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Automatic segmentation of gastric tumor not only provides image-guided clinical
diagnosis but also assists radiologists to read images and improve the diagnostic
accuracy. However, due to the inhomogeneous intensity distribution of gastric tumors
in CT scans, the ambiguous/missing boundaries, and the highly variable shapes of gastric
tumors, it is quite challenging to develop an automatic solution. This study designs a novel
3D improved feature pyramidal network (3D IFPN) to automatically segment gastric
tumors in computed tomography (CT) images. To meet the challenges of this extremely
difficult task, the proposed 3D IFPN makes full use of the complementary information
within the low and high layers of deep convolutional neural networks, which is equipped
with three types of feature enhancement modules: 3D adaptive spatial feature fusion
(ASFF) module, single-level feature refinement (SLFR) module, and multi-level feature
refinement (MLFR) module. The 3D ASFF module adaptively suppresses the feature
inconsistency in different levels and hence obtains the multi-level features with high feature
invariance. Then, the SLFR module combines the adaptive features and previous multi-
level features at each level to generate the multi-level refined features by skip connection
and attention mechanism. The MLFRmodule adaptively recalibrates the channel-wise and
spatial-wise responses by adding the attention operation, which improves the prediction
capability of the network. Furthermore, a stage-wise deep supervision (SDS) mechanism
and a hybrid loss function are also embedded to enhance the feature learning ability of the
network. CT volumes dataset collected in three Chinese medical centers was used to
evaluate the segmentation performance of the proposed 3D IFPN model. Experimental
results indicate that our method outperforms state-of-the-art segmentation networks in
gastric tumor segmentation. Moreover, to explore the generalization for other
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segmentation tasks, we also extend the proposed network to liver tumor segmentation in
CT images of the MICCAI 2017 Liver Tumor Segmentation Challenge.
Keywords: CT volumes, feature refinement, adaptive spatial feature fusion, feature pyramidal network, gastric
tumor segmentation
INTRODUCTION

Gastric cancer, a very commonly diagnosed cancer of the
digestive system, is the second leading cause of cancer death in
China (1), which brings a heavy burden to the family and society.
Patients with gastric cancer often have to undergo surgery as a
basic treatment. Accurate boundary detection and early staging
of the neoplasm are favorable for surgical management
optimization. As a convenient imaging examination tool,
computed tomography (CT) can non-invasively provide the
anatomical detail of the gastric tumor in a short time through
the panoramic view. With greater dense resolution, it is possible
to recognize the single gastric wall layers as well as to estimate the
invasive depth of the neoplasm on CT images (2), which is
essential for tumor staging (3) and edge delineation. As a clear,
accurate boundary is also of great importance in volume
assessment (4), further radiomics feature analysis (5) and
image-guided navigation (6), the precise CT-based tumor
segmentation is quite desirable. However, the outlining process
used to be completed manually on multi-slice images, which is
quite subjective, labor-consuming and time-costing. Recently,
thanks to the development of artificial intelligence, tumor
segmentation can be done in a more automatic way.

For automatic segmentation tasks, deep learning has
achieved great success due to its impressive segmentation
performance (7). Convolutional neural network (CNN) is the
most successful and well-known deep learning model and is
often used to tackle segmentation tasks, including both organ
segmentation (8) and lesion segmentation (9). Because of the
low-intensity contrast and unclear boundaries between the
gastric tumor and its adjacent tissues, studies using CT images
aimed at automatic segmentation in the gastric region mainly
focus on the stomach (6) rather than tumors. Ronneberger et al.
(10) introduced upsampling parts into CNN and proposed the
U-net architecture which allows insufficient images as training
data. However, multiple downsampling stages in the U-net
model make it quite inappropriate for small targets such as
gastric tumors, especially the early gastric cancer. Zhang et al.
(11) developed an improved U-Net for gastric tumor auto-
segmentation with only one downsampling layer, called hybrid
blocks network (HBNet), which resolves the problem of low-
level feature loss. Another typical deep learning network called
the feature pyramid network (FPN) has achieved state-of-the-
art performance for medical imaging object detection and
semantic segmentation, as its top-down architecture with
lateral connections could build high-level semantic feature
maps at all scales (12). Thus, it is possible for FPN to learn
multi-level feature representation. Whereafter, Li et al. (13)
improved FPN by designing a multi-view FPN with position-
aware attention for deep universal lesion detection. Wang et al.
2

(14) designed a new FPN to generate deep attentive features
(DAF) for prostate segmentation in 3D transrectal ultrasound.
Xiao et al. (15) proposed a 3D ESPNet with pyramidal
refinement for volumetric brain tumor image segmentation.
However, most previous methods either ignore the
inconsistency between low-level and high-level features or fail
to consider the information complementarity between single-
layer and multi-layer features. Therefore, it is highly desirable to
boost the segmentation performance by enhancing the FPN
representation capability via fusing different scales of features,
namely the feature refinement.

In this study, a 3D improved feature pyramid network (3D
IFPN) is proposed to segment gastric tumors in an end-to-end
way, which greatly enhances deep convolutional neural
networks’ representation capability. Specifically, our 3D IFPN
model consists of three main components (1): A 3D adaptive
spatial feature fusion (ASFF) module based on the ASFF
mechanism (16), is designed for eliminating the inconsistency
among multi-level features from the basal backbone 3D
pyramidal architecture by learning weight parameters (2). A
single-level feature refinement (SLFR) module and a multi-level
feature refinement (MLFR) module are embedded in 3D IFPN to
strengthen the representational properties of the network. The
former module is incorporated with two sequential sub-modules
known as channel and spatial attention from the convolutional
block attention module (CBAM) (17), which integrates the
multi-level features generated by the 3D ASFF and the original
feature generated by the pyramid module at each level to
improve the accuracy. The latter module is devised with
channel-wise dependencies through the squeeze-and-excitation
(SE) networks (18) for better gastric tumor region prediction.
Instead of directly averaging the multi-level feature maps, the
MLFR module can complete feature recalibration by explicitly
exploiting global information to selectively stress useful features
and curb less informative ones (3). A stage-wise deep supervision
(SDS) mechanism is introduced to improve the traditional
deeply supervised nets (DSN) (19) by reducing the weight
number of the final prediction. The proposed 3D IFPN is
evaluated on a self-collected CT image dataset acquired from
three Chinese medical centers, which achieves quite promising
gastric tumor segmentation performance and outperforms other
state-of-the-art methods.
METHODS

Figure 1 illustrates the proposed gastric tumor segmentation
network with multiple types of feature enhancement. Designed in
an end-to-end way, it could output the segmentation outcomes
with CT images serving as inputs. Our network first uses the 3D
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FPN architecture (12) to obtain feature maps of different scales
via a top-down pathway and lateral connections. In FPN,
features from large-scale feature maps at lower levels are high-
resolution, semantically weak but more detailed. On the contrary,
features from small-scale feature maps at higher levels are low-
resolution but with stronger semantic information. To tackle this
issue, the efficient 3D SE-ResNeXt (18) which integrates SE blocks
with ResNeXt (20) is chosen to be the feature extractor. During the
multi-level feature extraction in this 3D mission, the number of
layers for the deep neural network is set as 3 to help saving
computer memory. The down-sampling of layer 0, layer 1, and
layer 2 is set by stride (1, 2) since there are not many target slices in
each volume of our dataset. Meanwhile, as the network level goes
deep, the scale inconsistency of the feature maps would bemore and
more stand out. Thus, the dilated convolution (21) is employed
between layer 2 and layer 3 in order to aggregate multi-level
semantic information and obtain feature maps at the
same resolution.

So far, we have obtained coarse multi-level feature maps
through the basic skeleton. To learn coarse-to-fine features
including effective context information, regional semantic and
boundary information, we propose a novel feature selection
mechanism by harnessing the complementary advantages of
three feature refinement and fusion strategies, i.e., ASFF, SLFR
and MLFR, which is able to capture and fuse multi-level features
at different scales and spatial locations to produce more
representative features. In detail, the ASFF module is used to
further learn multi-level features with high feature invariance. In
order to alleviate the problem of gradient dissipation in deep
layers, we further designed the SLFR module, which combines
residual learning and attention mechanisms. To make better use
of these refined multi-level features with high feature
consistency, we further designed the MLFR module, which
obtains more accurate segmentation probabilities by
Frontiers in Oncology | www.frontiersin.org 3
aggregating adjacent scale features instead of directly
performing multi-branch prediction on refined features in
previous works (16, 22, 23).

3D Adaptive Spatial Feature Fusion
(ASFF) Module
Most previous methods (24, 25) often use element-wise sum or
concatenation for multi-level feature fusion, both of them will
amplify the feature inconsistency between different scales. To
address these issues, we design a new 3D ASFF module as shown
in Figure 1. In detail, the 3D ASFF module consists of two
phases, feature resize and adaptive feature fusion. In the first
phase, we take different resolutions of multi-level features for
consideration and match them before adaptive feature fusion.
Then we translate the 3D spatial resolution into a simple
mapping problem with the usage of yn!l = f(xn), where xn

means the n-th level feature extracted from 3D SE-ResNeXt, f
refers to the up-sampling or down-sampling operation, yn!l

represents the feature after the resize, n ∈ {1,2,3}, l ∈ {1,2,3}, and
n ≠ l. In the second phase, we obtain the feature fusion weights
wl
m (m ∈ {1,2,3}) through convolution, group normalization

(GN) (26) and parametric rectified linear unit (PRelu) (27)
operations to yl. Thus, the final l-th level feature after adaptive
fusion (6) is defined as:

ŷ l = wl
1 · y

1!l + wl
2 · y

2!l + wl
3 · y

3!l, (1)

where ŷ l denotes adaptive fused features. Note that the feature
fusion weights obtained from adaptive learning are
concatenated in the channel dimension and normalized using
the softmax function. Thus, wl

2 + wl
2 + wl

3 = 1,  and wl
1,w

l
2,w

l
3 ∈

½0, 1�. The adaptive feature fusion outputs fŷ 1, ŷ 2, ŷ 3g will be
fed into the SLFR module for single-level feature extraction
and refinement.
FIGURE 1 | The flowchart of our gastric tumor segmentation network equipped with multi-type feature enhancement modules (3D ASFF, 3D adaptive spatial feature
fusion; SLFR, Single-level feature refinement; MLFR, Multi-level feature refinement).
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Single-Level Feature Refinement (SLFR)
Module and Multi-Level Feature
Refinement (MLFR) Module
To extract deeper spatial and semantic information, we design a
module called SLFR to facilitate the feature as shown in Figure 2.
The multi-level features have different resolutions and may cause
feature inconsistency when the features are fused. To solve it, we
multiple features at the same level, which can improve the feature
expression ability of the middle layer of the network. Specifically,
we concatenate the features before and after the adaptive feature
fusion operation at each level to get three convolutional layers.
Each convolutional layer is equipped with one convolution, one
GN, and one PRelu. The first one convolutional layer uses 1 ×
1 × 1 kernels for PRelu activation, and the last two convolutional
layers utilize 3 × 3 × 3 kernels to further extract useful
information. Finally, an SLFR module is obtained by CBAM.

Besides, to avoid directly averaging the obtained multi-level
deep attention feature maps for the prediction of the tumor
region, we design a module called MLFR with implementation
details similar to SLFR for better prediction. Since the resampling
features at different scales via the atrous spatial pyramid pooling
(ASPP) (28) has shown its effectiveness for the final prediction,
we design the MLFR module to improve the ASPP. Before the
features of different levels are concatenated in the MLFR module,
we also perform up-sampling to the feature maps of layers 3 and
2 as a feature matching operation. As a result, our method can
achieve higher prediction performance than ASPP as
demonstrated in the experimental section.

Stage-Wise Deep Supervision (SDS)
Mechanism
The DSN (19) using multi-level features can predict the final
cancer region better by expressing the features effectively since it
can refine the multi-level features of each stage to guide the
network. This deep supervision mechanism is able to take
advantage of features in each level and each stage so that we
implement the SDS mechanism as it is not only more suitable for
multi-level feature prediction but also more conducive to the
setting of training loss weight parameters. Besides, the SDS
mechanism can alleviate the gradient vanishing issue by
effectively utilizing the multi-level feature fusion of the latter
two stages of the network. A hybrid loss function is designed for
SDS enhancement for tumor segmentation, which includes a
Frontiers in Oncology | www.frontiersin.org 4
weighted sum of two functions rather than binary-class cross-
entropy loss or dice loss. The Jaccard loss (29) is the first loss
function that directly aims at optimizing the evaluation metric of
the model performance, which is defined as:

Lossjaccard = 1 −
Sn
i=1 qipi

Sn
i=1 q

2
i + Sn

i=1 p
2
i=1 − Sn

i=1 qipi
, (2)

where n represents the voxel number of the input CT volume; pi
∈ [0, 1] represents the prediction probability of i-th voxel and qi
∈ {0, 1} represents the voxel value of the corresponding ground
truth. The Focal loss (30) is the second loss function, which is
optimized by log loss in order to deal with a severe imbalance
between the positive and negative samples. In this study, the
model segmentation of small target tumor regions is guided by
the Focal loss function which is defined as:

Lossfocal = −
1
n
Sn
i−1(aqi(1− pi)

g log pi

+ (1−a)(1− qi)p
g
i log (1 − pi)), (3)

where a represents a balance factor of the focal loss and is set as
0.2; g denotes a focusing parameter to smoothly adjust the
weighting rate and set as 1. Thus, each supervised signal loss is
denoted as:

Losssignal = l · Lossjaccard + h · Lossfocal , (4)

where l and h denote the weight factors of Jaccard loss and Focal
loss, respectively. l and h were set as 1 and 0.1, respectively. At
last, the proposed SDS loss is defined as the summation of loss on
all supervised signals:

LossSDS = Ss=3
s=2w

sLossssignal + wf Lossfsignal, (5)

where ws and Lossssignal denote the weight and loss of s-th stage,
respectively; wf and Lossfsignal are the weight and loss for the
output layer. The weights {w2, w3, wf} were set empirically as {0.8,
0.9, 1.0}, respectively.

Statistical Analysis
Statistical analyses were conducted using the SPSS software
package (IBM SPSS 26.0). Quantitative results are displayed as
Mean ± SD. The Kolmogorov–Smirnov test was used to evaluate
data normality. Paired samples t-tests and one-way analysis of
FIGURE 2 | The schematic illustration of the SLFR module and MLFR module.
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variance (ANOVA) were employed for statistical analysis.
P <0.05 was considered statistically different.
EXPERIMENTS AND RESULTS

Dataset and Implementation Details
We retrospectively collected 160 CT image samples with
ordinary non-enhanced CT volumes from three Chinese
medical centers (Taiyuan People Hospital, Xian People
Hospital and China–Japan Friendship Hospital) between 2015
and 2018 to form the dataset. 63 of 160 had enhanced CT
volumes which matched with their non-enhanced ones. The
corresponding medical instruments were Toshiba 320-slice CT,
Siemens SOMATOM 64-slice CT and Philips 128-slice CT.
Three radiologists, with more than 6-year experience, drew the
tumor outline of each CT sample as the ground truth
segmentation under the ITK-SNAP (www.itk-snap.org)
software on the basis of tumor surgical pathologic results. This
study was approved by the ethical review of relevant hospitals
and given informed consent by all involved patients.

Our model has verified its versatility on another public
dataset. The MICCAI 2017 Liver Tumor Segmentation (LiTS)
Challenge dataset totaled 201 enhanced abdominal CT scans,
which is further split into a training set with 131 scans and a test
set with 70 scans. The dataset was collected from six different
clinical sites by different scanners and protocols, and the
organizer only discloses the annotations of the training data
and keeps the annotations of the test data confidential.

Our proposed model, trained with 1× NVIDIA GeForce GTX
2080Ti GPU (11 GB), used a five-fold cross-validation strategy
and was performed on the PyTorch (31) platform. Because the
tumor region is smaller than the background area and in
response to the 3D data limitation on computer memory
consumption, each CT volume was cut to patches with 24 ×
256 × 256 voxels. We used data augmentation (i.e., translation,
flipping and rotation) and performed CT image normalization
(from 0.5 to 99.5th percentile of all foreground voxels to the
automatic level-window-like intensity values clipping operation)
and voxel space resampling (with third-order spline interpolation)
(32) for training. The Adam optimizer (33) and “reduce learning
rate on the plateau” manner were also absorbed in our model,
whose batch size was 2, the learning rate was 0.003, and total
learning epochs was 500. In this work, we regarded the Dice
similarity coefficient (Dice) (34), Jaccard index (JI) (35), Precision
(Pre) (36), Recall (37), Average symmetric surface distance (ASD, in
Frontiers in Oncology | www.frontiersin.org 5
voxel) (38) and 95%Hausdorff distance (95HD, in voxel) (39) as the
metrics for quantitatively segmentation performance evaluation. On
the one hand, Dice and JI can compare the similarity between
ground truths and segmented volumes while Pre and Recall are able
to measure segmentation outcomes in voxel-wise through
evaluating classification accuracy. A larger Dice, JI, Pre or Recall
value would indicate a more precise segmentation result. In
addition, the robustness of the proposed method was tested using
by assessing the equality of distribution of Dice values among
different networks, methods and backbones. On the other hand,
the ASD calculates the average over the shortest voxel distance from
ground truth to segmented volume. Compared with Dice which is
sensitive to the internal filling, the HD is sensitive to segmented
edges and can be defined as the longest voxel distance over the
shortest between ground truths and segmented volumes. And the
95HD was used to eliminate the impact of a very small subset of
the edges. In this case, smaller values of ASD and 95HDwould refer
to better segmentation results.

Segmentation Results
To demonstrate the effectiveness of our network in gastric tumor
automatic segmentation, we conduct extensive experiments on
the self-collected CT images dataset. Table 1 shows the results of
our 3D IFPN and four other state-of-the-art segmentation
networks: 3D U-Net (10), nnU-Net (32), DAF3D (14) and 3D
FPN (12). During our training, the only difference between the
3D U-Net model and the classical model architecture is that two
down-sampling operations are performed on the slice channel.
The nnU-Net model is 3D U-Net improvement and is known as
the all-around segmentation model, which achieves state-of-the-
art performance in various segmentation challenges. The DAF3D
model is an improved version of FPN with the equipment of
attention modules refining deep attentive features at each layer,
which depends on the complementary learning of both
semantics and fine features at different levels. The 3D FPN
model and our model are both implemented based on 3D SE-
ResNeXt. The backbone ResNeXt is a novel network exploiting
the split-transform-merge strategy for accuracy improvement
without increasing complexity (20), while the SE block is to
perform feature recalibration (18).

It is observed from Table 1 and Figure 3 that our 3D IFPN
model outperforms other models in almost all evaluation
metrics. In detail, this proposed method obtains the mean
Dice, JI, Pre, Recall, ASD and 95HD for 62.6, 45.5, 67.1, 61.7%,
14.2 voxels and 28.2 voxels, respectively. In terms of the Recall,
the value gained by our model is quite close to the best figure
TABLE 1 | Automatic segmentation results of different methods.

Method Dice (%) JI (%) Pre (%) Recall (%) ASD (voxel) 95HD (voxel)

3D U-Net (10) 59.4 ± 4.8 42.4 ± 4.8 64.0 ± 6.1 55.9 ± 6.4 15.3 ± 14.2 31.4 ± 11.1
nnU-Net (32) 60.2 ± 3.5 43.2 ± 4.1 60.2 ± 6.6 61.9 ± 9.3 18.3 ± 19.1 35.7 ± 22.2
DAF3D (14) 60.8 ± 4.2 43.8 ± 4.2 64.1 ± 3.8 58.3 ± 7.0 14.7 ± 12.5 29.1 ± 10.6
3D FPN (12) 59.3 ± 3.6 42.2 ± 3.7 64.9 ± 8.9 56.2 ± 8.8 17.2 ± 15.7 34.6 ± 15.2
Ours 62.6 ± 3.4 45.5 ± 3.6 67.1 ± 6.1 61.7 ± 5.4 14.2 ± 8.9 28.2 ± 9.9
May 2021 | Volume 11 |
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from the nnU-Net model, but ours yields the minimum standard
deviation of Recall value. For example, the proposed method
reaches an overall Dice of 62.6%. Compared with the results of
3D FPN and 3D U-Net, the Dice value increases by 5.6 and 5.4%,
respectively. Meanwhile, our method increases the Dice value by
4.0 and 3.0% compared with nnU-Net and DAF3D. Although
there is no statistically significant difference in Dice between our
method and the other four outstanding networks in Table 1 (P =
0.653 using one-way ANOVA), almost all the evaluation metrics
generated by our model have the lowest standard deviation. This
could be the evidence that our model is more stable and robust
than others due to a set of mechanisms that helps overcome the
inconsistency in feature fusion. When given an input CT volume
with 24 × 256 × 256 voxels, the average computational times
needed to perform a volume segmentation for 3D U-Net, nnU-
Net, DAF3D, 3D FPN and our model are 0.48, 0.87, 0.474, 0.428
and 0.39 s, respectively. Compared with other models, our model
is the fastest.

Figure 4 shows the 2D visualization of prediction tumor
boundaries by different models. Our method has the most similar
segmented boundaries to the ground truths. Figures 5, 6 show
the 3D visualization of the surface distance (in voxel) between
segmented surfaces and ground truths with different colors
representing different surface distances. We map ground truths
to the corresponding prediction volume of each model, and such
visualization makes the comparison more intuitive. Besides, we
can refer to the color bar to know that our results are better than
other models.

We conduct a set of ablation experiments to evaluate the
effectiveness of two proposed key components: MLFR module
and SDS mechanism. The results are shown in Table 2 and
Figure 3. Paired samples t-tests are used in pairwise comparisons
between our 3D IFPN and its baseline module. Compared with
the combination of the “baseline” 3D SE-ResNeXt and “M1” 3D
ASFF module, the employment of SLFR and MLFR modules
enables an obvious improvement on almost all the metrics.
Among them, particularly, the Dice score shows a statistically
significant difference (P = 0.040) between our method and the
“baseline + M1”, which indicates the better robustness of our 3D
IFPN. Experimental results also show that the segmentation
performance of final prediction using the ASPP module or
direct average multi-level attention feature at the back end of
the network is similar. Besides, the results of the last two rows of
Table 2 strongly demonstrate the effectiveness of our SDS
mechanism, with the increase of mean Dice, JI, Pre and Recall
by 1.1, 1.3, 4.4 and 3.9%, respectively. Even though the smallest
ASD and 95HD in Table 2 are generated from a method
including “baseline” and ASPP modules, its Dice score is
significantly lower than that of the proposed model (P = 0.011
using paired sample t-test).

To explore the effectiveness of SE-ResNeXt as the backbone of
the proposed model, meanwhile, we implement another set of
comparative experiments on different backbones [e.g., 3D
ResNeXt, 3D ResNet (40)]. The experimental results are shown
in Table 3 and Figure 3. Compared with other backbones, the 3D
SE-ResNeXt still achieved the best results although the mean Dice
FI
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among those ResNet, ResNeXt and SE-ResNeXt backbones shows
no statistically differences (P = 0.823 using one-way ANOVA).

To further verify the effectiveness of this proposed model in
tumor segmentation tasks, we also apply our method to the LiTS
challenge. The experimental results are shown in Table 4. The
proposed method achieves 92.2 and 65.5% Dice scores in liver
segmentation and tumor segmentation, respectively. Besides, our
method only explores 3D spatial information and does not use
Frontiers in Oncology | www.frontiersin.org 7
transfer learning technology. In this case, our result is close to
other networks (IeHealth, H-DenseNet (41), 3D AH-Net (42),
Med3D (43) and V-Net (44)) using ensemble techniques. Note
that the average symmetric surface distance (ASSD) of the
proposed method is almost similar to other state-of-the-art
methods. Besides, the Dice value obtained by our method is
10.4% higher than that achieved by a single model 3D
DenseUNet (41) in tumor segmentation.
FIGURE 4 | 2D visual comparisons of segmented slices from 3D CT volumes. Up row, CT slicers with red boxes to indicate the tumor areas; Down row, ground
truth (red) delineated by experienced radiologists and corresponding segmented tumor contours using 3D U-Net (10) (blue), nnU-Net (32) (green), DAF3D (14) (cyan),
3D FPN (12) (yellow) and our method (purple).
A B D EC

FIGURE 5 | 3D visualization of the automatic segmentation performance. Rows denote segmentation outcomes on four different CT volumes respectively. Columns
demonstrate the visualized comparisons between the segmented surface (blue gridlines) and ground truth (red volumes) under five different automatic segmentation
methods: (A) 3D U-Net (10), (B) nnU-Net (32), (C) DAF3D (14), (D) 3D FPN (12), and (E) our method, respectively.
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DISCUSSION

This study designs a 3D improved FPN with 3D adaptive spatial
feature fusion, single-level and multi-level feature refinement
modules to deal with various scales of features during the auto-
Frontiers in Oncology | www.frontiersin.org 8
segmentation process for gastric tumor CT images. Using deep
learningmethods, the proposed end-to-end 3D IFPNmodel obtains
wonderful segmentation outcomes. Nowadays, encouraged by the
effectiveness of detection and segmentation via the deep
convolutional neural network, more and more modules come into
A B D EC

FIGURE 6 | 3D visualization of the surface distance (in voxel) between segmented surface and ground truth, with color bars relating to various surface distances.
Rows denote segmentation outcomes on four different CT volumes respectively. Columns demonstrate the segmented surfaces generated by (A) 3D U-Net (10), (B)
nnU-Net (32), (C) DAF3D (14), (D) 3D FPN (12), and (E) our method, respectively.
TABLE 2 | Automatic segmentation results of ablation analyses.

Method Dice (%) JI (%) Pre (%) Recall (%) ASD (voxel) 95HD (voxel)

Baseline + M1 60.0 ± 2.2 42.4 ± 2.6 64.2 ± 4.4 55.9 ± 2.2 18.4 ± 6.2 29.7 ± 3.5
Baseline + M1 + M2 61.2 ± 3.3 44.2 ± 3.3 64.1 ± 3.6 58.9 ± 5.9 13.7 ± 13.5 27.1 ± 13.8
Baseline + M1 + M2 + ASPP (28) 61.2 ± 3.3 44.2 ± 3.4 62.8 ± 2.5 60.4 ± 8.2 10.5 ± 7.2 25.0 ± 7.9
Baseline + M1 + M2 + M3 61.6 ± 2.8 44.3 ± 2.8 65.0 ± 4.7 60.0 ± 6.7 17.5 ± 10.0 32.4 ± 10.2
Baseline + M1 + M2 + M3 + DSN (19) 61.9 ± 2.7 44.9 ± 3.2 64.3 ± 3.4 59.4 ± 4.6 14.1 ± 7.1 27.7 ± 9.5
Ours 62.6 ± 3.4 45.5 ± 3.6 67.1 ± 6.1 61.7 ± 5.4 14.2 ± 8.9 28.2 ± 9.9
May
 2021 | Volume 11 |
Mean ± SD, with best results highlighted in bold. Baseline: 3D SE-ResNeXt (18), M1: 3D ASFF module, M2: SLFR module, M3: MLFR module.
TABLE 3 | Automatic segmentation results based on different backbones.

Backbone Dice (%) JI (%) Pre (%) Recall (%) ASD (voxel) 95HD (voxel)

ResNet (40) 61.4 ± 3.2 44.3 ± 2.9 63.2 ± 3.0 59.5 ± 4.8 17.8 ± 10.2 33.0 ± 11.3
ResNeXt (20) 62.1 ± 2.8 45.1 ± 3.1 65.6 ± 3.5 61.0 ± 4.3 15.5 ± 9.5 30.6 ± 8.7
SE-ResNeXt (Ours) 62.6 ± 3.4 45.5 ± 3.6 67.1 ± 6.1 61.7 ± 5.4 14.2 ± 8.9 28.2 ± 9.9
Mean ± SD, with best results highlighted in bold.
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being to tackle difficult medical problems. As one of them, the
inconsistency of features among different levels and scales limits the
accuracy and efficiency of the segmentation.

Recently, the feature pyramid network (FPN) becomes state-
of-the-art due to its top-down architecture and skip connections
which can generate high-level semantic feature maps at all scales
(12). However, it remains unclear how to integrate the different
feature maps with different resolutions and scales so as to get
better segmentation results in small targets like gastric tumors.
Thus, we propose a 3D ASFF module to eliminate feature
inconsistency by adjusting weight parameters. Features
generated from 3D ASFF are fed into SLFR and MLFR module
for feature refinement. Tables 1, 2 and Figures 4–6 all present
the improvement of gastric tumor segmentation using
our method.

Although our method gains promising results in CT volume
segmentation compared to other methods, the limitation in this
work still exists. Lacking adequate contrast-enhanced CT images
increased the difficulties in recognizing the boundaries of gastric
tumors, which might affect the definition of ground truths and thus
influence the segmentation accuracy. And the slice thicknesses were
5 and 8 mm, which were too large and further weakened the
contrast between lesions and normal gastric tissues. As a result,
more well-contrast CT images with smaller thicknesses are needed
to boost the auto-segmentation performance.
CONCLUSION

We present a novel 3D IFPN for the automatic segmentation of
gastric tumors based on CT volumes. Our network is firstly
equipped with a 3D ASFF module to suppress the inconsistency
Frontiers in Oncology | www.frontiersin.org 9
between multi-level features. Then, the SLFR module is
introduced to refine the single-level features. Subsequently, the
MLFR module is implemented for further feature refinement.
Besides, a hybrid loss function is designed to propose a new
supervision mechanism and to guide the feature expression of
the network. To the best of our knowledge, we are the first to
unite the 3D ASFF, SLFR and MLFR modules for multi-level as
well as multi-level feature refinement by utilizing abdominal CT
images. Experimental results demonstrate that 3D IFPN
outperforms the 3D FPN as well as other state-of-the-art 3D
networks for segmenting gastric tumors.
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