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Abstract. Nanoparticles (NPs) are one of the promising
strategies to deal with bacterial infections. As the main subset
of NPs, metal and metal oxide NPs show destructive power
against bacteria by releasing metal ions, direct contact of cell
membranes and antibiotic delivery. Recently, a number of
researchers have focused on the antibacterial activity of zinc
oxide nanoparticles (ZnO NPs) against Staphylococcus aureus
(S. aureus). Currently, there is a lack of a comprehensive review
on ZnO NPs against S. aureus. Therefore, in this review, the
antibacterial activity against S. aureus of ZnO NPs made by
various synthetic methods was summarized, particularly the
green synthetic ZnO NPs. The synergistic antibacterial effect
against S. aureus of ZnO NPs with antibiotics was also summa-
rized. Furthermore, the present review also emphasized the
enhanced activities against S. aureus of ZnO nanocomposites,
nano-hybrids and functional ZnO NPs.
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1. Introduction

Staphylococcus aureus (S. aureus) is a gram-positive
pathogen that can lead to numerous infectious diseases,
such as pneumonia, endocarditis, osteomyelitis, skin and
soft tissue infections, bacteremia and sepsis (1). At the same
time, the threat caused by S. aureus infections has increased
significantly in humans as well as in animals (2,3). In clinical
practices, antibiotics are effective way to treat S. aureus
infections. With the use of antibiotics (especially overuse or
misuse of antibiotics), antibiotic resistant S. aureus strains,
such as methicillin-resistant S. aureus (MRSA), have spread
both in hospitals and communities and also persist in the
home environment, which poses a great threat to human
health (4,5). It is estimated that 700,000 persons succumb
to antibiotic-resistance bacteria including MRSA and this
number is predicted to grow to 10 million by 2050 (3). In order
to deal with this, increasing efforts have been made to discover
new therapeutic strategies to fight against S. aureus infections,
such as bacteriophage (6,7), vaccines (8-10), monoclonal
antibodies (11,12), recombinant endolysins (13), anti-persistent
bacteria therapies (14), antibacterial peptide (15,16), natural
plant components (17-19) and nanoparticles (NPs) (20,21).
NPs, being <100 nm, are one of the novel promising
methods to deal with bacterial infections, including S. aureus
infections (22,23). The antibacterial activity of NPs is
mostly attributed to their special characteristics, such as
well-distributed size, perfect spherical shape, positive surface
charge and hydrophobicity (24,25). NPs begin their antibacte-
rial effects by the direct interplay with cell surface, involving
the destruction of cell wall peptidoglycan and membrane
protein and interference in energy metabolism (ATPase
inhibition and electron transport disruption). Then, NPs can
penetrate into cytoplasm and cause great damage to intracel-
lular components, including nucleic acids, proteins, lysosomes
and ribosomes (26). Additionally, oxidative stress induced by
excess releasing of reactive oxygen species (ROS) also plays a
substantial role in inducing lipid peroxidation on the bacterial
cell membrane (27). As well as the aforementioned mechanism,
metal NPs have specific ways to resist pathogenic micro-
organisms by releasing metal ions and producing different
ROS (28). Several metal (gold, silver, copper and zinc) NPs
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and their metal oxide NPs have been reported to have distinc-
tive antimicrobial properties against S. aureus (29,30) and they
were also shown to be the carriers that can deliver antibiotics
to target sites (22,31). Fig. 1 shows the properties, antibacterial
mechanism against S. aureus and antibiotics delivery ability of
zinc oxide nanoparticles (ZnO NPs).

There are a number of studies reporting the antibacterial
property of ZnO NPs against S. aureus (32-34). ZnO NPs reduce
the biofilm of S. aureus by inhibiting biofilm genes expression,
such as ica A, ica D and fnb A (35). In Kahandal ef al (36),
the biofilm formation of S. aureus was inhibited markedly by
95.39 % when treated with 125 pg/ml of ZnO NPs for 5 h.
Abdelraheem et al (37) observed that ZnO NPs presented anti-
bacterial activity against multidrug resistant S. aureus, such
as methicillin, vancomycin and linezolid resistant S. aureus.
Irfan et al (38) confirmed the antibacterial activity of ZnO NPs
against S. aureus and MRSA with the zone of inhibition (ZOI)
of 21£2 and 1742 mm, respectively. El-Masry et al (39) also
reported that ZnO NPs (20 nm and concentration of 20 mM)
inhibited 10° and 10" CFU/ml S. aureus with ZOI of 26 and
22 mm, respectively. Currently, there is a lack of a compre-
hensive review on ZnO NPs against S. aureus. Therefore,
the present study reviewed the antibacterial activity against
S. aureus of ZnO NPs fabricated by various synthetic ways,
especially the green synthetic ZnO NPs. It also summarized
the synergistic antibacterial effects against S. aureus of
ZnO NPs in combination with antibiotics. Furthermore, it
highlighted the enhanced activities against S. aureus of ZnO
nanocomposites, nano-hybrids and functional ZnO NPs.

2. Chemically and physically synthesized ZnO NPs against
S. aureus

Commonly, ZnO NPs can be synthesized by using top-down
and bottom-up methods that include diverse physical and
chemical ways (40) (Fig. 2). Top-down approaches cut
massive materials into NPs physically, including ball milling,
ion sputtering, laser ablation, metal etching and pyrolysis.
According to Massoudi et al (41) research, ZnO NPs made by
high-speed ball milling inhibit S. aureus with the largest ZOI
of ~13.5+0.5 mm. It was also found that ZnO NPs synthesized
by microwave heating displayed the ZOI of ~16 mm against
S.aureus (42). Bottom-up ways fabricated atoms and molecules
into nano-sized particles, which included chemical reduction,
sol-gel method, chemical vapor deposition, molecular conden-
sation and even green synthesis (43). Different synthesis
processes bring about various physicochemical properties of
metal NPs such as size, shape, dispersity and stabilization
diversity, which determine the antibacterial efficiency (44,45).
Table I shows the characteristics and anti-S. aureus capacity
of ZnO NPs made by several methods. In Bai et al (46), small
molecule ligand solvothermal synthesized ZnO NPs showed
size-related antibacterial effect and the minimum inhibitory
concentration (MIC) of 4 nm ZnO NPs against S. aureus was
6.25 pug/ml, which is lower than the MIC of 10 nm ZnO NPs
at ~25 pug/ml. In an antimicrobial test of solution-polymer-
ization-method synthesized ZnO NPs, it was discovered that
S. aureus was more susceptible to nanoparticle size than
E. coli (47). The co-precipitation method is also frequently
used to synthesize ZnO NPs that show the lowest MIC against

S. aureus compared with other bacteria (48). Moreover, by
using an easy chemical method, diethylene-glycol-mediated
ZnO NPs were made and they had antibacterial activity
against S. aureus with the ZOI of 14 mm and showed the
excellent S. aureus biofilm control (49). It was also reported
that S. aureus cell leakage was observed after exposure to
mechano-chemical synthesized ZnO NPs (50). Although a
great number of physicochemical synthetic methods have
been found to make ZnO NPs for S. aureus treatment, some
demerits such as high cost, toxicity and instability still place
restrictions on their large-scale antibacterial applications (43).

3. Green-synthesized ZnO NPs against S. aureus

Recently, green biological materials drew much attention to
researchers for their environment-friendly, cost-effective,
low-toxicity and useful properties to make ZnO NPs (26).
There are a number of types of biological materials such as
bacteria, fungi, algae and plant extracts (51,52) (Fig. 3), which
serve as reducing agents, capping agents, stabilizers and
ligands during the synthesis of ZnO NPs (26) and their effects
are ion reduction, size and shape control, NPs surface stabili-
zation, metal passivation and coating, respectively, which are
important to the antimicrobial properties of ZnO NPs (26,53).
The antibacterial properties of green-synthesized ZnO NPs
against S. aureus are in Table II.

Plant extracts synthesis. Due to different synthetic raw mate-
rials, plant-derived ZnO NPs are provided with multifarious
characteristics. Triangle-like M-ZnO-NPs and B-ZnO-NPs
were made by Mentha spicata and Ocimum basilicum
acting as capping, stabilizing and reducing agents with size
of 24.5 and 26.7 nm, respectively. These types of ZnO NPs
had antibacterial properties against S. aureus (ATCC 25923)
with a 14.73 mm ZOI with 0.01 g/ml M-ZnO-NPs (54). In
Sachin et al (55), ZnO NPs synthesized by using lychee peel
extract were spherical and small (<10 nm) and were also
proved to combat S. aureus (ATCC25923) with 15 mm ZOI
of 100 pg/ml ZnO NPs. In Mohammed et al (56), zinc nitrate
hexahydrate and Cymbopogon citratus extracts were used
to synthesize ZnO NPs, which killed S. aureus cells with a
MIC of 88.13+0.35 pg/ml. In Mushtaq et al (57), methanol and
water leaf extracts of Viscum album were applied to fabricate
ZnO NPs that were quasi-spherical with size of 13.5 nm
and which showed considerable inhibitory effects against
S. aureus with a ZOI of 39+0.3 and 40+0.3 mm, respectively.
Due to having a higher content of DNA gyrase-B inhibitor,
the water extracts of ZnO NPs were proved to be more effec-
tive in limiting bacterial growth. ZnO NPs with flower-shaped
structures were created by a green nanotechnology facility in
Hasan ez al (58) and showed 90.9% inhibition against S. aureus.
It is noteworthy that the ZnO NPs showed more durable anti-
microbial activity than Ag NPs in in vivo tests, which may
be attributed to their distinctive morphology and massive
active surface sites. In Irfan ef al (59), green-synthesized ZnO
NPs by Gum Acacia modesta expressed antimicrobial ability
against MRSA with a ZOI of 16+2 mm. Alallam et al (60) also
observed that ZnO NPs made by pure curcumin had a great
ability to combat MRSA. Notably, these green-synthesized
ZnO NPs showed a minimal cytotoxicity compared with
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Figure 1. The excellent properties, antibacterial mechanism against S. aureus and antibiotics delivery ability of ZnO NPs. ZnO NPs, zinc oxide nanoparticles;

S. aureus, Staphylococcus aureus; ROS. reactive oxygen species.
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Figure 2. Top-down and bottom-up synthesis methods of ZnO NPs. ZnO NPs, zinc oxide nanoparticles.

chemically synthesized ZnO NPs (61). Furthermore, in
Ting et al (53), ZnO NPs biosynthesized by using the aqueous
extract of Andrographis paniculata leaves demonstrated a
high inhibition on S. aureus and then controlled periimplan-
titis. ZnO NPs synthesized by using ethanolic extracts of
Eupatorium odoratum are reported to show more than 97%
biofilm inhibition of S. aureus that could be applied to reduce
central venous catheter associated infections (61).

Algae synthesis. Algae are known as ‘bio-nano-factories’ due
to their various properties, such as low risk of environmental
toxicity, simple processing methods and the ability to redox

metals (62). In addition, algal extracts are full of bioac-
tive molecules that can be used as reducing and stabilizing
agents. The biosynthesis of ZnO NPs using microalgae was
authenticated to be a cost-effective method and the ZAA2
strain microalgae-synthesized ZnO NPs showed outstanding
antibacterial activity with the largest ZOI of ~20 mm against
S. aureus (63). In addition, by using Chlorella vulgaris as green
resource, biogenic ZnO NPs were produced having significant
antibacterial activity against MRSA, attributed to their excel-
lent size distribution and surface energy (64). Researchers
have also investigated the phyco-synthesis of UFD-ZnO NPs
using extract of Ulva fasciata Delile. The destructive power
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Figure 3. Raw materials classifications and functions of green synthesis for ZnO NPs. ZnO NPs, zinc oxide nanoparticles.

of UFD-ZnO NPs against S. aureus (ATCC 25923) was
time-dependent, while the MIC and ZOI were recorded at
~17.5 pug/ml and 24.9+1.5 mm, respectively (65). In a recent
study, Sargassum extracts have been used to synthesize ZnO
NPs and the ultrasound-assisted green synthesized ZnO
NPs showed the highest inhibition against S. aureus by 99%
compared with ZnO NPs alone (66). As one of the phototrophic
bacteria, cyanobacteria are the source of bioactive compounds
as well as the raw material of ZnO NPs synthesis. By using
cell extract of a new cyanobacterial strain Desertifilum sp.
EAZ03, ZnO NPs have been made that possess considerable
antibiofilm and antimicrobial effects against S. aureus (ATCC
59223) with an MIC value of 32 yg/ml and the minimum
bactericidal concentration value of 64 pg/ml (67). Similarly,
Ebadi et al (68) synthesized ZnO NPs using the cell extract of
the cyanobacterium Nostoc sp. EAO3, which were also discov-
ered to destroy S. aureus biofilms and had low cytotoxicity on
lung fibroblast cells.

Bacterial synthesis. With their lower purification cost and
higher productivity compared with other microorganisms,
bacteria are also considered as the raw materials to create ZnO
NPs (69,70). According to a biosynthesis test of Yusof et al (71),
Lactobacillus plantarum TA4, a microorganism isolated from
fermented food, was proved to synthesize ZnO NPs with
concentration- and shape-dependent antibacterial capacity. In
addition, cell-free supernatant (CFS) and cell-biomass (CB)
taken from L. plantarum TA4 were used as reducing agents
to synthesize ZnO NPs, respectively. Although the MIC value
to inhibit S. aureus of ZnO NPs-CB was lower compared with
ZnO NPs-CFS, ZnO NPs were more conveniently purified by
CFS (71). From this, it is indispensable to weigh up the pros

and cons of different synthetic materials in order to choose
the optimal raw material under different demands and experi-
mental environments. In Rehman ez al (72), Bacillus haynesii
isolated from date palm plant was employed as the reducing
agent to establish an eco-friendly nanobiofactory. ZnO NPs
mediated by Bacillus cereus showed a spherical shape with
median size of 50+5 nm, which damaged S. aureus cell
surface by direct contact (72). Streptomyces purified from
waste soil can be used to biosynthesize ZnO NPs and the
antibacterial effects were identified to combat multiple isolates
of S. aureus (73). Taran et al (74) explored the optimum condi-
tion to biosynthesize ZnO NPs by using Halomonas elongata
IBRC-M 10214 through the Taguchi method (75). Results
showed that these ZnO NPs were stable, pure and nontoxic, able
to fight against multi-drug resistant bacteria such as S. aureus
ATCC 43300. Strain C2 isolated from the genus Leuconostoc
of lactic acid bacteria has been employed to biosynthesize
metal NPs, including ZnO NPs and Au NPs. According to
Kang et al (76), the C2-ZnO NPs expressed a lower MIC value
of 512 ug/ml compared with C2-Au NPs (MIC: 1024 pg/ml)
against S. aureus.

Fungal synthesis. A number of studies have reported that fungi
can be used for synthesizing ZnO NPs. Sharma et al (77)
used Phanerochaete chrysosporium to make ZnO NPs with
advantages in terms of stability, simple processing, antimi-
crobial activity and non-cytotoxicity. Mohamed et al (78)
produced fungal-synthesized ZnO NPs of 9-35 nm by using
Penicillium chrysogenum and found that the ZnO NPs had anti-
bacterial and antibiofilm activities against S. aureus. ZnO NPs
synthesized by a simple, non-toxic method using fungal filtrate
of Xylaria acuta were promising antimicrobial agents that
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exhibited an MIC value of 15.6 ug/ml against S. aureus (79).
Abdelkader et al (80) synthesized ZnO NPs using Aspergillus
niger Endophytic fungal extract with characteristics of
stability and antibiofilm activity. It was demonstrated that ZnO
NPs reduced the number of biofilm-forming S. aureus from
50-20.83% and the MIC of ZnO NPs against multiple S. aureus
strains ranged from 8-128 pg/ml (80). In Motazedi ef al (81),
the extracellular extract of Saccharomyces cerevisiae was
used to create spherical ZnO NPs with dose-dependent anti-
bacterial ability against S. aureus.

4. ZnO NPs cooperating with antibiotics for S. aureus
treatment

At present, one of the most serious issues of global health must
be antibiotics resistance. The synergy between antibiotics and
ZnO NPs attracts much attention and would be a practicable
treatment against multi-drug resistant bacteria (82,83). It has
been found that ciprofloxacin in conjunction with ZnO@
Glu-TSC (thiosemicarbazide-conjugated and glutamic
acid-functionalized ZnO NPs) could significantly inhibit
the expression of efflux pump genes, which is a vital factor
towards antibiotics resistance (84). In addition, ZnO NPs can
be excellent drug carriers to target antibacterial agents to the
action sites and still achieve desired therapeutic effects for
a decreased drug dosage, thus enhancing the antimicrobial
efficacy (22). In Habib et al (85), using ZnO NPs combined
with ciprofloxacin and imipenem, the ZOI of S. aureus was
17 mm higher than that of E. coli (12 mm). By using ZnO NPs
in conjunction with antibiotics to defeat S. aureus, the MICs of
six clinical common antibiotics were reduced, which reflected
an effective antibacterial cooperation. Furthermore, the
anti-biofilm efficacy was also investigated and was enhanced
from 34-37% (antibiotics alone) to 65-85% (antibiotics and
ZnO NPs combination) (86).

Hemmati et al (87) synthesized and characterized the
chitosan-ZnO nanocomposites loading with gentamicin,
which caused MIC reduction by four-fold and biofilm reduc-
tion by 77% in S. aureus by contrast with the gentamicin
alone. Notably, drug-loaded ZnO NPs were shown to exhibit
negligible toxicity to human cells (82). Thus, the synergy
of ZnO NPs and antibiotics can be applied to a variety of
antibacterial circumstances. In an infection model of rats,
azithromycin-loaded ZnO NPs displayed enhanced ability to
clear MRSA (88). Phytomolecules-coated ZnO NPs combined
with tobramycin and gallic acid were synthesized and shown
to be an excellent material for contact lenses, expressing a
maximum log,, reduction of 5.7+0.02 CFU/ml in the growth
of S. aureus and contributed to disruption of bacterial cell wall
and membrane, leading to the leakage of cytoplasm and bacte-
rial death (89). These drug-hybrid NPs such as cefazolin-hybrid
ZnO NPs are also used to post-operative antimicrobial therapy
due to their inhibitory actions against S. aureus both in vitro
and in vivo (90).

5. ZnO nanocomposites/hybrids against S. aureus
Non-metal ZnO nano-composites/hybrids against S. aureus.

In order to improve the antibacterial activity of ZnO NPs,
various non-metal substances have been used to prepare

ZnO nanocomposites. In Oves et al (91), the combination
of graphene, curcumin and ZnO NPs showed enhanced
inhibition against S. aureus more than five-fold compared
with graphene-ZnO NPs and the ZnO nanocomposites also
suppressed MRSA (ATCC 43300) effectively. Zhai et al (92)
designed ZnO-graphene nanocomposites that could enhance
rapid antibiosis due to the separation of ZnO electron-hole
pairs and increased active sites by transforming the shape of
7ZnO. Silica nanorattles (SNs) combined with ZnO NPs were
reported to exhibit an improved antibacterial activity against
MRSA with a lower MIC of 6.25 ug/ml compared with free
Zn0O NPs in vitro and in vivo. Since the SNs surface protected
and amassed the ZnO NPs, the free radicals offered by ZnO
NPs had an enhanced efficacy in combating MRSA (93).
Vinotha et al (94) developed the Btp-Ac-ZnO nanocomposites
by using Acorus calamus extract and bacterial toxic protein
(Cry) and they demonstrated the concentration-dependent
biofilm inhibition of the synthesized nanocomposites against
S. aureus (MTCC 9542). ZnO NPs can also be supported by
4A zeolite, controlling the release of ZnO NPs and enhancing
the antibacterial properties (95). It has been shown that
pancreatin-doped ZnO nanocomposites have improved perfor-
mances, such as low-toxicity to human cells and anti-biofilm
and anti-motility abilities against MRSA and increased sensi-
tivity for vancomycin against MRSA (96). Canales ef al (97)
demonstrated that the electrospun scaffolds based on poly
(lactic acid), bioglass and ZnO NPs showed biocidal properties
against S. aureus with bacteria decreasing by 30%, which may
be useful for tissue engineering. Hydroxypropyl methylcellu-
lose film combined with ZnO NPs and carboxymethyl starch
have been shown to have excellent antibacterial ability against
S. aureus and no toxicity to human HaCat cells and so can be
used for wound dressing (98). Majeed et al (99) found that ZnO
NPs doped with selenium showed strong inhibition to MRSA,
however, teratogenicity was also revealed, which means that it
is important to use them cautiously.

Nano-hybrids are also recommended as a good replacement
for conventional antibacterial ZnO NPs and have enhanced
antibacterial efficacy and low-toxicity on normal cells (100).
According to Karthikeyan et al (101), in order to develop
nanomaterials with high antibacterial ability compared with
antibiotics, the alginate-ZnO hybrid nanomaterials have been
synthesized with good inhibition effects on MRSA and low
cytotoxicity to human cells. Kang er al (102) reported that
the dispersibility of ZnO could be improved by the hybridiza-
tion of ZnO NPs with nanocellulose and increasing bacterial
inhibition rates were shown in S. aureus. Furthermore, in the
research of AbouAitah et al (103), a hybrid nano-formulation
was developed from ZnO NPs and protocatechuic acid
and offered a sustained-release antibacterial effect toward
S. aureus (Fig. 4).

Metal-doped ZnO nanocomposites against S. aureus. The
activities of metal ions can be improved by the amalgamation
of metal NPs. For instance, the release of more zinc and copper
ions has been confirmed by ICP-OES analysis in Cu-doped ZnO
nanocomposites, which caused enhanced antibacterial activity
against S. aureus (104). In Rao et al (105), Na-doped ZnO NPs
expressed enhanced inhibition activity against S. aureus with
Na-concentration dependence. By using a scaled-up green
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Figure 4. Substances that combined with ZnO NPs were used to make ZnO nanocomposites/nanohybrids. ZnO NPs, zinc oxide nanoparticles.

strategy, cellulose-based Ag-ZnO nanocomposites (AZC)
were prepared, which demonstrated good stability. It was also
reported that the AZC films showed greater inhibition against
S. aureus than E. coli (106). Hu et al (107) revealed that ZnO/Ag
bimetallic nanocomposites showed significant inhibition against
S. aureus compared with single metal nanomaterials and the
cytotoxicity to fibroblasts was reduced by aZnO and Ag complex.
Mohammadi-Aloucheh ez al (108) reported that ZnO/CuO nano-
composites synthesized using fruit extracts could lead to the
disruption of bacterial membranes and enhanced anti-bacterial
ability compared with ZnO NPs alone. Bahari et al (109) synthe-
sized Fe;0,/ZnO nanocomposite by the sol-gel method and the
molar ratio of 1:10 showed the best antimicrobial performance
against S. aureus with a ZOI of 11.5+0.7 mm. AlSalhi ez al (110)
used the co-precipitation technique to make magnetic

7Zn0/ZnFe,0, nanohybrids that were good photocatalytic
material and it was discovered that the membrane of S. aureus
collapsed after exposure to the nanohybrids. Lee et al (111) made
a multi-metal oxide nanocomposite including ZrO, ZnO and
TiO,. It was observed that these nanocomposites demonstrated
a killing efficiency of 72.4% against S. aureus. Poly (vinyl
alcohol)-based compositions were developed with addition of
silver, copper and ZnO NPs, which had the feature of solidifying
to be peeled off along with the impaired bacterial film, thereby
decreasing the number of S. aureus (112).

6. Functional ZnO NPs for S. aureus treatment

In order to optimize the performance of ZnO NPs to combat
pathogenic microorganisms, researchers have given attention
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to functionalized, modified or capped ZnO NPs (34,113).
Choi et al (114) created novel ZnO NPs functionalized
with caffeic acid, which expressed enhanced antibacte-
rial efficiency against S. aureus and three MRSA strains.
The amino-functionalized hydrophilic ZnO NPs induced
the destruction of respiratory electron transformation,
generation of intracellular ROS and depolarization of cell
membrane in S. aureus (115). Charoensri et al (116) prepared
polyaniline-functionalized ZnO NPs by a simple impregna-
tion method; not only did the synthesized ZnO NPs films
show enhanced water hydrophobicity, but also expressed
increased antibacterial ability against S. aureus, which will
make it possible to develop antibacterial biodegradable
materials. Lee ef al (117) prepared gallic acid functionalized
ZnO NPs that had high bacterial cell membrane affinity and
showed enhanced bactericidal activity against S. aureus and
higher selective inhibition to MRSA strains compared with
non-functionalized ZnO NPs. According to Chen et al (118),
photosensitizers-functionalized ZnO NPs demonstrated
marked S. aureus inhibition and showed low-toxicity on
endothelial cells and erythrocyte. In Yuan et al (119), lyso-
zyme-modified ZnO NPs expressed excellent antibacterial
activity against S. aureus and MRSA due to their small size,
membrane permeability and enzyme-mediated ROS genera-
tion and even had lower cytotoxicity than gentamycin at the
same concentration.

7. Conclusion and perspectives

In the present study, ZnO NPs synthesized by different
methods and their antibacterial activity against S. aureus
have been summarized. Taken together, the anti-S. aureus
efficacy of ZnO NPs mainly relies on their basic characteris-
tics, especially size and shape. Spherical shape and small size
are ideal features of ZnO NPs to combat bacteria that lead
to high specific surface areas and more chances to contact
with pathogens. In Babayevska er al (24), ZnO NPs with the
highest specific surface area showed the size <10 nm. It is also
reported that spherical ZnO NPs had the minimal size (31 nm)
and higher anti-S. aureus activity (6-7 log CFU ml™' reduc-
tion) compared with flower-shaped particles (3-4 log CFU ml™
reduction for S. aureus) (44). The detail of ZnO NPs synthe-
sized by various physical and chemical methods has been the
subject of recent research (40). Some studies also revealed that
these traditional synthesized methods had various shortcom-
ings, such as being environment-contaminating, expensive
and energy-intensive (43,120,121). Green synthesis has been
emphasized due of its environment-friendly, easy-acquired
and low-toxicity features. Some studies also noted that these
green materials had antibacterial abilities already, such as
mint (122), aloe (123) and curcumin (124), and they endow
ZnO NPs with enhanced and steady antibacterial activity
against S. aureus (125). Physical or chemical processes are
the indispensable part in NPs synthesis. However, ZnO NPs
made only by physicochemical ways are cannot compare with
biogenic, functional or compound ZnO NPs when they are
further applied to clinical antibacterial situations.

ZnO NPs can be used in a number of pre-clinical
and clinical antimicrobial fields, including surgical
operation (59), post-operative anti-bacterial therapy (90),

anti-inflammatory (80) and ophthalmic treatment (126).
For example, suture coated by green synthetic ZnO NPs
demonstrated excellent tensile strength and wound healing
ability in an incision wound rat model (59). An infection
model in mice showed that ZnO NPs originating from fungi
could significantly decrease hepatic inflammatory markers,
restrain congestion and fibrosis in tissues and improve liver
function (80). Sindelo ef al (127) made the phthalocyanines
link to the amino-functionalized ZnO NPs and these nano-
composites showed considerable activities of photodynamic
antimicrobial chemotherapy and multi-microbial biofilms
eradication. Considering that ZnO NPs had an excellent anti-
bacterial activity against S. aureus and good biocompatibility,
a chitosan-ZnO/selenium nanoparticles scaffold was devel-
oped to be used for infected wound healing and postoperative
treatment of pediatric fractures (128). Ismail er al (129) also
reported that ZnO NPs could be used as the hand sanitation
in the future, which present improved anti-MRSA activity
compared with the commonly used alcohol sanitation.

As one of the primary metal oxide NPs, ZnO NPs
express excellent ability against S. aureus, but they still have
drawbacks to be widely used as antibiotics replacements in
clinical contexts. A few trials in vivo suggested that different
metal oxide NPs damage cells to different degrees (45).
Venkatraman et al (130) noted the toxicity of ZnO NPs to
RAW264 macrophage cells, with half maximal inhibitory
concentration (ICsy) of 494 ug/ml. Although electrospun
scaffolds based on ZnO NPs showed increasing antibacte-
rial activity, it is also reported that cytotoxicity was related
to high ZnO content (97). According to Pereira et al (131),
erythrocyte changes were also discovered in reptile expo-
sure to ZnO NPs at the dose of 440 ug/kg. Yang et al (132)
reported that ZnO NPs could induce apoptosis of
mouse-derived spermatogonia cell line GC-1 spg cells. In
Al-Zahaby et al (133), ZnO NPs (0.69 mg/l) mediated ROS
that induced cell apoptosis and caused sensory toxicity
effect on zebrafish olfactory organs. ZnO NPs synthesized
by Calotropis procera leaf extract were reported to exhibit
potent antimicrobial ability with concentration-dependent
manner. However, with increasing exposure to ZnO NPs,
deleterious changes (degeneration, swelling and atrophy)
were found in the kidney by histology (85). Nazir et al (134)
also discovered liver dysfunction in mice intraperitoneal
injection groups at ZnO NPs doses of 50 and 100 mg/kg.
ZnO NPs were also cytotoxic to the human immune system
at doses of 25 and 12 mg/1 (135). Despite ZnO NPs exhibiting
outstanding capability in inhibiting MRSA, the resistance to
NPs by microbes remained. If the dosage of NPs is below the
sublethal concentrations, a series of resistance mechanisms
would be initiated stealthily by bacteria, resembling their
antibiotic resistance (136).

ZnO NPs still have potential toxicity when they are
applied to clinical antibacterial treatment, though green-ZnO
NPs have shown lower cytotoxicity than physicochemi-
cally synthesized ZnO NPs (60). Studies mostly pay close
attention to the improving methods for preparation of ZnO
NPs (42,48,54). They focus on the physical characteristics
and antibacterial abilities, but neglect, to some degree, the
cytotoxicity tests in vivo. Markedly, researchers have devel-
oped a predictive model to evaluate the security of ZnO
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NPs with different features and the authors point out that
ZnO NPs with larger size, spherical shape, negative charge
and a higher tendency for aggregation are safer, which is of
great value to further toxicity studies (137). Notably, ZnO
NPs <100 pg/ml were biocompatible and the cytotoxicity
was parallel with their antibacterial activity, which meant
that the anti-S. aureus mechanism (direct contact to cells,
ROS and Zn** releasing) was also the potential killing
process in normal cells (24). Although a number of reports
explained the antibacterial mechanism against S. aureus
of metal and metal oxide NPs, the studies for ZnO NPs
were still limited compared with other metal NPs such as
Ag NPs (26,138). The majority of ZnO NPs anti-S. aureus
properties lack a comprehensive assessment and were
only analyzed by well or disc diffusion test and bacterial
growth curve and some studies only reported ZOI or MIC
or even neither of them (42,50,126). A uniform standard
of S. aureus strain is also necessary, which would play a
crucial role in comparing antibacterial effects of ZnO NPs
made by different methods.

In order to restrict the immoderate proliferation and
mutation of pathogens, unremitting efforts should be made
to optimize antibacterial strategies. As aforementioned, the
synergism of ZnO NPs and other materials showed comple-
mental effects, enhanced antibacterial activity and improved
properties in clinical applications. Due to technology devel-
opments, there are more potentials for ZnO NPs preparation
and biomedical application. For instance, apart from the
green synthesis aforementioned, material-saving, safe and
even granular NPs can be made by more novel methods,
such as microfluidic (120). Except for using green and easily
obtained raw materials, synthetic methods should be able to
flexibly control the size, shape and dispersity of ZnO NPs,
which means that the key material and procedure of ZnO NPs
synthesis must be identified by modern techniques. Notably,
genomic and proteomic techniques should be devoted to
the exploration of the antibacterial mechanism, synthesis
optimization and cytotoxicity of ZnO NPs. The antibacterial
study of effects at the cellular level in the long term is an
essential component to investigate the dosage and safety of
ZnO NPs. It is necessary to focus on ZnO NPs studies in vivo,
especially the biokinetics, bioavailability, tissue distribution
and clearance rate, which are essential for their antibacterial
applications and improved using as antibiotics replacements.
In addition, composite and functional ZnO NPs could enhance
the antibacterial advantages to some degree and decrease their
toxicity and also reduce the excessive exposure of ZnO NPs
that diminish the possibility of antimicrobial resistance, this is
for future researchers.
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