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Abstract: This mini-review aims to discuss the development and applications of mass spectrometry
(MS)-based hybrid approaches in metabolomics. Several recently developed hybrid approaches
are introduced. Then, the overall workflow, frequently used instruments, data handling strategies,
and applications are compared and their pros and cons are summarized. Overall, the improved
repeatability and quantitative capability in large-scale MS-based metabolomics studies are
demonstrated, in comparison to either targeted or untargeted metabolomics approaches alone.
In summary, we expect this review to serve as a first attempt to highlight the development and
applications of emerging hybrid approaches in metabolomics, and we believe that hybrid metabolomics
approaches could have great potential in many future studies.

Keywords: metabolomics; hybrid approaches; broad metabolite coverage; quantitative analysis;
dynamic range; repeatability; identification

1. Introduction

Metabolomics, an “-omic” science in systems biology, is widely used to assess and evaluate
both the endogenous and exogenous metabolites present in a biological system [1]. Followed by its
inception, scientists have been engaged in the development of metabolomics methods for the analysis
of small molecular weight compounds in biological systems including biofluids, cells, tissues, and/or
organisms [2,3]. Working with the sophisticated biological processes and systems, metabolomics
can be a useful tool for biomarker discovery [4], disease diagnosis [5], and biochemical pathway
elucidation [6]. In particular, the differentiation of metabolic responses between unperturbed and
perturbed groups, such as between healthy control and patients with a particular disease, is frequently
studied by metabolomics [7]. The complementary analytical techniques of nuclear magnetic resonance
(NMR) and mass spectrometry (MS) are the most popular choices [8]. In general, NMR could measure
metabolites up to the micromolar (µM) range or a few nmol at high fields using new cryoprobes [9,10],
whereas MS permits the detection of down to pmol or nmol concentrations [11]. Meanwhile, due to the
spurs of hyphenated MS instrument development, chromatography separation coupled with MS-based
technologies has become the mainstream choice in metabolomics studies in recent years [12].

Generally, metabolomics studies can be accomplished using either a targeted approach or an
untargeted approach. In most circumstances, targeted analyses focus on identifying and quantifying
a limited number of metabolites [13]. For instance, a targeted analysis of 36 major metabolites
from only 10 µL of whole blood can be achieved with good repeatability and stability [14]. A total
of 245 standard compounds were used in a large-scale analysis of targeted metabolomics data
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from heterogeneous biological samples [15]. A targeted high-performance liquid chromatography
(HPLC)-MS approach was used to identify 159 [16] reliable metabolites in serum; meanwhile, a gas
chromatographymass spectrometry (GC-MS method was used to identify the changes in 58 metabolites
in the wheat metabolome [17]. Further, some targeted metabolomics kits can quantity up to
500 compounds [18,19]. However, it is difficult to obtain all the required chemical standards for
the metabolites of interest, therefore the coverage of detected metabolites in targeted metabolomics is
generally limited. Different from a targeted approach, the untargeted metabolomics approach focuses
on the simultaneous detection of many unknowns, which can provide a wide range of detection
of metabolites/metabolic features with diverse chemical and physical properties. For example,
an untargeted approach reported the annotation of more than 350 phenolics using ultra-high
performance liquid chromatography (UHPLC) coupled with an electrospray ionization quadrupole
time-of-flight MS (ESI-Q-TOF MS) [20]. In another orbitrap-based untargeted metabolomics analysis,
a simulated database with a total of ~80,000 molecules of lipids was reported [21]. Despite these
advantages in untargeted metabolomics, the compound identifications and quantifications remain
challenging for all detected metabolites/metabolic features [22,23].

While both targeted and untargeted metabolomics have their strengths and weaknesses, the greatest
challenge is maximizing the detection and accurate identification of thousands of metabolites and
maintaining a decent detection dynamic range and quantification capability. The recent trend in
metabolomics research indicated the need for bridging the two mainstream approaches to form
a possibly revolutionary approach—a hybrid approach. In this mini-review, the advantages of
bridging these two approaches are discussed in detail, and the analytical performances are compared.
The workflow of novel metabolomics approaches, instruments utilized, data analysis strategies, and
broad applications are reviewed. To this end, MS-based hybrid approaches in metabolomics papers
published in the years 2012−2020 are discussed.

2. Hybrid Approaches and the Novel Workflow in Metabolomics

The emerging requests for handling complex metabolomics analysis highlighted the need to
expand the metabolite coverage and quantitative assays among many other analytical considerations.
Therefore, several hybrid approaches that bridge the targeted and untargeted approaches recently
emerged and were broadly defined as the hybrid approaches in metabolomics (Figure 1). In general,
the hybrid methods acquire ions lists or ion pairs lists from real samples (mostly pooled samples from
all biological replicates) or databases and aim to qualify and quantify as many metabolites as possible.
They usually consist of three major steps: (1) performing untargeted profiling or database searches to
provide rich information on all possible ions based on high-resolution mass spectrometers (HRMS)
and/or low-resolution mass spectrometry (LRMS); (2) conducting an ion selection process to generate
the MS peak list, which generally includes the details of the precursor ion, product ion, and retention
time; (3) the MS peak information generated in step 2 is imported into the instrument method of
dynamic multiple reaction monitoring (MRM) or selected reaction monitoring (SRM) mode, selected
ion monitoring (SIM) mode, etc. To avoid co-elution occurrence or the detection of low-abundance
metabolites, time staggered or mass staggered ions lists are always built. Then, a sample might run
several times follow the staggered lists. Subsequently, these new instrument methods are used for the
hybrid analysis of complex metabolite matrices from different types of biological specimens [24,25].
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procedures of these hybrid approaches and compare them with the targeted/untargeted metabolomics 
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Figure 1. The workflow demonstrates the development process from targeted metabolomics and
untargeted metabolomics to novel metabolomics analysis. Note: HRMS is commonly used in untargeted
metabolomics; however, it could also be used in targeted metabolomics.

While different types of hybrid approaches have been developed from a diverse set of metabolomics
studies, these methods shared general developmental concepts. As demonstrated in Figure 2,
the workflow generally started from sample preparation using pooled biological specimens (plasma,
urine, tissues, etc.), then went through initial data acquisition, data driven-method development,
data collection and processing, and metabolite characterization and identification/quantification.
Below, we discuss the novel procedures of these hybrid approaches and compare them with the
targeted/untargeted metabolomics workflow.
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Figure 2. The workflow of novel metabolomics analysis with hybrid approaches [26–29].
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2.1. The Collection of Ion Pairs List in Hybrid Approaches

Although it is challenging to develop a method for the identification of all metabolites, a novel
metabolomics method can provide global metabolome [30] information with the use of pooled samples
from biological replicates [24], and collect a large amount of compound fragmentation information that
could also be used for future structure elucidation and potential metabolite quantification. The key
to this type of method is to get the characteristic ion-pairs from tens of thousands of MS2 spectra
scanned from a real biological matrix (e.g., plasma, serum, and urine) [31]. Typically, ion pairs are
acquired from metabolite standards in targeted metabolomics [32,33]; however, it is impossible to
acquire standards for most of the metabolites encountered in metabolomics analyses. Although the
surrogate standards [34] or a single standard per metabolite class [35] are commonly used in both
targeted and untargeted metabolomics, the analysis is still restricted by the number of metabolites that
can be detected in one large panel. Because the initial ion lists of hybrid approaches are established
based on a full scan of the pooled biological samples or the reported database, this eliminated
the reliance on chemical standards, which may not always be available. Meanwhile, it showed
a higher selectivity and better reliability for quantitation in a broader metabolome coverage [27].
Researchers could use a variety of pooled biological samples for their hybrid method developments,
such as rice seed [28], tobacco leaf [25,36], human serum/plasma [24,28,31,37–39], human urine [39–41],
mouse serum/plasma [27,42,43], mouse brain and liver [44], cancer cell [44], and bacterial culture [29,45].
With the MS peak lists and ion pairs generated from the highly diverse set of small molecules within the
studied biological matrix or reported database, hybrid methods in metabolomics permit the analysis of
all metabolites in a given biological sample.

2.2. The Choices of Metabolomics Platforms in Hybrid Analyses

When choosing an MS instrument for developing hybrid approaches, HRMS, such as quadrupole
time-of-flight (Q-TOF) mass spectrometry [46] and quadrupole-orbitrap (Q-Orbitrap) mass spectrometry [47],
are often selected. These instruments directly challenge the LRMS, such as triple quadrupole mass
spectrometry [24] and quadrupole trap (QTrap) mass spectrometry [48]. Hyphenated MS-based
approaches are often favored. For example, GC-MS can be used but is generally limited to identify
volatile and semi-volatile compounds for metabolic investigation, and extensive sample preparation,
such as derivatization, is often required. Meanwhile, UHPLC/HPLC-MS gained popularity in hybrid
approaches because of its quicker and less extensive extraction procedures and ability to identify and
measure a broader range of compounds [49,50].

Generally, a single method cannot provide optimal detection for all metabolites in complex
biological samples. Rather, samples are typically analyzed multiple times by one MS system
or multiple MS systems in hybrid approaches. As shown in Figure 1 and Table 1, LRMS,
HRMS, or a combination of both types of instruments can be used to implement metabolomics
research. The following discussion will introduce the development of hybrid approaches, including
globally optimized targeted (GOT) methods [24,29,45,51], pseudo-targeted methods [25,27,28,37,40,44],
gas-phase fractionation (GPF) methods [38], data-independent targeted quantitative metabolomics
(DITQM) [39], information-dependent acquisition (IDA) [31], and simultaneous targeted quantification
and untargeted metabolomics [26], in metabolomics.
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Table 1. Summary of the performance and analytical considerations from different hybrid approaches.

Instrumentation Biological Sample Method Validation Metabolites Coverage and RT (min) Data Processing Strategies Ref

UHPLC-Q-TOF-MS and
UHPLC-QTRAP-MS

Human
urine

69% and 94% of metabolites displayed a
relative standard deviation (RSD) of
<10% and <20%, respectively. After
normalization and internal standard

calibration, 94% and 97% of metabolites
had an RSD of <20%, respectively.

419 compounds in electrospray
ionization quadrupole (ESI) positive

mode and 449 compounds in ESI
negative mode were detected.

RT = 26 min.

Analyst 1.6 software (AB SCIEX, USA) was
used to conduct peak integration. The
non-targeted analysis data were imported
to the SIEVE software (ThermoFisher, USA)
package to extract the metabolite features.

[40]

LC-QTRAP-MS Human
urine

The slopes of linear regressions were
approximately 1.00 (1.0291). RSDs were

less than 9.0% with a correlation
coefficient (R2) of 0.9998.

The number of accurately quantified
metabolites from 103 thiols, increased

from 64 (62%) to 99 (96%).
RT = 55 min.

Manual data acquisition and processing
through Bruker Daltonics Control 3.4 and
Bruker Daltonics Data analysis 4.0 software
(Bruker Daltonics, Bremen, Germany).

[41]

GC-MS Human
urine

75.7%, 89.5%, and 95.9% of the peaks had
RSDs of <10%, 20%, and 30%,

respectively. The intraday RSDs for
80.2%, 91.6%, and 95.1% of the peaks

were < 10%, 20%, and 30%, respectively.
The interday RSD for 64.3%, 86.9%,

and 91.6% of the peaks were <10%, 20%,
and 30%, respectively.

A total of 76 differential metabolites
were defined, 58 of which were verified.

RT = 30 min.

Changes in the levels of the differential
metabolites were visualized with
MultiExperiment Viewer
(http://www.tm4.org). The altered
pathways were determined with
MetaboAnalyst 2.0
(http://www.metaboanalyst.ca).

[52]

UHPLC-Q-Orbitrap-MS
and UHPLC-QTRAP-MS

Human
urine

The RSDs of all the standards were
below 10%. 94% and 80% of the peaks

had RSDs of <30% and <20% in the QC
samples, respectively. The 95.5% and

90% peaks had RSDs of <30% and <20%
in the urine samples, respectively.

780 metabolites were defined. A total
of 48 metabolites were chosen, 26 of

which were identified.
RT = 28 min.

Ion-pairs selection was from two sources:
(1) untargeted metabolic analysis; (2) key
metabolites in the metabolic pathways
chosen from free databases. MultiQuant
software (Applied Biosystem/MDS Sciex,
Carlsbad, CA) was used to extract
the peaks.

[53]

UHPLC-Q-TOF-MS and
UHPLC-QQQ-MS

Human
serum

34% of the detected metabolites had an
RSD < 5% and 76% had an RSD < 10%.

518 ion-pairs were defined for
subsequent MRM detection.

RT = 29.9 min.

Manual peak detection and alignment
through XCMS software. [37]

LC-QTOF-MS Human
serum

The minimum absolute height required
was set at 3000 counts, which was also

used for 100% of analyses in the
recursive step to minimize the

experimental variability.

139 and 158 molecular entities in the
negative and positive ionization mode,

respectively, were obtained.
RT = 20 min.

The MassHunter Workstation software
package was used to process all the data
obtained by LC/Q-TOF in the
MS/MS mode.

[38]

UHPLC-Q-TOF-MS and
UHPLC-QQQ-MS

Human
serum

91% of contents had an RSD of <30%
from the QC samples.

1446 metabolite MRM transitions in the
MRM-Ion Pair Finder.

RT = 23 min.

Efficient data processing strategy, with the
processing time markedly shortened by the
homemade MRM-Ion Pair Finder software.

[31]

http://www.tm4.org
http://www.metaboanalyst.ca
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Table 1. Cont.

Instrumentation Biological Sample Method Validation Metabolites Coverage and RT (min) Data Processing Strategies Ref

LC−QQQ-MS Human
serum

The linearity r at 0.82 ± 0.26 of amino
acids. >40% of the GOT-MS MRMs had

CVs < 5%; the average CV of the
detected metabolites was at 7.8 ± 7.0%.

595 precursor ions and 1890 multiple
reaction monitoring transitions (MRM).

RT = 9 min.

Manual inspection based on symmetry,
peak width, and MS peak area extraction
by Agilent MassHunter Qualitative
Analysis and Quantitative Analysis
software (Agilent Technologies, Inc., Santa
Clara, CA).

[24]

UHPLC-Q-TOF-MS and
UHPLC/QTRAP-MS

Human
serum

The change folds of a peak area between
these two QC samples ranged from 0.002
to 14. 767 (94.3%) and 759 (93.3%) of the
peaks had a CV of <30% in the b-QC and

p-QC replicates, respectively.

813 ions were steadily detected in the
QC samples.
RT = 30 min.

The integrations of the peak areas were
processed by the software provided by the
instrument vendor. The efficient data
processing strategy used the MRM-Ion Pair
Finder software.

[28]

UHPLC-QTRAP-MS and
LC-MS Human serum

For the validation set, the AUC was from
0.676 to 0.875. Sensitivity was from 0.504

to 0.921. Specificity was from 0.528
to 0.784.

239 metabolites were identified.
RT = 20 min.

Manual peak detection and alignment
through the XCMS software.
Home-developed database and online
databases (HMDB and Metlin) or
confirming with authentic standards
were used.

[54]

2 D-UHPLC-QTRAP-MS Human
plasma

The linear regression r varied between
0.9902 and 0.9993. The average

accuracies for the standard samples were
between 0.11% and 13.90%, and the

average intra-/inter-day precisions of the
standard samples were between 0.66%

and 16.46%. The intra-/inter-day
precisions in the complex plasma matrix

were between 2.05% and 19.49%.

78 metabolites were confidently
confirmed, from which 73 metabolites

can be accurately quantified.
Untargeted profiling of 4651 features of

high reliability and validity was
achieved.

RT = 27 min.

Targeted qualitative and quantitative was
performed using the TraceFinder 3.3
software (Thermo Fisher Scientific,
Waltham, MA). All the calibration curves
were linear and weighted 1/x. The
untargeted analysis was performed by the
Progenesis QI 2.0 software (Waters,
Milford, MA, USA).

[26]

UHPLC-Q-Orbitrap-MS
and UHPLC-Qtrap-MS

Human
plasma

43 yielded good linear functions
(R2 > 0.99) had RSDs lower than 20%

and an accuracy between 80% and 120%.

1658 characteristic ion-pairs from
1324 metabolites.

RT = 35 min.

48 metabolites established DITQM;
manually generate “one feature for one
peak” metabolomics data, further
confirmed through the extracted ion
chromatograms (XICs).

[39]

UHPLC-Q-TOF-MS and
UHPLC-QTRAP-MS Human plasma

The intraday RSDs of 82.4% of the
metabolites were <15%. 25.1% of the
metabolites had RSD values of >15%.

A total of 1373 unique metabolite
ion-pairs were obtained in the positive

ion mode. 162 significantly changed
metabolites were defined.

RT = 30 min.

Peak detection and alignment were
performed by the MarkerView software
(AB SCIEX, Framingham, USA) MS-DIAL
software and homemade C-package were
used to handle MS2. UHPLC-MRM MS
data were disposed of in Analyst 1.6
software (AB SCIEX, Framingham, USA).

[55]
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Table 1. Cont.

Instrumentation Biological Sample Method Validation Metabolites Coverage and RT (min) Data Processing Strategies Ref

UHPLC-QQQ-MS Human plasma

The optimized MRMs had intensities of
>1000 and signal-to-noise-ratios (S/Ns) of
>3. The intraday and interday median

CVs were 4.86% and 8.79%, respectively.
The median r was 0.96.

927 metabolites were measured. 310
were confirmed using pure chemical

standards, while the rest were
annotated by identification level using

database entries.
RT = 15 min.

The entire LC-MS system was controlled
by the Mass Hunter Workstation software
(Agilent, Santa Clara, CA). The extracted
MRM peaks were integrated using the
Mass Hunter Quantitative Data
Analysis software.

[51]

UHPLC-Q-TOF-MS Mouse
serum

66.7% of metabolites displayed an RSD
of <10%. 99.8% of metabolites had an

RSD of <20%. After normalization by the
total intensity and sample median, 99.8%

and 99.4% of metabolites exhibited an
RSD of <20%, respectively

2081 ions were obtained after data
filtering. 569 peaks were selected to

perform tsMIM-based pseudotargeted
analysis.

RT = 26 min.

The raw data were extracted and aligned
by the Progenesis QI software. The peak
areas were collected by the
TargetLynx software.

[43]

UHPLC-Q-TOF-MS Mouse
plasma

97.4% and 95.4% of the selected ions in
the positive and negative ion modes have
RSD values of less than 20%, respectively.

1423 and 1141 ions were generated in
the positive and negative ion modes,

respectively.
RT = 27 min.

The raw data files were uploaded into the
Progenesis QI software to perform
chromatographic peak alignment, data
normalization, and peak picking using the
default settings. MassLynx XS (Waters
Corp., Manchester, UK) was used for the
targeted extraction. The selected features
were tentatively annotated.

[42]

UHPLCQ-TOF-MS Mouse
plasma

Almost 90% of the tsMIM- detected
metabolites had an RSD of <20%. 42% of

metabolites had RDSs of <5%.

387 ions were detected. 17 metabolites
were selected as biomarkers.

RT = 26 min.

The peak areas of the metabolites were
processed using the TargetLynx software. [27]

UHPLC-Q-Orbitrap-MS
and UHPLC-QQQ MS

Mouse brain and liver,
cancer cells, and human

plasma

The linear of IS r > 0.99. The intraday
RSDs were from 0.8% to 4.3%; the

inter-day RSDs were from 2.4% to 16.8%.
51% and 94% of the detected lipids had
RSDs of <5% and 20% in positive mode

and 94% had RSDs of <10% in
negative mode.

A total of 3377 targeted lipid ion pairs
with over 7000 lipid molecular

structures were defined.
RT = 20 min.

The raw data were processed with Analyst
software. Normalization of the lipids by
the appropriate lipid ISs.

[44]

UHPLC-Q-TOF-MS and
UHPLC-QTRAP-MS Rice seed

89.5% of peaks had RSDs < 20%. The
linear range was 2.5–4 orders of

magnitude, and the r was in the range
0.996–0.999. The recoveries were

85.9–106.3% for positive mode and
73.3–98.2% for negative mode,

respectively.

A total of 749 and 617 ion pairs in the
positive and negative modes were

achieved, respectively. Among them,
about 200 metabolites were identified

or tentatively identified.
RT = 30 min.

All the ions were extracted by the Analyst
software. Zero values were removed by
the 80% rule.

[28]
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Table 1. Cont.

Instrumentation Biological Sample Method Validation Metabolites Coverage and RT (min) Data Processing Strategies Ref

GC-MS Commercial
cigarettes >81.2% of peaks had RSDs of <20%.

312 components and their related
quantitation ions. A total of 90
compounds were elucidated.

RT = 72.5 min.

The integration of the chromatography
peaks was performed using the Agilent
MSD ChemStation (Agilent Technologies).
Peak areas of all the components were
divided by those of the internal standard
and then scaled to zero mean and
unit variance.

[36]

GC-MS Tobacco leaf
47.3% of components had an r of >0.99;
36% of components had an RSD of <5%;
93% of components had an RSD of <20%.

167 differential components (p < 0.05)
were screened out.

RT = 72.5 min.

The acquired GC/MS raw data of the QC
sample were imported into the AMDIS
software (version 2.62, NIST, USA) for
peak deconvolution and detection. The
quantitative ion selection algorithm was
written in Visual C++ (version 6.0,
Microsoft). The component peak area was
divided by that of the internal standard.

[25]

SESI-QQQ-MS Bacterial
culture

47% of features showed an r of >0.90.
65.9% of features had a CV of <20%

75 features in the SESI-GOT-MS/MS
panel were established.

RT = 1 min.

Manual inspection based on symmetry,
peak width, and MS peak area extraction
by Agilent MassHunter Qualitative
Analysis and Quantitative
Analysis software.

[29]

UHPLC-QQQ-MS Bacterial
culture

54.9% of peaks had measurement CVs of
<10%; 0.84% had CVs of >40%. 51.97% of

peaks had CVs of <10%; 0% had CVs
of >40%.

A total of 464 metabolite peaks were
detected.

RT = 20 min.

All the raw metabolomics data were
inspected by the Quanbrowser module of
Xcalibur version 4.0 (Thermo Fisher
Scientific) and the Thermo TSQ LC-SIM
Data Processor (V0.1.35
Engineering Sample).

[45]
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2.2.1. The Single Usage of LRMS with Hybrid Approaches

The GOT- QQQ MS was exemplified by the recent development and application studies from
several research groups [24,45,51]. During the GOT-QQQ MS development, the ion pairs were globally
searched from real samples or reported databases, such as the Human Metabolome Database (HMDB)
and METLIN. Then, the scheduled MRM/SRM mode was used to maximize the number of ion pairs
detected in each measurement. This approach was developed to acquire MRMs/SRMs without a lot
of chemical standards and independent of strict mass resolution/accuracy. It was well qualified to
detect not only well-known metabolites but also unknowns or less-studied small molecules with better
sensitivity and repeatability. However, during the process, the scheduled MRM/SRM methods were
generally divided into multiple sub-methods; these methods need to be performed with repeated
sample injections and prolonged experimental time. Meanwhile, additional experimental time was
required to optimize the many MRMs/SRMs for particular sample types. Notably, a metabolite database
is not an established method for scoring the probability of identification. When ion pairs are searched
from the database, the risk of including false positives is high.

The combination of global profiling and targeted approaches in GOT-MS enabled the detection of
the detailed structure of a large number of unknowns, and excellent quantification and identification
potential in this type of hybrid study. The main procedures were: (1) a SIM was performed, and
relatively high intensity and good signal-to-noise ratio were used as cutoffs to select precursor ions;
(2) MS/MS was used to scan the product ions, and different collision energies were used for optimization
purposes; (3) the selected ion pairs from previous steps were summarized in one instrument method,
and the scheduled MRM mode was then used to maximize the number of MRMs in each measurement.
After running the same samples, a GOT-MS analysis resulted in 26 MRMs/metabolites with fold
changes >2 and P < 0.05, compared to only one significant metabolite detected for the Q-TOF and one
for the traditional large targeted assay [24].

Subsequently, the GOT-MS was optimized to the database-assisted dGOT-MS [51]. The databases
contain comprehensive mass spectra from a large number of small-molecule metabolite standards in
both positive and negative ionization modes with multiple collision energies [56,57], and they were
used in the dGOT-MS development. It was reported that dGOT-MS could cover an extensive range of
metabolites (including lipids) from various types of biological samples. The overall analytical strategy
of dGOT-MS is as follows: (1) precursor ions and product ions were acquired from databases; (2) the
optimization of the retention and MRM/SRM parameters was conducted; (3) a four-level system for
metabolite identification was decided and listed; (4) validated dGOT-MS was used to discover potential
biomarkers in biological samples. In the dGOT-MS study, the traditional large-scale targeted detection,
limited by the availability of standards for the predefined metabolites, resulted in the discovery of only
five potential biomarkers with p < 0.05 and FC > 1.5. In contrast, 28 potential biomarkers (p < 0.05,
FC > 1.5) were discovered using the novel dGOT-MS approach. These findings suggest that dGOT-MS
is a highly useful approach for biomarker discovery related to breast cancer.

In addition to dGOT-MS, the GOT-MS was also modified by time staggered/mass staggered
(ts/ms)GOT-MS [45]. The scheduled SRM or MRM was optimized by tsGOT and msGOT. For the
tsGOT, all the SRM transitions were sorted from the smallest retention time to the largest retention
time, and for the msGOT all the SRM transitions were sorted from the smallest precursors to the largest.
In the ts/ms-GOT-MS analyses, 22.45%, 39.74% 54.90%, and 51.97% of peaks from the analyzed bacterial
samples were detected with a CV < 10% by the targeted analysis, GOT-MS, tsGOT-MS, and msGOT-MS
methods, respectively. The number of detectable bacterial metabolites from at least 75% of the samples
was reported as 72, 273, 296, and 355 from the targeted analysis, GOT-MS, tsGOT-MS, and msGOT-MS,
respectively. When the biomarker selection criteria of a 1.3-fold change and t-test p-value < 0.05 were
applied, the number of metabolite biomarkers detected by the targeted metabolic profiling, GOT-MS,
tsGOT-MS, msGOT-MS was 50, 198, 214, and 260, respectively [45].
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2.2.2. The Single Usage of HRMS with Hybrid Approaches

HRMS full scan methods are commonly used in untargeted metabolomics analysis [58].
However, there are single HRMS-based hybrid metabolomics approaches reported in the past few
years. For instance, a hybrid approach to transforming an untargeted metabolic profiling method
using the retention time locking (RTL) of SIM mode was reported [25]. In this study, the MS data were
acquired with GC-TOF-MS in the full scan mode, and an algorithm based on the automated mass
spectral deconvolution and identification system (AMDIS) was used to keep the most abundant peak
and decrease the error or duplication of the deconvolution and detection results. However, the ion
selection strategy was complex, and some false characteristic ions could still arise from the imperfect
algorithm. Then, all the ions detected in the SIM mode were divided into several groups based on their
retention time. Overall, the time-divided SIM method showed better sensitivity than those of the full
scan-based total ion current (TIC) and extracted ions current (EIC) methods, and 167, 151, and 138 of
the significantly different components (p < 0.05) in tobacco leaf were screened out using the data of the
SIM, EIC, and TIC, respectively. Meanwhile, more than 36% (compared with 16% for both the EIC and
TIC methods) of the components had a relative standard deviation (RSD) of less than 5%, and more
than 93% of components (compared with 88% for the EIC method and 81% for the TIC method) had an
RSD of less than 20% [25].

GPF-enhanced metabolite detection and identification using an LC-Q-TOF-MS instrument was
another example of hybrid methods that used a single HRMS platform [38]. GPF was a procedure
that could effectively utilize different MS/MS parameters across an analytical batch, or perform
repetitive injections of the same sample using exclusion or inclusion criteria to select precursor ions.
Specifically, the methods that were based on the different inclusion criteria for the selection of precursor
ions to undergo MS/MS fragmentation were combined and programmed. The GPF protocols expanded
the metabolite coverage (particularly with coeluting compounds) and provided MS/MS information
for at least 80% of all detected entities, while in contrast the conventional auto-MS/MS mode generally
could only provide 48–57%.

The other hybrid approach using the HRMS platform was the UHPLC-Q-TOF-MS-based
pseudotargeted method with time-staggered ion lists [27]. The key step in this approach was to
establish a target ion list in the multiple ion monitoring (MIM) mode, in which the precursor to
precursor ion transitions were monitored using the “TOF MRM” functionality. The MS data were
acquired from m/z 100 to m/z 1000 using the full scan mode, then the detected peaks were extracted and
aligned. Next, based on the staggered time points, the original ion list was divided into three separate
ion lists and imported into the method editor for batch analysis of the biological samples. The triggered
time for each target ion was defined as retention time (RT) ± 0.15 min, and its collision energy was set
to the low energy of 3 V to obtain the highest response. The approach exhibited better repeatability
and a wider linear range than the traditional untargeted metabolomics; besides, a broader metabolite
coverage (compared to single MIM mode) was observed. However, the established ts-MIM-based
pseudotargeted metabolomics method has a major limitation, in that the loss of MS/MS information
could happen due to the low collision energy used. In comparison, a target-direct data-dependent
acquisition (tDDA) with time-staggered precursor ion lists (tsDDA) method can be used to improve
the performance of the MS/MS acquisition. After untargeted analysis with a full scan, the MS data can
be filtered to get a tDDA inclusion list. Then, the tDDA was split into three time-staggered ion lists to
get tsDDA. Unlike the conventional DDA that automatically fragments the most abundant ions, tDDA,
or tsDDA highlighted the features of interest regardless of their peak abundance and reduced the
initiation of unnecessary MS/MS events. In these studies, plasma samples were used to evaluate and
compare the performance of the MS/MS acquisition using the conventional DDA, tDDA, and tsDDA,
and 97.4% and 95.4% of the selected ions in the positive and negative ion mode of tsDDA analysis have
an RSD value of less than 20%, respectively [42]. Compared to the conventional DDA, the ts-DDA also
demonstrated superior performance in the high co-elution zones of plasma samples (especially for the
metabolites of low abundance). Furthermore, the integration of tsMIM and tsDDA into one workflow
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could improve the data acquisition in UHPLC-Q-TOF-MS-based hybrid analyses [43]. Nevertheless,
even under optimized parameters, a reduced number of concurrent ions in tsDDA mode still have 32%
and 25% co-eluting ions that were not triggered for fragmentation in the positive and negative ion
mode, respectively. If more metabolites are extracted from the full scan, more ion lists and MS runs
will be required.

Overall, based on the reported studies, when only one MS instrument was utilized in hybrid
metabolomics analysis, LRMS was generally considered as comparable to or slightly better than
HRMS-based metabolomics, as the abundant ions that simultaneously get into the MS detector can
often induce signal saturation in HRMS, which in turn could deteriorate the mass accuracy and
compromise the advantage of HRMS. Meanwhile, data pre-treatment/processing (before statistical
analysis) in LRMS is relatively easy compared to HRMS, and the data size is generally smaller.

2.2.3. The Integration of LRMS and HRMS with Hybrid Approaches

From the reviewed literature, we discovered that researchers can also combine at least two mass
spectrometers to develop hybrid approaches for robust, comprehensive analysis. The hybrid usages of
two different instruments could increase the number of ion pairs and improve the repeatability for
sample analysis in untargeted metabolomics. A diverse set of Q-TOF-MS [37] or Q-Orbitrap-MS [44]
with QQQ-MS [31] or QTRAP-MS [40] have been used, and in most cases, HRMS analysis was first
operated in the full scan mode. Meanwhile, “auto MS/MS” [37], IDA [31], or the sequential windowed
acquisition of all theoretical fragment ions (SWATH) [26] were subsequentially used to acquire the
scheduled SRMs. In several example applications [26,39], IDA and SWATH were used to increase
the number of characteristic ion pairs, especially at the time of co-elution occurrence or for the
detection of low-abundant metabolites. These MS data can also assist the SRM ion-pair selection by
providing information regarding the precursor ion, product ion, retention time, and collision energy.
Next, the dynamic SRM mode was employed to monitor each ion pair near its expected retention time.
Furthermore, systematic and automated software, such as MRM-Ion Pair Finder, can be developed to
reduce the time needed to pick ion pairs from thousands of candidates [31]. A comprehensive strategy
combining blank-wash, large pooled QC samples, and post-calibration was also developed to improve
the stability of the large-scale pseudotargeted metabolomics [28]. Additionally, the same LC conditions
and the same UHPLC system across the two types of instruments can be used to avoid the difference
of chromatographic separation [40]. In one example study, 76% of the metabolites detected by the
pseudotargeted method with two instruments displayed an RSD of less than 10%, while only 44% of
the UHPLC-Q-TOF MS-detected metabolites had an RSD of less than 10% in the pooled serum samples.
It is also noted that 68% and 44% of the metabolites detected by pseudotargeted metabolomics and
untargeted metabolomics, respectively, had a correlation coefficient larger than 0.9 [37]. The results
indicated that the hybrid approaches exhibited high repeatability in the original and normalized peak
area, which has a clear advantage for time series data. It is also worth noticing that the scheduled
SRM mode that was used in this pseudotargeted metabolomics study could effectively reduce the
number of interfering ions and enhance the scan rate. Because the detected metabolites have been
predefined, no complicated data processing is needed in complex sample analysis. Overall, the hybrid
methods discussed in this study demonstrated the utility of combining two instrument platforms from
the same vendor for extensive biomarker discovery and quantitative metabolite analysis. In general,
the hybrid methods in metabolomics with two instruments could maximize the number of included
ion pairs compared to the HRMS or LRMS-only methods, which is considered a major advantage
(Table 1). However, compared to the single instrument-based methods, the integration requires
two relatively high-end instruments, which makes method transformation inevitable. To ensure the
transmissibility of data and ion pairs being identified in both instruments, it is generally a better
situation if the two instruments used in the combined approaches come from the same manufacturer.
In addition, when HRMS-acquired ion pairs are imported to the LRMS workstation, some instrument
parameters (such as fragmentation voltage and collision energy) need to be re-optimized to minimize
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the changes in the elution order and retention time of the metabolites. However, the usage of two
instruments increase the cost of purchasing and maintaining the equipment, and require more lab
space for installation. Besides, transforming thousands of candidates between two instruments can be
labor-intensive. Therefore, these reasons greatly limit its application.

2.3. Data Handling in Hybrid Metabolomics Approches

The post-experiment data-handling in metabolomics studies is usually critical and essential,
and there is no exception in novel metabolomics studies with hybrid approaches. Almost all the
discussed hybrid studies here manually extracted and aligned the MS peaks through commercial data
processing software provided by vendors or online data processing servers/websites, such as Bruker
Daltonics Control [59], Bruker Daltonics Data analysis software [60], MarkerLynx XS software [61],
Extracted Ion Chromatograms (XICs) [62], XCMS software [63], Thermo Compound Discover and
Xcalibar software [64], and Progenesis QI [65]. A homemade software [31] was used in the hybrid
study, which developed an automated and reliable approach, MRM-Ion Pair Finder, to accelerate this
key process and to improve the data quality of the global metabolome measurements. Besides this,
the programming language in which a software is written can increase the flexibility in creating a
customized workflow and capacity in dealing with large data, such as the R package [66,67] and
Phyton package [68]. Before multivariate and univariate analyses, the data were also commonly
pretreated to be suitable for analysis [69,70]. These methods include the log10 transformation;
the internal standard-based normalization; and the annotation by databases, such as METLIN,
HMDB, BiGG, SetupX, BinBase, and the MetaboLights database (http://metabolomicssociety.org/

resources/metabolomics-databases). Metabolite data from the hybrid analyses could also be filtered in
terms of their dynamic range, linearity, reproducibility, coverage, and metabolic feature distribution
with author-preferred thresholds. Meanwhile, the evolution in MS technologies has constantly
increased the complexity and the size of MS data that can be generated from many biological analyses.
Then, both univariate (e.g., student’s t-test) and multivariate (e.g., principal component analysis and
partial least squares discriminant analysis [71]) statistical analyses have been applied to comprehensively
analyze the data from hybrid analyses [72]. Statistical software and platforms such as SPSS [40,73],
GraphPad Prism [27,74], SIMCA-P [36,75], and MetaboAnalyst (https://www.metaboanalyst.ca/) [43]
have also been used to assist the data analysis and result interpretation. In summary, many data
analysis techniques, software, and platforms have been used in hybrid approaches.

3. Representative Applications of Hybrid Approaches in Metabolomics

Over the past few years, hybrid approaches in metabolomics have been applied in biological
samples that are associated with different kinds of disease, such as cardiovascular disease [76],
neurodegenerative disease [77], cancer [39–41], kidney dysfunction [78], and diabetes mellitus [55].
The established hybrid methods discussed above also have been used in a variety of biological samples
(such as urine, serum/plasma, and tissue samples) to facilitate broader metabolite coverage or to validate
metabolite biomarkers for disease. For example, a study performed by Liu and colleagues used a novel
strategy combining isotope labeling with LC-MS in the double precursor ion scan and MRM/SRM
mode for the untargeted profiling and targeted quantitation of thiols from urine samples of patients
with five types of cancer (nasopharyngeal cancer, esophagus cancer, gastric cancer, lymph cancer, and
lung cancer). One hundred and three thiol candidates were discovered in all the cancers, and six thiols
were identified by chemical standards, of which pantetheine was identified in human urine for the first
time. Additionally, the concentrations of homocysteine, γ-glutamylcysteine, and pantetheine were
detected with more than two-fold increases in cancer patients compared to healthy controls [41].

Meanwhile, the hybrid approaches in metabolomics was also used in biomarker discovery for
hepatocellular carcinoma (HCC) and bladder cancer diagnosis [39]. To identify potential metabolite
biomarkers for HCC diagnosis, a urinary pseudotargeted method based on LC−QTRAP-MS was
developed, and the authors found that urinary nucleosides, bile acids, citric acid, and several amino

http://metabolomicssociety.org/resources/metabolomics-databases
http://metabolomicssociety.org/resources/metabolomics-databases
https://www.metaboanalyst.ca/
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acids were significantly changed in liver disease groups compared with the controls, featuring
the dysregulation of purine metabolism, energy metabolism, and amino metabolism in liver
diseases. Similarly, butyrylcarnitine (carnitine C4:0) and hydantoin-5-propionic acid were defined
as combinational markers to distinguish HCC from cirrhosis with the pseudotargeted method [40].
Furthermore, Chen and colleagues identified 50 serum metabolite biomarkers from their HCC samples
with the pseudo-targeted approach, which demonstrated that patients with HCC had lower amounts
of lysophosphatidylcholines, higher amounts of long chains, decreased amounts of medium-chain
acylcarnitines, higher amounts of aromatic amino acids, and lower branched-chain amino acids levels
than healthy controls [37]. Interestingly, the discovered and validated serum metabolite biomarker
panel (including phenylalanyl-tryptophan and glycocholate) reported by Luo and colleagues also
exhibited a good diagnostic performance for the early detection of HCC from at-risk populations [54].
When it comes to bladder cancer (BC) study, a urinary pseudotargeted method based on GC-MS was
developed and validated, and a total of 76 differential metabolites were detected in the discovery sample
set, 58 of which were verified using an independent validation set. Based on their further analysis,
a four-biomarker panel was defined for the general diagnosis of BC. Besides this, the combinatorial
biomarker panel also proved useful for the early diagnosis of BC. This study proved that the proposed
pseudo-targeted approach can be used to discriminate non-muscle invasive and low-grade BCs from
healthy controls with a satisfactory sensitivity and specificity, and that this method can be employed
to effectively and relatively noninvasively screen BC biomarkers [39]. In addition to cancer research,
a pseudotargeted method based on UHPLC−MS with SWATH acquisition was also applied to a Type 2
diabetes study. In this study [55], 162 significantly changed metabolites were defined in the serum of
type 2 diabetes patients, which demonstrated that the pseudotargeted method can provide many useful
hints for investigating changes in metabolites and has great potential in promoting our understanding
of the metabolism processes of metabolic disease.

Beyond human disease investigations, the GOT-MS approach was also used in bacterial metabolism
analysis. The human gut microbiota plays an important role in human physiological processes such as
nutrient digestion and the regulation of the immune system. Thus, examining the metabolites from the
gut microbiota can provide a better understanding of the activity of gut microbes, and further
inform us of their impact on human health. A recent study demonstrated the application of
an innovative secondary electrospray ionization (SESI)-GOT-MS/MS method in the investigation
of gut microbial metabolism in vitro [29], while 71 features in the SESI-GOT-MS/MS method are
potentially new metabolites that exist in the headspace of gut microbial culture. In another bacterial
analysis, the metabolic profiling-based differentiation of methicillin-susceptible and methicillin-resistant
S. aureus bacteria was achieved by ts/msGOT-MS with a better analytical performance than targeted
metabolomics, as the detected differential metabolites by the targeted metabolomics profiling,
tsGOT-MS, msGOT-MS were reported as 50, 214, and 260, respectively [45].

Plant metabolomics has been widely applied to plant physiological metabolism [79], abiotic and
biotic stress responses [80], etc. The pseudo-targeted methods can also be used for the metabolic
profiling analysis of plants. For instance, the pseudotargeted UHPLC-QQQ-MS dynamic MRM method
was used for the investigation of metabolic variations in rice seeds with two wild cultivars [28]. A total
of 749 and 617 ion pairs in positive and negative modes were achieved, respectively. Among them,
about 200 metabolites were identified or tentatively identified. Another pseudotargeted method using
GC-MS-selected ion monitoring was applied to investigate the chemical characteristics of commercial
cigarettes made in China and foreign countries [36]. In this study, a peak table with 312 components
and their related quantitation ions was generated for SIM acquisition, and a total of 90 compounds
were identified. Their results indicated that Chinese domestic flue-cured cigarettes have a higher
concentration of saccharides and a lower concentration of organic acids and amino acids than domestic
blended cigarettes and foreign cigarettes.
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4. Conclusions and Future Perspectives

From the existing body of literature, we have demonstrated that the hybrid approach provides us
a new avenue to expand the metabolome coverage in parallel with targeted analysis. It maintained
some strengths of targeted and untargeted metabolomics analysis, while neutralizing some of their
weaknesses (Figure 3). It can be used to distinguish groups of samples with different metabolic
features; it has great potential in biomarker discovery, disease diagnosis, and quantitative work
using mixed linear calibration. While promising, the major limitation of the hybrid metabolomics
methods remains. For example, the relatively longer sample running times can be a bottleneck for truly
high-throughput analysis, especially when dealing with valuable samples that have limited availability.
Future experiments using a faster and more sensitive instrument will potentially decrease the run
time and increase the analysis throughput. Furthermore, the extensive need for instrument method
optimization and careful result de-duplication can also slow down the hybrid analysis process. Thus, to
generate a “one feature for one peak” dataset, the effective and comprehensive instrument method setup
and data filtering procedure remain to be exploited. Besides, a seamless integration of in-house hybrid
approaches results in publicly available databases are not always available, which posited challenges
in confident and accurate compound identification. The possible solutions for this current weakness
include increasing the number of metabolites in the in-house database or improving the integration of
the novel metabolomics data analysis workflow with available online databases. Hopefully, with the
prevalence of hybrid metabolomics studies, more datasets with detailed fragmentation information
will become available, which will facilitate further annotation efforts for many unknowns.
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Abbreviations

AMDIS automated mass spectral deconvolution and identification system
BC bladder cancer
cv coefficient of variation
DDA data-dependent acquisition
tDDA target-direct data-dependent acquisition
tsDDA time staggered-direct data-dependent acquisition
DITQM data independent targeted quantitative metabolomics
EIC extracted ions current
ESI electrospray ionization quadrupole
GC gas chromatography
GC-MS gas chromatography coupled with mass spectrometry
GOT globally optimized targeted method
dGOT database-assisted globally optimized targeted method
ts/msGOT time staggered/mass staggered globally optimized targeted method
GPF gas-phase fractionation method
HCC hepatocellular carcinoma
HMDB human metabolome database
HPLC high-performance liquid chromatography
UHPLC Ulrta-high performance liquid chromatography
HPLC-MS high-performance liquid chromatography coupled with mass spectrometry
HRMS high resolution mass spectrometers
IDA information dependent acquisition
LRMS low resolution mass spectrometers
MIM multiple ion monitoring
tsMIM time staggered-multiple ion monitoring
MRM multiple reaction monitoring
MS mass spectrometry
NMR nuclear magnetic resonance
Q-Orbitrap quadrupole-orbitrap
Q-TOF quadrupole time-of-flight
QC quality control
QQQ MS triple quadrupole mass spectrometry
QTrap quadrupole trap
RSD Relative Standard Deviation
RT retention time
RTL the retention time locking
SESI secondary electrospray ionization
SIM selected ion monitoring
SRM selected reaction monitoring
SWATH sequential windowed acquisition of all theoretical fragment ion
TIC total ion current
TOF time of flight
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