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Integrated genomic analyses of de novo pathways
underlying atypical meningiomas
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Meningiomas are mostly benign brain tumours, with a potential for becoming atypical or

malignant. On the basis of comprehensive genomic, transcriptomic and epigenomic analyses,

we compared benign meningiomas to atypical ones. Here, we show that the majority of

primary (de novo) atypical meningiomas display loss of NF2, which co-occurs either with

genomic instability or recurrent SMARCB1 mutations. These tumours harbour increased

H3K27me3 signal and a hypermethylated phenotype, mainly occupying the polycomb

repressive complex 2 (PRC2) binding sites in human embryonic stem cells, thereby

phenocopying a more primitive cellular state. Consistent with this observation, atypical

meningiomas exhibit upregulation of EZH2, the catalytic subunit of the PRC2 complex, as well

as the E2F2 and FOXM1 transcriptional networks. Importantly, these primary atypical

meningiomas do not harbour TERT promoter mutations, which have been reported in atypical

tumours that progressed from benign ones. Our results establish the genomic landscape of

primary atypical meningiomas and potential therapeutic targets.
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O
ver 35% of all primary tumours that affect the central
nervous system are meningiomas, which originate from
the three-layer meningeal membrane ensheathing the

brain and spinal cord1. According to the World Health
Organization (WHO) criteria, meningiomas are classified into
three pathological grades, based mainly on morphologic
findings2,3. These include histological criteria such as mitotic
activity, cellularity, cellular morphology and growth pattern,
necrosis, and brain invasion. Approximately 70–80% of
meningiomas are grade I and benign, while grade II and III
meningiomas are higher grade and classified as atypical (5–20%)
or malignant (1–3%), respectively2,3. The grading of a tumour
carries prognostic value, as higher grade lesions are more likely to
recur and decrease the chances of long-term survival4.

Work by our lab and others has identified mutually exclusive
molecular subgroups in benign meningioma, including loss of
NF2 (occasionally with recurrent mutations in SMARCB1),
mutations in the WD40 repeat region of TRAF7 (co-occurring
with either PI3K activating mutations or recurrent KLF
p.Lys409Gln mutation), activation of Hedgehog signalling
(via SMO, SUFU or PRKAR1A), and recurrent p.Gln403Lys
and p.Leu438_His439del mutations in the dock domain of
POLR2A5–7. Interestingly, these subgroups were associated
with distinct pathological and clinical findings. For example,
secretory meningiomas were driven exclusively by TRAF7/KLF4
co-mutations, while fibrous meningiomas were primarily
associated with NF2 loss. The intracranial origin of a
meningioma was also predicted by the underlying meningioma
mutations, with non-NF2 mutant tumours being enriched in the
neural crest derived anterior skull base region, while samples
harbouring NF2 loss arose from the mesoderm-derived posterior
regions6.

While these studies led to comprehensive genomic character-
ization of benign meningiomas, the genomic pathways that lead
to formation of atypical cases are not well established. Primary
atypical meningiomas form de novo, whereas secondary ones
form due to recurrence and malignant progression of benign
meningiomas8. Overall, atypical tumours comprise B5–20% of
all meningiomas and are associated with poor prognosis and a
10-year survival less than 80%, mostly due to local recurrence9.
As with other high-grade forms of neoplasia, these tumours show
increased genomic instability, including loss of chromosomes
22q, 1p and 14q6,10. Other than identifying these large
chromosomal events, studies to date have failed to identify
specific molecular changes that distinguish atypical from benign
meningiomas.

The genomic alterations that differentiate low-grade and high-
grade tumours have been extensively studied in other forms of
neoplasia11. While somatic coding mutations have been identified
in many cases, epigenetic modifications have also emerged as a
potent mechanism to induce formation of malignant tumours.
These include alterations in histone modifications or DNA
methylation, both of which remodel chromatin to affect changes
in gene expression and alter the transcriptional profile of the
cancer cells11,12.

Here, we used integrated genomic techniques to dissect the
molecular landscape of primary atypical tumours compared with
their benign counterparts. We show that the mutational back-
ground of primary atypical meningiomas to be comprised mainly
of NF2 mutants, which frequently co-occur with either chromo-
somal instability or recurrent p.(Arg383Gln) or p.Arg386His
mutations in SMARCB1 (co-occurrence P¼ 1.2� 10� 7, Fisher’s
exact test). Meningiomas with these alterations carry a signifi-
cantly higher risk of being atypical as compared with non-NF2
meningiomas, including TRAF7 (with PI3K or KLF4 alterations),
Hedgehog or POLR2A mutant tumours. Differences in the

number of coding mutations do not contribute to the risk of
being atypical; while large-scale copy number variant (CNV)
events, transcriptional and epigenetic changes as well as
alterations in miRNAs show substantial association.
Indeed, genomically unstable, hypermethylated NF2 mutant
meningiomas, which display activation of the cell cycle as well
as the PRC2 pathways, account for the majority of the genomic
landscape of primary atypical meningiomas. These findings
define novel therapeutic targets in atypical meningiomas, which
continue to represent significant treatment challenges due to a
lack of effective chemotherapeutics.

Results
NF2 and SMARCB1 mutations in atypical meningiomas.
We hypothesized that similar to gliomas, in which malignancy
(glioblastoma multiforme) can occur either de novo or through
progression of a lower grade tumour11, the molecular pathways
that underlie formation of primary atypical meningiomas
would be different than those associated with the progression of
benign tumours8. On the basis of this assumption, we choose to
specifically focus our analysis on primary atypical samples, as the
molecular features of this tumour have not been described. Of the
775 meningiomas that we studied using next-generation exome
(n¼ 107) or targeted sequencing, we concentrated our initial
efforts on comparing histologically benign samples (n¼ 468)
with de novo atypical tumours (n¼ 88) (Supplementary Fig. 1;
Supplementary Data 1a–c). This dataset did not include tumours
that have undergone previous chemotherapy or radiation, as these
treatments may induce exogenous genomic changes.

We first searched for known meningioma driver mutations
in each sample, defining the distribution of benign versus
atypical meningiomas in each of the molecular subgroups
including NF2, TRAF7 (co-mutated with PI3K pathway or
KLF4), Hedgehog and POLR2A mutant tumours. We found
significant differences in the percentage of atypical versus
benign tumours within these molecular subgroups. Of the
88 histologically atypical meningiomas, 75% contained NF2
mutations (Supplementary Data 1c), while the remaining 9%
were TRAF7/PI3K mutant and 16% did not harbour a mutation
in the previously established meningioma genes. In our sample
set, we did not observe any atypical tumours that harboured
mutations in TRAF7/KLF4, POLR2A or the Hedgehog pathway.
Because of the high prevalence of NF2 alterations in the atypical
cohort, a tumour harbouring NF2 loss has a 3.78 times
greater risk to be atypical compared with a non-NF2 meningioma
(P¼ 2.2� 10� 10, Fisher’s exact test).

Given these results, which suggest that primary atypical
meningiomas were overwhelmingly associated with loss of NF2,
we divided our cohort into two large subgroups: those with
NF2 mutations, and those that were NF2 wild type (including
TRAF7/PI3K//KLF4, Hedgehog and POLR2A mutant tumours
as well as mutation unknown samples). We investigated the
potential role of coding variation by comparing the number of
somatic coding mutations in atypical and benign samples
stratified by NF2 status, which allowed us to control for the
underlying driver mutation. We did not find a statistically
significant difference (Student’s t-test) (Fig. 1a,b; Supplementary
Figs 2 and 3; Supplementary Data 2a–e).

Among all samples that underwent whole-exome sequencing,
the only somatically mutated gene that we found to be enriched
in the atypical samples was NF2 (Supplementary Data 2b–e).
We next studied an extended cohort that included not only the
whole-exome sequenced dataset, but also an independent dataset
of meningioma samples that underwent targeted sequencing
(n¼ 556). We calculated the significance of association of the
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driver mutations (NF2, SMARCB1, TRAF7/PI3K, TRAF7/KLF4,
POLR2A, Hedgehog) with atypical meningiomas. We observed
a significant association of being atypical only with NF2 and
SMARCB1 mutations (NF2: P¼ 2.2� 10� 10, SMARCB1:
P¼ 0.05, Fisher’s exact test). These findings suggest that except
for mutations in NF2 and SMARCB1, coding variation does not
significantly contribute to the risk of being atypical.

We next calculated the clonality rate of each somatic mutation
based on the variant allele frequency and ploidy at that site,
considering the admixture rate of each tumour. In the majority of
our samples (13/17), we calculated NF2 mutations to have a
clonality rate near 100%, suggesting that NF2 mutations occurred
early during tumour formation (Supplementary Data 2f;
Supplementary Fig. 4).

Atypical NF2 mutants demonstrate chromosomal instability.
Using whole-genome genotyping (WGG), we next compared

large-scale CNV events between benign and atypical tumours
(n¼ 153 versus 55, benign versus atypical, respectively)
(Supplementary Data 3a). We defined ‘large-scale’ CNV events as
affecting more than one-third of a chromosomal arm and
calculated the percentage of genome alteration (PGA) as a general
indicator of genomic aberrations. Considering a calculated mean
PGA value of 4.8% across 208 meningiomas, we classified any
meningioma with a higher or lower PGA value as ‘CNV-high’ or
‘CNV-low’, respectively (Supplementary Fig. 5).

Overall, primary atypical NF2 tumours were significantly more
likely to be CNV-high, as compared with benign NF2 ones
(P¼ 0.02, Student’s t-test, Fig. 1c). On the basis of correction for
mutational background by considering only the NF2 mutant
meningiomas, we calculated atypical tumours to have a 2.19 times
greater risk to be CNV-high (P¼ 0.001, Fisher’s exact test)
(Supplementary Data 3b). When we performed the same analysis
considering non-NF2 mutant meningiomas (n¼ 96 versus 12,
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Figure 1 | Somatic mutations and copy number variations in benign and atypical meningiomas. (a) Oncoprint depicting the mutational profile of

75 exome-sequenced meningioma samples is shown. Histological grade, chromosome 22 loss status and recurrently mutated genes, which are clustered

based on mutually exclusive meningioma subgroups (left) are summarized at the top panel. The distributions of somatic mutations according to their

functional consequences are shown in the middle panel, whereas the mutational signatures are shown at the bottom. The colour codes are explained on the

right. (b) Atypical versus benign meningiomas harbour similar number of damaging somatic mutations (atypical n¼ 10, benign n¼ 65). The lines above the

bars indicate statistical analysis (Student’s t-test; ns: non-significant). Lines depict the median values; boxes plot 25th to 75th percentiles, whereas

separately plotted dots show the outliers. (c) The percentage of genome alteration is statistically significantly different between atypical versus benign

meningiomas (atypical n¼ 55, benign n¼ 153) (Student’s t-test). Lines depict the median values; boxes plot 25th to 75th percentiles, whereas separately

plotted dots show the outliers. (d) Large-scale genomic events associated with atypical NF2 samples are shown (atypical n¼43, benign n¼ 57). Losses of

chromosomes 14q, 10q, 10p, 1p and 6q significantly associate with atypical tumours (FDR adjusted Fisher’s exact test). (e) Differences in genomic

alterations between atypical NF2 and benign NF2 mutant samples are shown (atypical n¼43, benign n¼ 57). Along the horizontal axis, losses are depicted

in blue, whereas gains are shown in red. The vertical axis represents the genome. Significantly altered tumour suppressor consensus cancer genes in

atypical NF2 samples are noted.
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benign versus atypical, respectively), we did not find any
statistically significant difference in PGA, likely due to the small
number of non-NF2 mutant meningiomas (P¼ 0.27, Student’s
t-test, Fig. 1c). Not surprisingly, when we combined the benign
and atypical samples together and simply compared non-NF2
mutants to NF2 mutant meningiomas (among which percentage
of atypical tumours is much higher), we obtained a similar result,
with NF2 mutants being genomically more unstable. These
findings demonstrate that atypical tumours with NF2 loss display
increased chromosomal instability compared with their benign
counterparts, while those without NF2 loss do not.

We next compared specific CNV events associated with
atypical samples, initially considering the NF2 mutants only.
As expected, all benign as well as atypical NF2 mutant samples
demonstrated chromosome 22 loss. There were, however,
significant differences with respect to several other chromosomes.
We found that chromosome 14q loss was the most significant
difference between atypical and benign NF2 meningiomas
(18% versus 7%, respectively; P¼ 0.0016 false discovery rate
(FDR)¼ 0.04, Fisher’s exact test). This was followed by whole
arm losses of chromosomes 10q, 10p, 1p and 6q, (P¼ 0.002
FDR¼ 0.04, P¼ 0.005 FDR¼ 0.06, P¼ 0.008 FDR¼ 0.07,
P¼ 0.013 FDR¼ 0.1 respectively, Fisher’s exact test) (Fig. 1d).
No CNV events were significantly associated with atypical
non-NF2 meningiomas compared with benign non-NF2 samples.

We next identified tumour suppressor genes located within
these genomic regions frequently deleted in atypical NF2
meningiomas. Deletions in phosphatase and tensin homologue
(PTEN) (10q23) (13% versus 0% in atypical versus benign NF2
tumours, FDR¼ 0.018), myc-associated factor X (MAX) (14q23)
(34% versus 10%, FDR¼ 0.03), neurogenic locus notch homolog
protein 2 (NOTCH2) (1p13) (20% versus %3, FDR¼ 0.043),
AT-rich interactive domain-containing protein 1B (ARID1B)
(6q25) (30% versus 10%, FDR¼ 0.058), a member of the
SWI/SNF-A chromatin-remodeling complex and cyclin-
dependent kinase inhibitor 2C (CDKN2C) (1p32) (46% versus
24%, FDR¼ 0.08) genes were significantly more common in
atypical NF2 samples (Fig. 1e).

When we corrected both for the mutational background
(NF2 versus non-NF2 mutant) and CNV status (CNV-high
versus-low), we again did not identify any differences in
the overall number of damaging somatic mutations, further
suggesting that changes in coding variations did not significantly
contribute to the risk of being atypical.

mRNA expression signature separates atypicals from benigns.
After investigating genomic alterations, we expanded our analysis
to understand the transcriptional changes underlying
atypical meningiomas. We studied the messenger RNA (mRNA)
expression profiles of 138 primary meningiomas, again focusing
on the comparison between atypical versus benign samples
(n¼ 26 versus 112, respectively) (Supplementary Data 4a).
Principal component analysis, unsupervised hierarchical and
consensus clustering clearly distinguished NF2 CNV-low, NF2
CNV-high and non-NF2 samples, however failed to completely
separate atypical versus benign tumours (Fig. 2a). This result
suggested that gene expression correlated more closely with the
underlying driver mutation rather than the histological grade.

To characterize specific transcriptional changes associated
with atypical tumours, we next corrected for the underlying
meningioma driver mutation by dividing the cohort into NF2 and
non-NF2 subgroups as before. We identified mRNA signature
genes (n¼ 483) that were differentially expressed between
atypical and benign samples when stratified by NF2 status
(Supplementary Data 4b). Principal component (PC) analysis of

gene expression data using these signature genes correctly
separated atypical samples from benign ones, even when NF2
status was not considered (Fig. 2b; Supplementary Figs 6–9). This
analysis demonstrated that atypical tumours harbour a distinct
expression profile of a set of transcripts, which were significantly
enriched for cell cycle processes, including upregulation of the
E2F and FOXM1 transcription factor networks (hypergeometric
test) (Fig. 2c,d; Supplementary Fig. 10; Supplementary Data 4c,d).
Importantly, expression levels of the genes associated with
atypical samples were not affected by the CNV events, suggesting
that transcriptional regulation, and not genomic instability, was
the primary driver of these processes.

We next used the top 25 most differentially expressed genes to
build a random forest prediction model, aiming to associate gene
expression with meningioma histological grade. Our prediction
model had a 96% prediction accuracy (4% out of bag error rate)
on this training set. When we used the dataset of an independent
meningioma gene expression study13 as a validation set, we
obtained a 91% accuracy rate, after considering only histologically
atypical meningiomas with high or medium Ki-67 index.
Interestingly, 15 of the top 25 most significant genes were
involved in cell cycle processes, including E2F, ASPM, aurora
kinase, cyclin and centromic proteins (Fig. 2c; Supplementary
Data 4b). Other top upregulated genes included POLQ, a DNA
damage repair gene associated with high tumour grade and
genomic instability in breast cancer14; RET, a receptor tyrosine
kinase oncogene; and BCL2, which has been found to have
increased expression in many types of cancer such as lymphoma,
small cell lung and prostate cancer15–17. Importantly, atypical
meningiomas also showed increased expression of the EZH2
gene. This gene codes for the catalytic subunit of the PRC2
complex, known to play a key role in both tissue-specific stem cell
maintenance and tumour development (Fig. 2d).

microRNA regulatory networks in atypical meningiomas.
We next compared miRNA expression patterns in benign versus
and atypical meningiomas (n¼ 15 versus 17, respectively)
(Supplementary Data 5a). Unsupervised hierarchical clustering of
miRNA expression profiles correlated well with being benign
versus atypical, CNV status, and also with the underlying
meningioma driver mutation, clearly separating NF2 mutants
from non-NF2 meningiomas (Fig. 3a).

On the basis of this observation, we searched for differentially
expressed miRNAs between atypical and benign meningiomas
(Fig. 3b, Supplementary Data 5b). Differential expression of
miRNAs has been shown to play important roles in the control
of cancer hallmark functions such as invasion, metastasis,
proliferation and apoptosis18 (Fig. 3c). In atypical samples, we
identified 67 differentially regulated miRNAs (54 downregulated,
13 upregulated). We next correlated the differentially expressed
miRNAs with large-scale chromosomal events. We identified
miRNAs clustering on a deleted region on chromosome 14q32
(n¼ 28) to be downregulated, suggesting the expression of these
miRNAs were largely driven by CNVs.

To correlate downregulated miRNA clusters with gene
expression patterns, we inferred miRNA:mRNA regulatory
networks using samples that contained both datasets (n¼ 22).
We calculated the observed number of negatively correlated
targets for each miRNA, with the assumption that if the miRNA
expression were playing a significant biological role, it is expected
that the expression levels of its target genes would be altered.
Consistent with the expected biological action of elevated miRNA
expression, we identified the number of negatively correlated
targets to be significantly higher than the positively correlated
ones (Po2.2e� 16, paired Wilcoxon test) (Supplementary
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Fig. 11). We found that loss of miRNAs on the frequently
deleted chromosomal segment 14q32 was significantly inversely
correlated with a set of their known target genes (n¼ 85)
(Supplementary Data 5c). These upregulated genes were enriched
for receptor tyrosine kinase signalling pathways as well as the
GO term ‘regulation of programmed cell death’ (Fig. 3d;
Supplementary Data 5d).

We also identified 5 members of let-7 family (let-7a, chr22,
log FC¼ 0.66; let-7b, chr22, log FC¼ � 0.8; let-7c, chr21, log
FC¼ � 0.6; let-7d, chr9, log FC¼ � 0.78; let-7e, chr19,
log FC¼ � 0.86) to have aberrant expression in atypical
meningiomas. This family of miRNAs has been shown to be
deregulated in various cancers such as prostate cancer and
neuroblastoma19,20, as well as malignant schwannoma and
meningioma21, potentially through negative regulation of EZH2
(refs 19,20,22). Consistent with these observations, the down
regulation of let-7 family in atypical meningiomas was correlated
with upregulation of EZH2 mRNA expression in our dataset
(let-7c: B� 0.65, P¼ 0.001, let-7d: B� 0.62, P¼ 0.002, let-7e:
B� 0.49, P¼ 0.02 correlation test) (Fig. 3e). Importantly,
expression levels of these miRNAs, other than let-7b (deleted in
75% versus 47% in atypical versus benign meningiomas,
respectively) were not affected by the CNV events.

DNA methylation patterns in atypical meningioma subgroups.
We next focused on epigenetic alterations, again comparing
atypical meningiomas to benign ones. We initially analyzed the
DNA methylation status of 60 samples, including meningiomas
(n¼ 46 versus 11, benign versus atypical, respectively) as well as
control tissues obtained from the normal meninges (n¼ 3)
(Supplementary Data 6a,b). Unsupervised analysis of whole-
genome methylation data using two different clustering methods,
namely principal components and consensus clustering,
revealed consistent results and identified distinct subgroups of
meningiomas (Fig. 4a,b). Neither of these clusterings was affected
by large-scale chromosomal events, since when we removed the
sites in the regions that are affected by large-scale chromosomal
events (chr1, chr14, chr22), clustering results did not change
(Supplementary Fig. 12).

Integration of the methylation data with copy number
and mutational analyses revealed the presence of distinct
molecular signatures in atypical meningiomas. First, genome-
wide DNA methylation patterns clearly separated the NF2 mutant
meningiomas from relatively less methylated non-NF2 tumours,
with atypical non-NF2 meningiomas clustering distinctly from
benign non-NF2 ones (Fig. 4a,b). Second, for NF2 mutant
meningiomas, which also formed 2 different sub-clusters, one of
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Figure 2 | mRNA expression profile in atypical meningiomas. (a) Unsupervised hierarchical clustering of 138 meningiomas by genome-wide expression
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atypical phenotype compared with benign are shown (atypical n¼ 26, benign n¼ 112). Black line indicates an FDR of 0.05. (d) EZH2 and E2F2 gene
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the subgroups revealed a distinct hypermethylated phenotype
and was significantly enriched for atypical CNV-high samples
(P¼ 0.03 (two NF2 cluster comparison), Fisher’s exact test)
(Fig. 4a–c; Supplementary Data 6b). The majority of samples
in this cluster revealed large-scale chromosomal aberrations
including chromosome 1p loss, which was found in all samples
(Fig. 4a; Supplementary Data 6b). Indeed, we observed a
statistically significant positive correlation between the degree of
chromosomal alterations and the amount of genome-wide DNA
hypermethylation (P¼ 0.01 correlation test) (Fig. 4d).

Interestingly, we found that atypical samples harbouring
both NF2 and SMARCB1 mutations, although genomically stable,
still clustered closer to the CNV-high atypical NF2 samples in

principal component analysis and were also hypermethylated.
These results suggest the presence of two distinct pathways
underlying NF2 mutant, atypical meningiomas: one through
acquiring genomic instability and the other through recurrent
SMARCB1 mutations (Fig. 4b,c).

Hypermethylation of PRC2 binding sites in atypical tumours.
Given that NF2 mutant atypical meningiomas displayed a
hypermethylated phenotype, we next investigated which gene sets
were more methylated in atypical versus benign meningiomas
(GREAT tool), making use of the Molecular Signature Database
(MSigDB)23. We found that Polycomb Repressive Complex 2

d

CNV-high

CNV-low

HighLow

−log10 FDR

Cancer related pathways

let-7a
miR-125a
miR-125b
miR-128
miR-204
miR-21
miR-25
miR-30d
miR-483
miR-944

let-7b
let-7c
let-7d
let-7e
miR-126
miR-127
miR-130a
miR-134
miR-136
miR-143
miR-145
miR-154
miR-23b
miR-27b
miR-320a
miR-320c

miR-326
miR-329
miR-337
miR-33a
miR-345
miR-376c
miR-377
miR-379
miR-382
miR-411
miR-432
miR-495
miR-502
miR-574
miR-655
miR-656

Down regulated miRNA

Benign

Atypical

4.6

5.0

5.4

5.8

E
Z

H
2 

(I
LM

N
_1

70
81

05
)

ex
pr

es
si

on

8.5 9 9.5 10 10.5 11

let-7c expression

r2 = –0.65

P = 0.001

CNV status

Negative regulation of programmed cell death

Neurotrophin TRK receptor signalling pathway

ERBB signalling pathway

Epidermal growth factor receptor signalling pathway

Fibroblast growth factor receptor signalling pathway

0 1 2
7 8 9

r2 = –0.62

P = 0.002

let-7d expression

r2 = –0.49
P = 0.02

6 7 8

let-7e expression

miR−128−3p : chr2
miR−25−3p : chr7
miR−30d−5p : chr8
miR−125a−5p : chr19
miR−125b−5p : chr11
let−7a−3p : chr22
miR−499a−5p : chr20
miR−34c−5p : chr11
miR−549a : chr15
miR−944 : chr3
miR−21−5p : chr17
miR−204−5p : chr9
miR−483−3p : chr11
miR−126−5p : chr9
miR−126−3p : chr9
miR−143−3p : chr5
miR−362−5p : chrX
miR−532−3p : chrX
miR−145−5p : chr5
miR−574−5p : chr4
miR−320a : chr8
miR−501−3p : chrX
miR−502−3p : chrX
miR−326 : chr11
miR−23b−3p : chr9
miR−27b−5p : chr9
miR−299−5p : chr14*
miR−33a−3p : chr22*
miR−299−3p : chr14*
miR−376b−5p : chr14*
miR−376c−5p : chr14*
let−7b−5p : chr22*
miR−1299 : chr9
miR−345−5p : chr14*
miR−5701 : chr15
miR−154−5p : chr14*
miR−409−5p : chr14*
miR−758−3p : chr14*
miR−379−5p : chr14*
miR−411−5p : chr14*
miR−136−3p : chr14*
miR−136−5p : chr14*
miR−382−3p : chr14*
miR−376c−3p : chr14*
miR−127−5p : chr14*
miR−134−5p : chr14*
miR−127−3p : chr14*
miR−382−5p : chr14*
miR−432−5p : chr14*
miR−495−3p : chr14*
hsa−miR−337−3p : chr14*
miR−4286 : chr8
miR−377−5p : chr14*
miR−320d : chrX
miR−320b : chr1*
miR−320c : chr18
miR−323a−3p : chr14*
miR−656−3p : chr14*
miR−329−3p : chr14*
miR−654−5p : chr14*
hsa−miR−655−3p : chr14*
let−7c−5p : chr21
let−7d−5p : chr9
let−7e−5p : chr19
miR−130a−3p : chr11
miR−151a−5p : chr8
miR−151b : chr14*

Atypical/benign

Atypical

Benign

Mutation type

NF2

Non-NF2 

CNV-high

CNV-low

CNV statusAtypical/benign

Atypical

Benign

Mutation type

NF2

Non-NF2 

a b

c

d

e

Up regulated miRNA
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CNV-high or -low status, which are all colour coded, are shown. (b) Heatmap visualization of differentially expressed miRNAs between atypical versus
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(PRC2) target sites in human embryonic stem cells (PRC2-
hESCs)24, as well as Homeobox domain sites25, represented the
most differentially methylated regions (FDR¼ 1.15� 10� 71 and
6.6� 10� 55, respectively) (Fig. 4e; Supplementary Data 7a).
Interestingly, we also found enriched methylation of these sites
across benign meningiomas compared with control meninges,
albeit less than that observed in atypical samples
(FDR¼ 5.8� 10� 17). This finding suggests that the degree of
methylation at PRC2-hESCs and Homeobox domain sites may
establish a spectrum of meningioma severity, with normal
meninges, benign meningioma, and atypical meningioma
having progressive amounts of increased DNA methylation at
these sites.

To further explore this finding, we next considered the
methylation status of PRC2-hESC targets among the various

subgroups identified in our genomic, gene expression, and
methylation analyses. We observed the highest enrichment
for PRC2-hESCs hypermethylation in the atypical and benign
NF2 CNV-high samples (FDR 9.3� 10� 142 when compared
with benign non-NF2 mutant samples), followed, in order,
by the NF2/SMARCB1, NF2 CNV-low and atypical non-NF2
meningiomas (FDR values 1.2� 10� 91, 4.1� 10� 77 and
2.8� 10� 75 respectively) (Fig. 4e; Supplementary Data 7b–f).

It has been previously shown that EZH2, the catalytic subunit
of PRC2, is a recruitment platform for DNA methyltransferases
(DNMTs), acting as a direct controller of DNA methylation at
PRC2 binding sites26. On the basis of this knowledge and our
observations, transcriptional upregulation of EZH2 and down
regulation of its regulator let-7 in atypical samples suggest that
increased methylation in atypical tumours might be related to
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Figure 4 | DNA-methylation patterns across benign versus atypical meningiomas. (a) Integrated view of DNA methylation clustering combined with the

underlying meningioma driver gene mutations, histological grades and genome copy numbers are shown (atypical n¼ 11, benign n¼46). Consensus

clustering defines four main subgroups based on methylation status. The CNV-high or -low categories, as well as NF2 and SMARCB1 mutations are marked.

(b) PC analysis of meningioma methylation data, which separate NF2 CNV-high, -low and non-NF2 samples into different groups, is shown (atypical n¼ 11,
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deregulated PRC2 activity. However, this association was not
experimentally tested in our study. (Supplementary Figs 13 and
14; Supplementary Data 8a,b).

H3K27me3 ChIP-seq confirms silencing of PRC2 targets. In
addition to DNA methylation, the PRC2 complex also plays an
important role in regulation of histone state. In particular, EZH2
is involved in trimethylation of histone 3 lysine 27 (H3K27me3)
to drive long-term silencing of gene expression during
development and other processes27. To confirm increased activity
of EZH2 in atypical tumours, we next performed H3K27me3
ChIP-seq using both atypical and benign meningioma samples
(n¼ 3 each) (Supplementary Data 9a). H3K27me3 profiles clearly
separated atypical meningiomas from benign ones (Fig. 5a).
Interestingly, differential binding analysis between atypical and
benign samples showed an overall increase in H3K27me3 binding
in atypical samples (Fig. 5b; Supplementary Data 9a).

GO Term enrichment analysis of H3K27me3 differentially
bound and underexpressed genes in atypical as compared with
benign samples revealed ‘neuron projection morphogenesis’,
‘neuron differentiation’, and ‘neurogenesis’ GO terms, suggesting
that atypical meningiomas, while turning on embryonically active
pathways, repress pathways involved in differentiation (Fig. 5c,
Supplementary Data 9b). On the basis of GREAT enrichment
analysis, H3K27me3 differentially bound and underexpressed
genes in atypicals as compared with benign ones were enriched
for PRC2-hESC targets (FDR¼ 0.03). Since GREAT analysis
assesses the enrichment using hypergeometric test, the enrich-
ment was significant even though there was an overall increase in
H3K27me3 signal in atypicals.

H3K27ac ChIP-seq identifies activated regions in atypicals.
Given the role of epigenetic silencing in atypical samples,
we investigated if activating epigenetic alterations may also be
associated with these tumours. To investigate this question,
we performed ChIP-seq targeting histone 3, lysine 27 acetylation
(H3K27ac) using 3 atypical tumours and 15 benign tumours,
as well as control meningeal tissues (2 dura samples)
(Supplementary Data 10a). We identified transcriptionally active
regions by focusing on broad genomic loci that harboured
dense clustering of H3K27ac signals, previously described as
‘super-enhancer’ regions. These features have been shown to be
important in determining not only cell identity, but also cancer
cell properties28. Indeed, super-enhancer driven expression of
particular oncogenes has been shown to be fundamental in
formation of specific tumours28. Although active genomic regions
as defined by H3K27ac binding were highly correlated among
different meningioma samples (with a minimum correlation
coefficient of 0.7), we were able to clearly classify meningiomas
into atypical versus benign samples as well as into various
molecular subgroups, including NF2 CNV-high, NF2 CNV-low
and non-NF2 samples (Fig. 5d).

We identified 19 super-enhancers with concordant changes in
gene expression between atypical and benign samples (Fig. 5e,
Supplementary Data 10b). Notably, in the atypical group we
identified a differentially active super-enhancer near the ZIC
Family Member 1 (ZIC1) transcription factor, a regulator of
neural crest differentiation29, that is shown to play an essential
role in the proliferation of meningeal cell progenitors30. This gene
showed increased H3K27ac binding in atypical versus benign
meningiomas (FDR¼ 0.007, fold change log FC¼ 4.95) with
increased expression in atypical NF2 samples (gene expression
FDR¼ 0.001) (Fig. 5f,g).

To characterize super-enhancers associated with atypical
tumours independent of the mutational background, we next

compared atypical NF2 mutant samples to benign NF2 mutants
and identified five super-enhancers with concordant changes in
gene expression. We found decreased H3K27ac signal near the
GDNF family receptor alpha-1 (GFRA1) gene that is involved
in neuron survival and differentiation31. Importantly, decreased
H3K27ac binding was associated with decreased GFRA1
expression in atypical NF2 versus benign NF2 meningiomas
(FDR 6.2� 10� 5 fold change log FC¼ 9.54).

Benign meningiomas undergoing atypical progression. We
next expanded our analysis of primary atypical meningioma to
include recurrent (or progressed) atypical tumours. On the basis
of our findings as well as previously published studies11,
we hypothesized that distinct molecular mechanisms may be
involved in formation of de novo atypical meningioma versus
progression of benign tumours. Our analysis focused on a small
cohort of paired meningioma samples that included the original
benign sample as well as the progressed atypical counterpart from
the same patient (n¼ 4). On the basis of exome sequencing, we
identified all samples to be NF2 mutant (Supplementary Data 11).

Consistent with the previously published literature32, we found
Telomerase Reverse Transcriptase (TERT) gene promoter
mutations (C228T/-124G-A chr5:1,295,228; C250T/-146G-A
chr5:1,295,250) in 2 of the 4 progressed atypical samples. A
larger screen of 27 recurrent atypical meningiomas (non-paired)
identified 2 additional samples, suggesting approximately 13%
(4/31) of progressed atypical samples harbour mutations in the
TERT promoter (Supplementary Data 11). Importantly, when we
screened our cohort of 110 primary, non-recurrent meningiomas
(n¼ 66 NF2 atypical, n¼ 12 NF2 benign CNV-high, n¼ 4
non-NF2 benign, CNV-high, n¼ 12 NF2 benign CNV-low,
n¼ 12 non-NF2 benign CNV-low and n¼ 4 NF2/SMARCB1),
we did not identify any TERT promoter mutations
(Supplementary Data 11). This finding further supports the
presence of two distinct molecular pathways that underlie
formation of atypical meningiomas: either through a de novo
pathway as detailed in this study, or due to transformation of
benign meningiomas, partially through acquisition of an
activating TERT promoter mutation.

Discussion
Among the three pathological grades of meningiomas, grade II
atypical tumours show increased mitotic activity as well as high
cellularity, small cells with a high nuclear to cytoplasmic ratio,
prominent nucleoli, uninterrupted patternless or sheet-like
growth and occasional foci of spontaneous necrosis2,3. The
2007 revision of the WHO system classified meningiomas with
brain invasion also as grade II, even if they were histologically
benign, as the presence of brain invasion worsened the clinical
outcome and often necessitating the need for adjuvant
radiotherapy. Thus, the WHO grading system correlates well
with clinical parameters including the likelihood and time to
recurrence after initial treatment (that is, surgery) as well as
overall survival, which worsens with increasing grade. Indeed,
atypical meningiomas are associated with up to a 40% recurrence
rate at 5 years following total resection4. Besides dictating the
clinical course, pathological grading of meningiomas further
guides treatment such that surgical resection is the standard
first-line treatment for all accessible, symptomatic meningiomas,
with radiation being reserved for the post-operative management
of higher grade II and III tumours. There are no standard
chemotherapy options.

Unlike grade I benign meningiomas, the genomic landscape of
atypical meningiomas is not well understood. Here we studied the
genomic landscape of histologically atypical, primary grade II
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meningiomas only, excluding those tumours that progressed from
a benign, recurrent meningioma or those that were classified as
grade II based solely on brain invasion. Utilizing comprehensive
next-generation genomic approaches, including exome sequen-
cing, mRNA and miRNA expression profiling, as well as H3K27
acetylation and trimethylation ChIP-seq and DNA methylation
analyses, we identified the molecular features associated with

atypical samples independent of their mutational background and
CNVs. We found that primary atypical meningiomas were
enriched for NF2 loss. On the basis of exome sequencing, we did
not observe any significant difference in the number of somatic
protein altering mutations in atypical versus benign samples
(even when stratified by NF2 status), and also did not find novel
recurrent driver genes.
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However, we did find significant differences in the extent of
chromosomal instability, with genomically unstable samples
having the greatest chance of being NF2 mutant atypical.
The CNV status associated significantly with levels of DNA
methylation, such that CNV-high NF2 mutant meningiomas
displayed a hypermethylated phenotype, particularly affecting the
PRC2 targets in embryonic stem cells. These sites also
revealed increased H3K27me3 signals based on ChIP-seq. These
observations raise the possibility that differentiation-related
genes may be suppressed in atypical meningiomas, similar to
PRC2-mediated inhibition of these genes during embryonic
development33. Indeed, silencing of PRC2 targets has been shown
to play a role in the formation and maintenance of other forms of
cancer by locking the cells into stem-like cellular state11,34.
We also identified the Homeobox genes, which similar to PRC2
signalling play a role in embryogenesis and differentiation35, to be
hypermethylated in NF2 CNV-high meningiomas.

Consistent with these findings, we showed transcriptional
upregulation of the catalytic subgroup of the PRC2 complex,
EZH2, in atypical meningiomas as compared with benign ones.
Besides functioning as a histone methyltransferase, EZH2 has
been shown to be a recruitment platform for DNA methyl-
transferases (DNMTs), acting as a direct controller of DNA
methylation at PRC2 binding sites36. Previous reports have also
identified this enzyme as a marker for aggressiveness, particularly
in glioblastoma and renal cell carcinoma37,38. The association of
EZH2 expression with atypical meningiomas suggests a role for
EZH2 as a marker in higher grade meningiomas.

A potential mechanism for increased EZH2 expression is the
loss of the miRNA let-7, a known negative regulator of EZH2, in
atypical samples (let-7c: FDR¼ 0.03, let-7d: FDR¼ 0.01, let-7e:
FDR¼ 0.01). Indeed, samples with let-7 loss revealed increased
EZH2 mRNA expression (let-7c: B� 0.65, P¼ 0.001, let-7d:
B� 0.62, P¼ 0.002, let-7e: B� 0.49, P¼ 0.02, correlation test)
in atypical compared with benign samples. This finding suggests
that loss of let-7 contributes to increased EZH2 expression and
deregulated PRC2 activity in atypical meningiomas. We also
identified miRNA cluster at 14q32 to be downregulated in
atypical samples, affecting genes in receptor tyrosine kinase
signalling pathways. Deregulation of miRNA cluster at 14q32 has
been reported in various cancer types39.

In a distinct subgroup of CNV-low but hypermethylated NF2
mutant atypical meningiomas, we observed recurrent SMARCB1
mutations. Interestingly, loss of the tumour suppressor SMARCB1
has previously been reported in various malignant rhabdoid
tumours40, as well as in families with multiple meningiomas
with schwannomatosis41. Our group has also recently described
recurrent SMARCB1 mutations in a subset of benign

meningioma7, however enrichment of this alteration in a
distinct molecular subgroup of atypical samples has not
previously been reported.

Taken together, we report a unique set of genomic and
epigenomic events that distinguish primary atypical tumours
from other types of meningiomas. Similar to the molecular
pathways underlying formation of malignant gliomas, we propose
that distinct molecular mechanisms underlie the formation
of de novo (primary) and progressed (recurrent) atypical
meningiomas. While previous groups have reported TERT
promoter mutations in atypical samples, we find that these
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Figure 6 | De novo pathway in the formation of atypical meningiomas.
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binding sites in hESCs, thereby phenocopying a more primitive cellular
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Figure 5 | Histone modifications in meningiomas. (a) Unsupervised hierarchical clustering of meningioma samples using H3K27me3 profiles is shown

(Pearson correlation) (atypical n¼ 3, benign n¼ 3). Grades are colour coded. (b) Starburst plot for atypical versus benign H3K27me3 ChIP-seq signal fold

change (horizontal axis) and FDR (vertical axis) is shown. Red and blue circles indicate regions that have increased binding in atypical versus benign

meningiomas, respectively. PRC2-hESC targets are marked in red colour. These analyses reveal increased H3K27me3 binding in atypical samples, which

shows particular enrichment of PRC2-hESC targets. (c) GO Term enrichment plot for genes with increased H3K27me3 binding and decreased expression is

shown (atypical n¼ 3, benign n¼ 3). Black line indicates an FDR of 0.05 (d) Unsupervised hierarchical clustering of 18 meningiomas and 2 controls based

on H3K27ac profile in super-enhancer sites is shown (Pearson correlation). Super-enhancer profiles are highly correlated among different meningioma

subtypes. All samples are colour coded, which are shown on the right. (e) H3K27ac ChIP-seq results correlate with gene expression profiles (n¼ 18).

Atypical versus benign H3K27ac ChIP-seq signal fold change is plotted along the horizontal axis, whereas atypical versus benign gene expression fold

change is shown along the vertical axis. Red dots indicate genes that have both activated super-enhancers and are overexpressed in atypical versus benign

meningiomas, whereas blue points indicate genes that are associated with de-activated enhancers and are underexpressed. An FDR threshold of 0.05 is

used both for gene expression and H3K27ac ChIP-seq data (empirical bayes and DiffBind methods). (f) H3K27ac ChIP-seq occupancy at a super-enhancer

near ZIC1 (n¼ 18). The horizontal axis shows genomic position whereas the vertical axis shows signal of ChIP-seq occupancy in units of reads per million

(r.p.m.). Super-enhancer region that is differentially bound in atypical samples is depicted as a black line over the gene track and highlighted. (g) ZIC1 gene

expression across atypical and benign samples is plotted (n¼ 138) (empirical bayes method). Lines depict the median values; boxes plot 25th to 75th

percentiles, whereas separately plotted dots show the outliers.
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events were limited to recurrent samples only, and not present in
de novo tumours. Our results show that primary atypical lesions
arise in response to synergistic signals that stimulate proliferation
(through upregulation of the E2F2 and FOXM1 regulated
cell-cycle pathways), as well as epigenetic changes (through
EZH2/PRC2 target activation), that have previously been shown
to phenocopy more primitive cellular states34 (Fig. 6).

In conclusion, we report comprehensive genomic, transcrip-
tomic and epigenomic analyses of primary atypical meningiomas,
identifying distinct molecular pathways that define the landscape
of these tumours and separate them from recurrent atypical
samples. Our results have biological as well as clinical implica-
tions through enhanced molecular classification and therapeutic
intervention in atypical meningiomas.

Methods
Clinical materials. Institutional Review Board approvals for genetic studies, along
with written consent from all study subjects, were obtained at the participating
institutions. The specific approval committees included the Human Investigation
Committee at Yale University, Ethikkommission der Medizinischen Fakultät der
Universität zu Köln and Ethikkommission an der Medizinischen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn.

Selective tissue dissection. For each frozen specimen submitted for
whole-exome sequencing, sections were re-reviewed to confirm the diagnosis and
assess the adequacy of the frozen tissue for experimental analysis. On H&E-stained
sections from frozen tissue blocks, areas of interest were identified and micro-
scopically dissected to ensure that each sample consisted of 470% tumour cells;
unwanted regions such as inflammatory and necrotic areas were excluded.
Tumours in the replication cohorts did not undergo selective tissue dissection.
DNA/RNA was prepared using the Allprep DNA/RNA Mini Kit (Qiagen) with the
assistance of a QIAcube.

Exome capture and sequencing. Nimblegen/Roche human solution-capture
exome array (Roche Nimblegen, Inc.) was used to capture the exomes of blood and
tumour samples according to the manufacturer’s protocol. Sequencing of the
library was performed on Illumina HiSeq instruments using paired-end 74 basepair
reads by multiplexing two tumour samples or three blood samples per lane.
Image analysis and base calling was performed by Illumina Pipeline with default
parameters, installed on Yale University’s High Performance Computing Cluster.

Whole-exome sequence analysis. We first filtered the reads based on Illumina
quality score. The low-quality 30-end of the reads using FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) and PCR primer-contaminated
sequences, that are considered to lead to alignment artifacts, were trimmed using
cutadapt. The sequences were kept only if both reads in a pair had more than
35 bases remaining after the above trimming and filtering quality measures.
The reads were aligned to the human reference genome (version GRCh37) using
Stampy (version 1.0.21) in a hybrid mode with BWA (version 0.5.9-r16)42,43.
MarkDuplicates algorithm from Picard was used for flagging PCR duplicates.
Alignment quality metrics were calculated using CollectAlignmentSummaryMetrics
and CalculateHsMetrics utilities of Picard (http://picard.sourceforge.net/). Mean
target coverage was 246 and 160 for tumour and blood respectively. The average
percentage of reads with at least 20� coverage was 93% and 90% for tumour and
blood respectively. We performed multi-sequence local realignment around
putative and known insertion/deletion sites. This was followed by the base quality
score recalibration using the Genome Analysis Toolkit (GATK, version 2.5–2)44.
We detected variant sites (point mutations and small indels) for tumour and
matched blood pairs using the HaplotypeCaller algorithm from GATK. The
genotype likelihood-based somatic score, which was proposed by Li, was used45.
We filtered out the variants according to the classes of genotype changes in tumour
with respect to the blood46. We used various quality metrics to filter out variants:
(1) somatic score less than 20, (2) overlapping a RepeatMasker or segmental
duplication annotated region, (3) low quality (o30) and low quality-by-depth
values (o1) (4) high mapping quality zero reads, (5) strand bias, (6) mutation
cluster of size 42 (7) homopolymer runs of length 4¼ 10 base pairs within
þ /� 5 base pairs around the mutation or from the right of the mutation or
(8) ClippingRankSum (calculated by GATK)o� 3 or 43. We also excluded the
sites that have more than 1% frequency in the NHLBI Exome Variant Server
Database (http://evs.gs.washington.edu/EVS/) and 1000 Genome Database. In
addition we used our internal database of 2216 exomes to compare the variant
allele frequencies of each gene and excluded the variants in the genes that have
greater than 150 variant alleles. Finally, we annotated variant alleles using Ensembl
database (version 69) with the help of Variant Effect Predictor (v2.7) tool47.
From these functional annotations, we selected the most-deleterious consequence

for each variant site and considered the variant allele to be deleterious if its
consequence was annotated as transcript ablation, splice acceptor/donor,
stop gained, frame shift, stop lost and splice region, initiator codon,
nonsynonymous codon predicted to be deleterious/damaging, or in frame
codon loss/gain. We also called somatic point mutations and indels with
MuTect48/Indelocator (http://archive.broadinstitute.org/cancer/cga/indelocator)
and Strelka49. Since MuTect can only detect somatic point mutations it is used
together with short indel variant calling method Indelocator. The co-occurrence
and mutual exclusivity of genes were assessed using one-sided Fisher’s exact test.
The MutSig algorithm was used for determining the genes that were mutated more
often than expected by chance with FDR o5% (ref. 50). Mutational signatures of
6 main categories, T4C/A4G, A4C/T4G, G4C/C4G, C4T/G4A,
A4T/T4A, G4T/C4A) are calculated based on filtered somatic variants.

Clonality analysis. Clonality rate of each somatic mutation was calculated based
on the variant allele frequency and ploidy at that site, taking into account the
admixture rate of each tumour.

CNV identification from exome data. The log ratio of depth of coverage between
tumour and blood was calculated using GATK-Depth Of Coverage tool. CNV
segments were then called from the log ratio of depth of coverage using
ExomeCNV R package51. False positive CNV events were corrected by calculating
minor allele frequencies (BAF) in each CNV segment. In each CNV segment,
B-allele frequencies (BAF) at heterozygous sites should deviate from 0.5 by at least
0.05 units. We estimated the admixture rate based on CNV analysis of paired
tumour and blood samples. Copy number loss regions were extracted and for those
regions the BAF of each tumour SNP that was heterozygous in blood was
calculated. Finally the admixture rate was estimated from the degree of deviation
from homozygosity using the qpure R package52.

Custom molecular inversion probe sequencing and analysis. Targeted
sequencing of exomic regions and exon-intron boundaries of NF2, SMARCB1,
TRAF7, PIK3CA, PIK3R1, PRKAR1A, SMO and SUFU plus the recurrent variants
AKT1 p.Glu17Lys and KLF4 p.Lys409Gln was performed using molecular
inversion probes (MIPs). Recurrent mutations in POLR2A were assessed with
Sanger screening.

Custom amplicon sequencing and analysis. Libraries consisting of the coding
exons from TRAF7, NF2, SMO, and the recurrent mutations for AKT1 p.Glu17Lys
and KLF4 p.Lys409Gln were created using the TargetRich custom amplicon kit
(Kailos Genetics).

Sanger sequencing. Coding variants detected by whole-exome sequencing or
targeted next-generation sequencing were confirmed by Sanger sequencing using
standard protocols.

Whole-genome genotyping. The Illumina Platform was used for WGG and CNV
analyses of the samples. Human OmniExpress-12v1.0 BeadChips that contain
733,202 markers were used according to the manufacturer’s protocol (Illumina,
San Diego, CA, USA). CNVs were detected by comparing the normalized signal
intensity between tumour and matched blood or tumour and the average of all
blood samples. Segmentation was performed on log intensity (R) ratios using
DNACopy algorithm53. Large-scale chromosomal deletion or amplification was
defined as affecting more than one-third of the chromosomal arm, whereas focal
event deletion or amplification was defined as affecting less than one-third and
more than one-tenth of the chromosomal arm with accompanying log ratio of
signal intensities o� 0.1 or 40.1 and B-allele frequencies (BAF) at heterozygous
sites deviating from 0.5 by at least 0.05 units. Large-scale copy neutral LOH was
defined similarly, with the exception of log ratio of signal intensities being between
0.1 and 0.1. Percentage of genome alteration (PGA) was defined as the percentage
of loss or gain base pairs relative to the entire genome. To identify significantly
altered genes we applied Wilcoxon test between atypical and benign tumours using
intensity log ratios. Cancer genes were identified based on the COSMIC database54.

Gene expression data. We used Illumina HumanHT12.v4 chips on the gene
expression data. Data was normalized using normal-exponential convolution
model-based background correction and quantile normalization using the limma
R package55. All batches were normalized at once after excluding probes with low
quality. Samples estimated to have zero proportion of expressed probes, mean
signal intensity being less than 5.54, or RIN value o3 were excluded. Hierarchical
clustering of the gene expression data showed batch effect in the data. The batch
effect was removed using ComBat in sva R package56. We performed unsupervised
hierarchical clustering based on a Euclidean distance metric and average linking
clustering on the probes that showed the top 1,000 most variable gene expression
levels. GO term enrichment analysis was performed using the Cytoscape Reactome
Plugin. Differentially expressed genes were identified using an empirical Bayesian
method ebayes implemented in limma R package55. Genes were considered
differentially expressed with adjusted P-valueo0.05.
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Random forest prediction model using gene expression data. We used the
randomForest R package (https://cran.r-project.org/web/packages/randomForest/
index.html) for building a model to predict the histological grade57. We first
performed feature selection by identifying the top 25 genes associated with
histological grade from differential gene expression analysis. We trained the model
on our top 25 differentially expressed genes using randomForest function with
ntree¼ 5,000 parameter. Out of bag error rate (OOB), which is the error rate of the
trained algorithm on a left out dataset that is not used in trained algorithm, was
calculated. We next validated our prediction model on an independent dataset13.
Raw Affymetrix data of the validation set was processed using the RMA method in
affy R package (https://www.bioconductor.org/packages/devel/bioc/manuals/affy/
man/affy.pdf).

miRNA sequencing analyses. Sequencing was performed on Illumina HiSeq
instruments using 75 basepair, single-end reads and multiplexing 8 tumour
samples per lane. Adaptor sequences were trimmed using cutadapt58. Reads shorter
than 18 basepair and reads with quality less than 20 were filtered. Per base quality
scores were assessed using FASTX tool. Adaptor trimmed reads were aligned to
miRBase using mirDeep2 tool59.

The set of known human miRNA precursors were downloaded from miRBase
version 20 (ref. 60). We reported total read counts for 5p and 3p strands. Read
counts for each sample were normalized to reads per million reads (RPM) and
log2-transformed. Batch effect was corrected using ComBat in sva R package56.
We then performed unsupervised hierarchical clustering based on a Euclidean
distance metric and complete linking. Differentially expressed miRNAs were
identified using limma R package. An FDR threshold of 0.05 was used.

Six algorithms were used for miRNA target prediction: Miranda, Mirbase,
Mirtarget2, Pictar, Tarbase and TargetScan using the RmiR.Hs.miRNA R
package61. Regulatory targets of individual miRNAs were defined as those genes
having significant negative correlation with the miRNA (spearman correlation test
Po0.05) and prediction support in at least three databases. GO term enrichment
analysis was performed using the GOStats R package62.

DNA methylation data. We performed DNA methylation profiling on 57 tumour
samples and 3 control samples using the Illumina Infinium HumanMethylation450
BeadChip, which assesses the level of methylation at over 450,000 CpG sites across
the entire genome (covering 99% of RefSeq genes and 96% of CpG islands).
We first processed raw intensity files (*.idat) and obtained ratio between Illumina
methylated probe intensity and total probe intensities (beta-values) using the
champ package63. Then, we assessed the quality of the methylation samples and
probes. Finally batch effect is corrected using combat algorithm in champ R
package63.

Quality control and preprocessing for DNA methylation data. We removed
sites containing missing values. The probes targeting a CpG with a SNP were also
removed from analysis. Probes targeting the X and Y chromosomes were excluded.
The sites having at least 50% samples with detection P-value40.05 are removed.
The detection P-value is calculated using the reported background signal levels of
both the methylated and unmethylated channels. After preprocessing the raw data,
we performed beta mixture quantile normalization (BMIQ), a normalization
correction for the technical differences between the Type I and Type II array
designs23. The DNA methylation score for each probe is described as the ratio of
intensities between methylated and unmethylated alleles: M/(MþU).

Unsupervised clustering for DNA methylation. We performed consensus clus-
tering on methylation b-values with 80% subsampling over 1,000 iterations of
hierarchical clustering based on a Pearson correlation distance metric and average
linking64.

Identifying differentially methylated sites. Differentially methylated sites were
calculated using the empirical bayes method called limma55. Sites were considered
statistically significantly different between the groups if they had an adjusted
P-valueo0.05 and median b-value difference 40.1 or o(� 0.1). We used the
GREAT tool, which internally maps genomic regions to genes and statistically
controls for the fact that genes differ in size and their relative distance to each
other23. Raw reads of EZH2 H1hesc ChIP-seq were downloaded from UCSC
Genome Browser ENCODE database65. EZH2, ChIP-seq peaks were downloaded
from Cistrome website66.

Immunofluorescence staining. Meningioma frozen tissue sections were washed
with phosphate buffer saline (PBS) for 5 min, then placed in 4% formaldehyde in
PBS for 3 min (fixation), rinsed in PBS and permeabilized with 0.3% Triton-X100 in
PBS for 40 s. The sections were rinsed with PBS 3 times for 5 min each and were
incubated in BSDSGS blocking solution (PBS with 1% bovine serum albümin, 5%
donkey serum, 5% goat serum, 0.1% glycine, 0.1% lysine) with 0.1% Tween 20.
Afterwards, the sections were stained with 1:100 rabbit polyclonal anti-EZH2 anti-
body (5246P, Cell Signaling, Danvers, MA, USA). After washing, the slides were

incubated 30 min with 1:200 donkey-anti rabbit Alexa Fluor 555 (A315772, Life
Technologies, Grand Island, NY, USA). After washing, slides were mounted with
Vectashield DAPI medium (H1200, Vector Labs, Burlingame, CA, USA). Images
were analyzed under an inverted microscope (Axio Vert A1, Zeiss, Obekochen,
Germany) with fluorescent light source (X-Cite 120Q, Lumen Dynamics).

H3K27ac and H3K27me3 ChIP-seq. Briefly, 10 to 15 frozen sections of each
tumour block or dura sample were collected for ChIP-Seq experiments. Tissue was
crosslinked with 1% formaldehyde, quenched with glycine, and washed with PBS.
Nuclei were extracted by dounce homogenization and resuspended in nuclear lysis
buffer containing 0.3% SDS. Chromatin was sheared by sonication with a Q800R2
Sonicator by QSonica (60 min total, amplitude 30, 10 s pulses, 10 s rest). Soluble
chromatin was incubated with magnetic beads coated with either H3K27ac
antibody (ab4729) or H3K27me3 antibody (ab6002) overnight at 4 �C. Chromatin
was precipitated using a magnet, washed extensively, and eluted with TEþ 1%
SDS. Crosslinks were reversed, purified, and subjected to standard Illumina paired-
end multiplexed library construction. H3K27ac and H3K27me3 ChIP and input
samples were sequenced for each tumour (1� 75 bp, HiSeq 2000). H3K27ac and
H3K27me3 reads were aligned uniquely with bowtie (0.12.7)67 to the human
genome (hg19). In H3K27ac, regions of enrichment were identified with MACS
(v1.4)68 whereas in H3K27me3, regions of enrichment were identified with
MUSIC69. We used DiffBind to estimate significance of super-enhancer read
change (adjusted P-value threshold¼ 0.05) between meningioma subtypes70.

Identifying super-enhancers from ChIP-seq data. To identify super-enhancers,
first regions enriched in ChIP-seq reads for H3K27ac were identified using MACS
with input control. Super-enhancers were separated from typical enhancers using
ROSE pipeline (https://bitbucket.org/young_computation/rose) with parameters -s
(stitching) 12,500, -t (promoter exclusion zone) 2000. We used DiffBind
to estimate significance of super-enhancer read change (adjusted P-value
threshold¼ 0.05) between meningioma subtypes70. Cancer genes are defined
based on COSMIC databases54.

Data availability. All somatic mutations identified through exome sequencing
of meningiomas were submitted to the COSMIC database previously7. Gene
expression data is deposited in GEO database (accession: GSE84263)7. Our novel
datasets including DNA methylation, miRNA sequencing, H3K27ac and
H3K27me3 ChIP-seq are deposited in GEO database (accession: GSE91376).
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Daniel Duran, E. Zeynep Erson-Omay, Leon D. Kaulen, Tong Ihn Lee, Brian J. Abraham, Matthias Simon,

Boris Krischek, Marco Timmer, Roland Goldbrunner, S. Bülent Omay, Jacob Baranoski, Burçin Baran,
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In this Article, a subset of the H3K27ac ChIP-seq data (15 benign meningiomas and 2 dura samples (Sample IDs: MN-297, MN-288,
MN-292, MN-163, MN-1037, MN-105, MN-201, MN-249, MN-191, MN-1066, MN-169, MN-291, MN-24, MN-79, MN-1044,
CONTROL1, CONTROL2) was reported previously in a publication by the corresponding author1. These data were created by
Dr. Justin Cotney in Dr. James Noonan’s laboratory at Yale. The GEO database entry associated with this dataset has been updated to
reflect this fact (GSE91372).

1. Clark et al., Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 1, 1077–1080
(2013).
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