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Over the last 30 years, the functions (and dysfunctions) of the sensory-motor circuitry have
been mostly conceptualized using linear modelizations which have resulted in two main
models: the “rate hypothesis” and the “oscillatory hypothesis.” In these two models, the
basal ganglia data stream is envisaged as a random temporal combination of independent
simple patterns issued from its probability distribution of interval interspikes or its spec-
trum of frequencies respectively. More recently, non-linear analyses have been introduced
in the modelization of motor circuitry activities, and they have provided evidences that com-
plex temporal organizations exist in basal ganglia neuronal activities. Regarding movement
disorders, these complex temporal organizations in the basal ganglia data stream differ
between conditions (i.e., parkinsonism, dyskinesia, healthy control) and are responsive to
treatments (i.e., l-DOPA, deep brain stimulation). A body of evidence has reported that
basal ganglia neuronal entropy (a marker for complexity/irregularity in time series) is higher
in hypokinetic state. In line with these findings, an entropy-based model has been recently
formulated to introduce basal ganglia entropy as a marker for the alteration of motor pro-
cessing and a factor of motor inhibition. Importantly, non-linear features have also been
identified as a marker of condition and/or treatment effects in brain global signals (EEG),
muscular activities (EMG), or kinetic of motor symptoms (tremor, gait) of patients with
movement disorders. It is therefore warranted that the non-linear dynamics of motor cir-
cuitry will contribute to a better understanding of the neuronal dysfunctions underlying the
spectrum of parkinsonian motor symptoms including tremor, rigidity, and hypokinesia.

Keywords: entropy, EMG, EEG, single unit, movement disorders

INTRODUCTION
Regarding conditions associated with movement disorders, identi-
fication of neuronal correlates to motor symptoms is an important
step in characterizing pathological conditions and developing new
therapeutics aimed to “correct” or to “normalize” network activity
and motoric skills (1, 2). Over the last 30 years, the functions (and
dysfunctions) of the sensory-motor circuitry have been mainly
conceptualized by linear modelization, which has resulted in two
main hypotheses on the occurrence of hypokinesia (i.e., parkin-
sonism) and hyperkinesia (i.e., dyskinesia). The first hypothesis
(e.g., “rate hypothesis”) is based on the circuitry organization of
the cortico-basal ganglia-thalamo-cortical loop and its sequential
arrangement of excitatory and inhibitory pathways (3, 4). This
model postulates that hypokinesia is associated with an imbal-
anced activity between excitatory and inhibitory drives, in favor
of excitation in the output basal ganglia nuclei (e.g., GPi/SNr).
The second hypothesis (e.g., “oscillatory hypothesis”) is based on
oscillatory activities identified in both single unit and network
(i.e., local field potentials, LFPs) activities (5–8). Evidences have
linked increased beta band (10–30 Hz) activity to hypokinetic con-
ditions (9–11). In animal models for parkinsonism, the rate and
oscillatory hypotheses have generally predicted the effects of anti-
parkinsonian treatments on neural activities (i.e., reduced firing
rate in GPi/SNr and oscillatory activities in beta band) (4, 12–14),

but clinical studies comparing basal ganglia data streams between
neurological conditions have reported conflicting data (15–25). In
addition to these common models, and based on computational
approach, Terman’s group introduced the notion of “connectiv-
ity strength” between basal ganglia nuclei as a factor affecting
rhythmic firing generation and suggested causal relationship to
parkinsonian tremor (26).

The linear analyses used to define basal ganglia activities either
in the rate or oscillatory models measure the resultant linear com-
binations of independent patterns in the data stream. Analyses
in the time and frequency domains envisage the interspike inter-
val (ISI) series by the summation of probability distributions for
different durations of ISIs (i.e., firing rate, its range or standard
deviation) or several frequencies (power spectrum) respectively.
These analyses have also been successfully used to characterize the
kinetics of movement disorders as well as the EMG in patients
with movement disorders and network activities (10, 11).

However, other studies have shown that the irregularity in the
neuronal firing activity (27–34), LFPs/EEG (35–38), EMG (39,
40), or kinetics of movement (41, 42) is not random in nature
but exhibits a complex temporal organization. In the last decade
there has been a growing body of evidence that suggests that lin-
ear analyses for basal ganglia circuitry does not fully describe
the dynamic nature of these signals, thus justifying the use of
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non-linear analyses to complement their characterizations (2,
43–47).

In the following sections, we review the findings regarding the
non-linear dynamics of physiological functions in Parkinsonism.
Finally, we discuss the new challenges and avenues offered by the
introduction of these tools to characterize the functions of motor
circuitries.

NON-LINEAR SYSTEMS AND COMMON TOOLS FOR THEIR
INVESTIGATION RELATED TO MOVEMENT DISORDERS
The term non-linear systems refer to organized systems that gener-
ate output activities that are not directly proportional to its input.
Non-linear systems exhibit complex dynamics which cannot be
fully described by a linear combination of the individual activities
of their constituent parts. While, linear analyses mostly focus on
central tendencies to describe the status of a system (i.e., mean
rate of firing activity, mean power spectrum over period of time),
non-linear analyses offer some insights in the organization (if any)
of the variability of status of a system by quantifying the persis-
tence of certain patterns or “shift” in the irregularity (or “apparent
randomness”) of the time series. Because it isn’t possible to point
out a single cause for the complex behaviors in non-linear sys-
tems, some analyses may have to account for more than one type
of non-linearity and several analytical tools may be required to
characterize the behaviors of the system. The fast expansion of the
number of non-linear tools makes their systematic review beyond
the scope of this article. In the next paragraph, we limit our intro-
duction to non-linear analyses to those most commonly used in
the field of motor circuitry activities which is the approximate
entropy (ApEn).

As highlighted by Pincus (48), irregularity in a time series
results in high standard deviation and unpredictability. While
variants of standard deviation appropriately quantify the devia-
tion from centrality (i.e., variability in magnitude), other tools
are required to grade the extent of unpredictability (also referred
as irregularity or complexity). Irregularity in time series can be
graded by exact regularity statistics such as entropy measures.
However, their implementations require large set of data free from
noise. In real world conditions, and in vivo experimentation, these
two conditions cannot be respected since recordings are limited
to relatively short period of time, and noise originating from
the monitoring systems can contaminate the data. Approximate
entropy (ApEn) is an approximation of the Kolmogorov–Sinai
entropy that was developed by Pincus to provide a tool to grade
regularity in short noisy data set. The calculation of ApEn is model-
independent; in system biology, this can reduce biases resulting
from the assumption on the organization of the data set. ApEn
[and its variants SampEn (49)] is a discriminatory tool to dis-
tinguish data sets on the basis of regularity. In Pincus’ ApEn, the
algorithm uses three parameters to compute the approximation
of entropy: (i) the length of the data set (i.e., number of spike
intervals), (ii) the embedding dimension (m), and (iii) the vec-
tor comparison length (r). The choice of input parameters has
been discussed by Pincus and Goldberger (50) and needs to be
in a meaningful range. The authors concluded that, for m = 2,
values of r from 0.1 to 0.25 SD, where SD is the standard devia-
tion of the signal, produce good statistical validity of ApEn and

SampEn. Because ApEn value is also dependent on the length of
the time series (N ), the three input parameters must be constant
between pairs of compared data sets. A very important property
of ApEn is the relative consistency which states that if dataset A
is more regular than dataset B for one choice of parameters (m, r,
N ), then it should also exhibit this for all other choices of para-
meters (49). Finally, by normalizing the vector comparison to the
SD of each time series ensuring that ApEn remains unchanged
under uniform process magnification (49). In other words, and
related to neurophysiological signals, the irregularity of neuronal
entropy is decorrelated from the firing rate and the LFP entropy
is decorrelated from the amplitude of the signal. Other relatively
common tools to investigate the non-linear features in the motor
circuitry include the correlation dimension and sample entropy.
These values are closely related to the approximate entropy by their
algorithms and are reviewed in details elsewhere (51).

NON-LINEAR DYNAMIC OF MOVEMENT KINEMATICS AND
EMG IN PARKINSONISM
The parkinsonian tremor is a cardinal symptom of the condition
which exhibits a modal frequency between 4 and 6 Hz, whereas
the postural tremor is between 5 and 12 Hz (52–55). The time-
dependent organization of parkinsonian tremor was reported to
be more regular (lower approximate entropy,ApEn) in Parkinson’s
Disease (PD) patients compared to those with the physiological
tremor monitored in the healthy control group (41, 56). Impor-
tantly, both STN deep brain stimulation (DBS) and medication
reduce tremor regularity (increase entropy) but fail to normal-
ize it to healthy control values (57, 58). Specific to the effects of
DBS, tremor entropy decreases with the voltage increase (59). In
addition to the tremor, gait kinematics were found less regular
in PD patients (higher entropy) than in healthy controls (60–
64). As previously observed for the tremor, levodopa partially
normalized the regularity of the temporal organization of gait
patterns (65).

Differences in EMGs characteristics between PD patients and
healthy persons include an increased tonic background activity
(66), increased synchronization in 8–12 Hz, decreased amplitude
in the 20–25 Hz (56, 67), and an alternating pattern of EMG bursts
during voluntary movement (68). In the non-linear domain, both
EMG and acceleration signals exhibit lower complexity (lower
entropy) in PD patients than in healthy subjects (56). The com-
plexity of the PD tremor was found to be further reduced by
anti-parkinsonian treatments including DBS (57, 69).

The identification of non-linear features in the kinetics of some
disorders and their related EMG activities has therefore raised the
question of whether there could be central changes in non-linear
features of sensory-motor circuitry activities.

NON-LINEAR DYNAMIC IN NETWORK AND NEURONAL
DATASTREAM IN PARKINSONISM
Stam et al. (70, 71) identified non-linear features in EEGs recorded
from Parkinsonian patients. Later, entropy (or complexity) of
EEGs was reported to be increased in PD patients comparatively
to healthy controls (72). This finding was confirmed by Han et al.
who further indicated that PD is associated with an increased
complexity of the EEG’s rhythm (73).
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Non-linear temporal organization has also been identified in
the interval interspikes series (ISIs) recorded from basal ganglia
neurons in the awake normal primate and in Parkinsonian patients
(47). These analyses have established that the non-linear temporal
organization of ISIs in the time series results in the replication
of complex patterns that cannot be statistically explained by ran-
dom trials from the probability distribution of the ISIs (2, 47). In
other words, the non-linear temporal organization of basal ganglia
ISIs is less irregular than what its probability distribution would
suggest if ISIs were randomly sorted. Yet, the clinical relevance
of these neuronal non-linear features to movement disorders is
not clear. A retrospective analyses of a database of PD and dysto-
nia neurons with temporal organizations [as defined in Ref. (2)],
Sanghera et al. (74) found a lower neuronal entropy in the GPi
of dystonia patients comparatively to PD patients. The evidence
that changes in non-linear features may account for the effects
of treatments for movement disorders was initially established by
Dorval and colleagues (43). This study in the Parkinsonian pri-
mate reported a change in non-linear features in GPi neuronal data
stream following DBS of the STN, a treatment effective both for
Parkinson Disease and dystonia (75). We have confirmed this find-
ing in Parkinsonian patients by establishing that the dopaminergic
agonist apomorphine, administered during DBS operative proce-
dure, decreases neuronal entropy in the STN (46). This finding
has also helped establish a first link between neurotransmission
(especially dopaminergic) and neuronal entropy.

Taken together, the available data on non-linear dysfunctions
of sensory-motor circuit have suggested that the hypokinetic con-
dition is associated to higher entropy at least in the GPi and STN.
Recently, the basal ganglia neuronal entropy was introduced as a
putative interfering factor in the current model for the selection
and the inhibition of motor program. The entropy-based model
for basal ganglia dysfunctions in movement disorders envisage
neuronal entropy under Shannon–Brillouin interpretation (76)
as a measure of disorder, unpredictability and reduced motor
information. Under this hypothesis high neuronal entropy in the
STN and GPi neuronal data stream is interpreted as a network
condition generating a large number different pattern possibili-
ties leading to a signal with limited order or “organization” and
reduced information. In regard to the concept of selection and
inhibition of motor program along the basal ganglia circuitry
(77), the entropy-hypothesis introduces complexity of neuronal
data stream as a factor which enhances the inhibition of motor
program by decreasing its informative nature (see Figure 1). In
the parkinsonian state, the “entropy hypothesis” predicts that high
STN and GPi neuronal entropies would decrease information in
the data stream and motor program selection resulting in hypoki-
nesia. There is currently no clinical or experimental data available
to directly relate the changes in BG neuronal entropy to cir-
cuitry alterations resulting in the parkinsonian states. In theory,
the entropy hypothesis suggests that high GPi neuronal entropy
underlies an inadequate compression [or reduction of the dimen-
sionality (78)] of up-stream population activity into the output
neurons of the BG circuitry (78). This could be the consequence
of the striatal dopaminergic depletion (46) and/or some circuitry
reorganizations such as increased interconnections between ele-
ments of the motor circuitry (79). Experimental research in animal

FIGURE 1 |This figure shows a putative relationship between entropy,
information and kinesia regarding the motoric functions of the basal
ganglia. In the so called “Entropy hypothesis,” increase entropy (or
irregularity) in the firing rate of STN and/or GPi neurons result in loss of
information [Shannon–Brillouin’s interpretation of entropy (76)] and
decreased kinesia [for details, see Ref. (80)].

models for movement disorders is warranted to explore these
avenues.

DISCUSSION
Investigation of non-linear dynamics associated to parkinsonism
is still in its infancy but available data shows that both condi-
tions and treatments affect the complex temporal organizations
found in motoric kinetics, EMG, global signals, and basal ganglia
neuronal activities.

Today, the drawing of a non-linear functional model related to
the anatomo-pathology of the parkinsonian basal ganglia is not
reachable yet. Though it is remarkable that both global signals
(EEG) and single unit activities show entropy increases in parkin-
sonism, the lack of well-controlled comparisons between patho-
logical and normal states of motor-related territories remains an
issue in interpreting these data in regard to the effects of the con-
ditions per se on movement disorders. In addition, the lack of data
on the relationships between neuronal entropy and global signal
entropy, as well as on the inter-nuclei entropy relationships (2,
47, 81) continue to be major obstacles to linking the alteration
of non-linear basal ganglia dynamic to the histological changes of
the circuitry associated to the PD condition. A systemic evalua-
tion of the main neurotransmitters on the non-linear dynamic of
basal ganglia neurons is necessary to draw a non-linear functional-
anatomical model of the motor circuitry both in the normal and
the pathological conditions. Single unit recordings combined with
LFPs in an animal model for movement disorders (82, 83), and
in patients (84), will certainly help to progress in this research
direction.

The use of non-linear domain analyses to describe the changes
in motor-related dynamics is warranted to provide new qualitative
and quantitative information regarding the nature of the alter-
ations in sensory-motor processing associated to the parkinsonian
condition. Entropy is a general and commonly used parameter in
this new field. The fact that this feature can be followed from
the neuronal activity up to the kinetics of movement (via the
EEG and EMG) offers an interesting opportunity to investigate
the motor information downstream from the central level up to
the effectors under a single framework but without warranting a
causal relationship. Arguably, this may be less directly accessible
within the framework of the rate or oscillatory hypotheses. How-
ever, the aim of entropy-related algorithms (i.e., ApEn/SampEn) is
not to identify the complex patterns in the time series. Additional
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non-linear analytical tools need to be integrated in order to better
identify non-linear hallmarks in the neuronal and global signals.
The identification of such patterns could become relevant in future
algorithms for closed-loop devices aimed to deliver on-demand
anti-parkinsonian treatments (85). An additional research orien-
tation would be to investigate whether the delivery of non-linear
complex patterns could improve the benefit of DBS.

CONCLUSION
The use of non-linear domain analyses to describe the neuronal
and network activities inside the basal ganglia may provide new
qualitative and quantitative information relative to the nature of
the sensory-motor processing, as well as its distortion in patholog-
ical conditions. It is expected that the inclusion of key non-linear
features into silicone-based models of the basal ganglia could
better reproduce the complexity and non-stationarity of signals
recorded in normal and pathological conditions. In translational
research, non-linear analytical tools may provide new strategies
to improve the efficiency of brain-interfaces and other closed-
loop systems aimed to control therapeutic delivery in movement
disorders.
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