZnO NPs synthesized 
by Calotropis procera leaf extract were reported to exhibit 
potent antimicrobial ability with concentration‑dependent 
manner. However, with increasing exposure to ZnO NPs, 
deleterious changes (degeneration, swelling and atrophy) 
were found in the kidney by histology (85). Nazir et al (134) 
also discovered liver dysfunction in mice intraperitoneal 
injection groups at ZnO NPs doses of 50 and 100 mg/kg. 
ZnO NPs were also cytotoxic to the human immune system 
at doses of 25 and 12 mg/l (135). Despite ZnO NPs exhibiting 
outstanding capability in inhibiting MRSA, the resistance to 
NPs by microbes remained. If the dosage of NPs is below the 
sublethal concentrations, a series of resistance mechanisms 
would be initiated stealthily by bacteria, resembling their 
antibiotic resistance (136).

ZnO NPs still have potential toxicity when they are 
applied to clinical antibacterial treatment, though green‑ZnO 
NPs have shown lower cytotoxicity than physicochemi‑
cally synthesized ZnO NPs (60). Studies mostly pay close 
attention to the improving methods for preparation of ZnO 
NPs (42,48,54). They focus on the physical characteristics 
and antibacterial abilities, but neglect, to some degree, the 
cytotoxicity tests in vivo. Markedly, researchers have devel‑
oped a predictive model to evaluate the security of ZnO 
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NPs with different features and the authors point out that 
ZnO NPs with larger size, spherical shape, negative charge 
and a higher tendency for aggregation are safer, which is of 
great value to further toxicity studies (137). Notably, ZnO 
NPs <100 µg/ml were biocompatible and the cytotoxicity 
was parallel with their antibacterial activity, which meant 
that the anti‑S. aureus mechanism (direct contact to cells, 
ROS and Zn2+ releasing) was also the potential killing 
process in normal cells (24). Although a number of reports 
explained the antibacterial mechanism against S. aureus 
of metal and metal oxide NPs, the studies for ZnO NPs 
were still limited compared with other metal NPs such as 
Ag NPs (26,138). The majority of ZnO NPs anti‑S. aureus 
properties lack a comprehensive assessment and were 
only analyzed by well or disc diffusion test and bacterial 
growth curve and some studies only reported ZOI or MIC 
or even neither of them (42,50,126). A uniform standard 
of S. aureus strain is also necessary, which would play a 
crucial role in comparing antibacterial effects of ZnO NPs 
made by different methods.

In order to restrict the immoderate proliferation and 
mutation of pathogens, unremitting efforts should be made 
to optimize antibacterial strategies. As aforementioned, the 
synergism of ZnO NPs and other materials showed comple‑
mental effects, enhanced antibacterial activity and improved 
properties in clinical applications. Due to technology devel‑
opments, there are more potentials for ZnO NPs preparation 
and biomedical application. For instance, apart from the 
green synthesis aforementioned, material‑saving, safe and 
even granular NPs can be made by more novel methods, 
such as microfluidic (120). Except for using green and easily 
obtained raw materials, synthetic methods should be able to 
flexibly control the size, shape and dispersity of ZnO NPs, 
which means that the key material and procedure of ZnO NPs 
synthesis must be identified by modern techniques. Notably, 
genomic and proteomic techniques should be devoted to 
the exploration of the antibacterial mechanism, synthesis 
optimization and cytotoxicity of ZnO NPs. The antibacterial 
study of effects at the cellular level in the long term is an 
essential component to investigate the dosage and safety of 
ZnO NPs. It is necessary to focus on ZnO NPs studies in vivo, 
especially the biokinetics, bioavailability, tissue distribution 
and clearance rate, which are essential for their antibacterial 
applications and improved using as antibiotics replacements. 
In addition, composite and functional ZnO NPs could enhance 
the antibacterial advantages to some degree and decrease their 
toxicity and also reduce the excessive exposure of ZnO NPs 
that diminish the possibility of antimicrobial resistance, this is 
for future researchers.
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