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Objective: To identify optimal machine-learning methods for the radiomics-based
differentiation of gliosarcoma (GSM) from glioblastoma (GBM).

Materials and Methods: This retrospective study analyzed cerebral magnetic resonance
imaging (MRI) data of 83 patients with pathologically diagnosed GSM (58 men, 25 women;
mean age, 50.5 ± 12.9 years; range, 16-77 years) and 100 patients with GBM (58 men, 42
women; mean age, 53.4 ± 14.1 years; range, 12-77 years) and divided them into a training
and validation set randomly. Radiomics features were extracted from the tumor mass and
peritumoral edema. Three feature selection and classification methods were evaluated in
terms of their performance in distinguishing GSM and GBM: the least absolute shrinkage
and selection operator (LASSO), Relief, and Random Forest (RF); and adaboost classifier
(Ada), support vector machine (SVM), and RF; respectively. The area under the receiver
operating characteristic curve (AUC) and accuracy (ACC) of each method were analyzed.

Results: Based on tumor mass features, the selection method LASSO + classifier SVM
was found to feature the highest AUC (0.85) and ACC (0.77) in the validation set, followed
by Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF (AUC = 0.82, ACC = 0.75).
Based on peritumoral edema features, Relief + SVM was found to have the highest AUC
(0.78) and ACC (0.73) in the validation set. Regardless of the method, tumor mass
features significantly outperformed peritumoral edema features in the differentiation of
GSM from GBM (P < 0.05). Furthermore, the sensitivity, specificity, and accuracy of the
best radiomics model were superior to those obtained by the neuroradiologists.

Conclusion: Our radiomics study identified the selection method LASSO combined with
the classifier SVM as the optimal method for differentiating GSM from GBM based on
tumor mass features.
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INTRODUCTION

Gliosarcoma (GSM), a variant of glioblastoma (GBM), differs
from GBM in many respects (1). GSM is associated with lower
ratios of epidermal growth factor receptor (EGFR) and O6-
methylguanine-DNA methyltransferase (MGMT) promoter
methylation without isocitrate dehydrogenase (IDH) mutations
as well as the expression of the v-raf murine sarcoma viral
oncogene homolog B1(BRAF) gene at codon 600 (BRAF
V600E) (2–6). Clinically, GSM is associated with a higher ratio
of extracranial metastasis (7, 8) and a poorer prognosis (3, 9–11).
These molecular, genetic, and clinical differences between GSM
and GBM indicate that the former may be treated as a
unique entity.

While the similarity in the clinical presentation of the two
types of tumors underscores the importance of their radiological
differentiation, most of the radiological signs of the two tumors
overlap (2, 4). Prior imaging research has therefore sought to find
a method by which to reliably distinguish the two types of
tumors: peritumoral edema seen on routine magnetic
resonance imaging (MRI) is more severe in patients with GSM
(1, 2), and other imaging modalities, including diffusion
weighted imaging (DWI), perfusion weighted imaging (PWI),
and magnetic resonance spectroscopy (MRS), have also proven
to be helpful in the identification of the tumors (7, 12). However,
these imaging methods have not been substantive enough to
guide clinical practice due to some limitations. First, qualitative
radiological features are susceptible to intra and interobserver
variability and lacking reproducibility among evaluators. Second,
these radiological modalities only focus on the tumor masses of
GSM and GBM when peritumoral edema also requires attention.

Radiomics, a new method for imaging data analysis, has been
successfully used for the differentiation of central nervous system
tumors: e.g., differentiation between primary central nervous
system lymphoma and atypical GBM (13), between GBM and
metastasis (14–16), and between GBM and anaplastic
oligodendroglioma (17). Like any high-throughput data-
mining field, the curse of dimensionality presents a challenge
for radiomics analysis. Feature selection is the process of
removing irrelevant features that are most conducive to
reducing the difficulty of learning task and minimizing the risk
of overfitting. This study extracted a large panel of radiomic
features from the tumor masses and peritumoral edema of GSM
and GBM to inform an optimal machine learning-based
algorithm for differentiating GSM from GBM.
MATERIALS AND METHODS

Patient Enrollment
The ethics committee of our hospital approved this retrospective
study. This study enrolled 83 patients with GSM (58 men, 25
women; mean age, 50.5 ± 12.9 years; range, 16-77 years) between
July 2009 and August 2018 and 100 consecutive patients with
GBM (58 men; 42 women; mean age, 53.4 ± 14.1 years; range,
12-77 years) between December 2016 and February 2017.
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The inclusion criteria for this study were as follows: (I)
pathologically confirmed GBM or GSM, as defined by the
World Health Organization (WHO) criteria; (II) available
preoperative multi-parametric MRI data, including T2-
weighted imaging (T2WI) and contrast enhanced (CE) data;
(III) patients with no history of preoperative treatment for the
tumor before receiving MR; and (IV) available clinical data.
Patients were excluded if (I) preoperative MR images were not
available in our institute; (II) the images were inadequate for
image analysis (for example, they featured obvious artifacts); (III)
the lesion showed no enhancement on post-contrast images; or
(IV) the lesion was recurrent or had received previous treatment.
The clinical and imaging characteristics of all patients were
retrospectively assessed, including age, gender, tumor location,
and the identification of intra-tumoral necrosis and cystic
changes and peritumoral edema. The flowchart of 83 patients
with GSM and 100 patients with GBM is presented as
Supplementary Figure 1. The patients were randomly
assigned to either the training (n = 93) or validation groups
(n = 90).

MRI Data Acquisition and Region of
Interest Segmentation
MRI data included pre- and post-contrast scanning. The detailed
scanning parameters are shown in Supplementary Table 1. The
presence of intra-tumoral necrosis and cystic changes and
peritumoral edema were determined for each case. The intra-
tumoral necrosis and cystic changes were defined as low signal
intensity without enhancement on post-contrast images and high
signal on T2WI. The peritumoral edema was defined as low
signal intensity around enhanced tumors and high signal on
T2WI. The identification of intra-tumoral necrosis, cystic
changes, and peritumoral edema were performed by two of the
co-authors; conflicting opinions were resolved with discussion.

Several postprocessing steps following the acquisition of MR
images were performed to reduce data heterogeneity bias. The
adjustment of image resolution was first conducted to resample
all voxel size to 3.00 × 3.00 × 3.00 mm3 without gaps between
consecutive slices for each MRI image. Image intensity
normalization transformed MR imaging intensity into
standardized ranges (0–1). The contour of the tumor on axial
images in the CE sequence and the high signal around the tumor
in the T2 sequence (the tumor itself and peritumoral edema)
were manually segmented into region of interest (ROI) on
multiple slices with the opensource software MRIcro (http://
www.mccauslandcenter.sc.edu/mricro/). The ROI of the
peritumoral edema on CE images was generated by the voxel-
wise subtraction of the contrast enhancement in CE sequence
from high signals on T2WI using FSL (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FSL).

Radiomic Feature Extraction and Stability
Evaluation
PyRadiomics (http://readthedocs.org/projects/pyradiomics/)
computed a total of nine feature categories, including first-
order statistics, shape descriptors, texture classes (gray level
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co-occurrence matrix, GLCM), gray level run length matrix
(GLRLM), and gray level size zone matrix (GLSZM), and six
built-in filters (wavelet, Laplacian of Gaussian (LoG), square,
square root, logarithm, and exponential), resulting in a total of
1,303 radiomic features (13 shape features, 18 first-order
intensity statistics features, 68 texture features, 86 square
features, 86 square root features, 86 logarithm features, 86
exponential features, 172 LoG features, and 688 wavelet
features). First-order features are intensity-based statistical
features describing the distribution of voxel intensities. Shape
features describe the size and shape of the ROIs. GLCM, GLRLM
and GLSZM features are all texture-related features defined by
different computations based on the gray level of the image. All
of the features were defined in compliance with the Imaging
Biomarker Standardization Initiative (IBSI). All the radiomics
features were listed in the Supplementary Table 2.

Feature Selection and Classification
A total of three feature selection methods based on statistical
approaches were applied in this study: least absolute shrinkage
and selection operator (LASSO), Relief and Random Forest (RF).
While LASSO and RF are embedded methods, Relief is a filter
method. The embedded methods (LASSO and RF) and filter
method (Relief) are commonly and effectively used feature
selection methods. From the performance of the final model,
the wrapped feature selection is better than the filtered feature
selection, but the model needs to be trained multiple times, so the
computational cost is relatively large. We chose these methods
mainly because of their efficiency and popularity among previous
studies. In the LASSO algorithm, the shrinkage parameter
lambda was identified when the misclassification error was
smallest in 10-fold cross-validation. The LASSO, Relief, and RF
curve analysis were conducted based on the “glmnet”, “vsurf”,
and “CORElearn” packages by R software (version 3.4.0, R
Foundation for Statistical Computing), respectively. Then,
three machine-learning classifiers were then applied for feature
classification: adaboost classifier (Ada), support vector machine
(SVM), and RF. These classifiers are widely used pattern
recognition tools and imported from the Python (version 3.6.4)
machine learning library named scikit-learn (version 19.0).

Differentiation Performance of the
Radiomics Models
The three subsets of selected features were then used as an input
to each of the three machine-learning classifiers, which generated
nine (3×3 = 9) radiomics models. We applied 5-fold cross-
validation as the criteria for each of the nine radiomics models
in the training cohort. The differentiation performance was
evaluated in the validation cohort. The area under the curve
(AUC) and accuracy (ACC) from the receiver operating
characteristic curve analysis were calculated to evaluate the
differentiation performances of the radiomics models. The
optimal thresholds of the AUCs were determined by
maximizing the sum of the sensitivity and specificity values
calculated for the differentiation of GBM from GSM.
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To compare the differentiation performances of the radiomics
models andneuroradiologists in differentiatingGBMfromGSM,we
employed the two aforementioned neuroradiologists, who were
blinded to the clinical and pathological data, to manually
differentiate the GBM from GSM according to all of the sequences
(T1WI,T2WI, andCET1WI) showingon the PictureArchiving and
Communication Systems (PACS), just as the daily radiological
diagnosis workflow before ROI segmentation. They were allowed
to see the full MRI images used in this study for the first time. The
results of inter-observer variation and concordance with final
histopathology statistics between the two neuroradiologists are
shown in Supplementary Table 3. The chi-square test was
performed to compare the proportion of predicted GBM/GSM
between the neuroradiologists and the best radiomics model. The
entire analysis process is shown in Figure 1.

Statistical Analysis
Differences in the clinical and MRI characteristics between GBM
and GSM were evaluated using the t-test and chi-square test. P-
values of less than 0.05 were considered to indicate statistical
significance. The statistical analysis and figure plots were
performed using R (version 3.0.1; http://www.R-project.org)
and SPSS (SPSS Inc.).
RESULTS

Clinical and Routine MRI Characteristics
GBM and GSM showed no difference in patient age and gender
(P=0.151; c2 = 2.758, P=0.097). The ratio of intra-tumoral
necrosis and cystic changes was 98.8% (82/83) and 95.0% (95/
100) among patients with GSM and GBM, respectively. This
difference was non-significant (Table 1). The prevalence of
peritumoral edema was 94.0% (78/83) and 83.0% (83/100)
among patients with GSM and GBM, respectively. The
difference was significant (c2 = 5.166, P=0.023).

Selection of Stable Features
We calculated intraclass correlation coefficient (ICC) to select for
the robustness of radiomic features in tumor mass and
peritumoral edema. For the tumor mass, 918 of the 1,303
(70.5%) extracted radiomic features showed high stability,
including 13 shape features, 18 first-order intensity statistics
features, 70 texture features, 84 square features, 81 square root
features, 80 logarithm features, 89 exponential features, 179 LoG
features, and 304 wavelet features. For the peritumoral edema,
815 of the 1,303 (62.5%) extracted radiomic features showed high
stability, including 13 shape features, 18 first-order intensity
statistics features, 64 texture features, 70 square features, 89
square root features, 65 logarithm features, 80 exponential
features, 162 LoG features, and 254 wavelet features.

Unsupervised clustering of these stable features was
conducted and presented as a heat map to yield two imaging
subtypes (Figure 2). However, the association between the
imaging and histology subtypes was not obvious.
August 2021 | Volume 11 | Article 699789
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Feature Selection and Radiomics Model
Construction
Based on tumor mass features in the training set ,
the selection method LASSO + classifier SVM was found to
feature the highest AUC (0.96) and ACC (0.85), followed by
those of Relief + RF (AUC = 0.94, ACC = 0.81), LASSO + RF
(AUC = 0.91, ACC = 0.84), and LASSO + Ada (AUC = 0.91,
ACC = 0.81; Tables 2–4 and Figures 3, 4). A similar result was
found using the tumor mass features in the validation set:
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the selection method LASSO + classifier SVM featured the
highest AUC (0.85) and ACC (0.77), followed by those of
Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF
(AUC = 0.82, ACC = 0.75). In both the training and validation
set, regardless of the method, tumor mass features significantly
outper formed those of the per i tumora l edema in
the differentiation of GSM from GBM (P< 0.05). The illustration
of the 5-fold cross-validated ROC curve of the LASSO + SVM
radiomics model in the training cohort and ROC curve of the
LASSO + SVM radiomics model in the validation set are shown
in Figure 5.

To avoid biases and confirm the efficacy of the radiomics
model, we compared the performance of the selection method
LASSO + classifier SVM in 90 validation cases with that of
experienced and inexperienced raters. As shown in Table 4, the
clinical performance of the LASSO + SVM radiomics model was
superior to that of the neuroradiologists in terms of sensitivity,
specificity, and accuracy.
DISCUSSION

This retrospective study developed and validated a favorable
predictive model with radiomics features extracted from tumor
mass and peritumoral edema to distinguish GSM from GBM.
Importantly, the trend of the diagnostic performance of this
machine-learning radiomics model was similar in the training
set, validation set, and cross-validation analysis. In our study,
two neuroradiologists independently rendered diagnosis of the
FIGURE 1 | A schematic figure shows the radiomic analysis process. After feature extraction, stable features are selected. Three feature selection and classification
methods are combined with favorable models selected and cross-validated in the training cohort. In an independent validation cohort, the optimal model is identified
by comparing with pathology. The performance of the optimal model is compared with that of the two neuroradiologists.
TABLE 1 | Clinical and MRI characteristics of patients with GSM and GBM.

Training cohort Validaion cohort

GSM
(n=43)

GBM
(n=50)

P
value

GSM
(n=40)

GBM
(n=50)

P
value

Age (years) 51.1 51.6 0.884† 49.8 55.2 0.044†

Sex
Female 9 23 0.011* 16 19 0.847*
Male 34 27 24 31

Localization
Supratentorial 43 47 0.296* 39 50 0.444*
Infratentorial 0 3 1 0

Necrosis
Yes 42 47 0.720* 40 48 0.501*
No 1 3 0 2

Edema
Yes 39 42 0.337* 39 41 0.047*
No 4 8 1 9
*Chi-square test, †Student’s t-test. GBM, glioblastoma; GSM, gliosarcoma; MRI,
magnetic resonance imaging.
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two kinds of tumors based on the routine MRI; their accuracy
was less than 50.0%, lower than the accuracy of the radiomics
analysis, suggesting the superiority of radiomics relative to
human analysis in distinguishing GSM from GBM.

In agreement with previous research (18, 19), our study
indicated that GSM usually showed enhancement on the solid
component with peritumoral edema on routine MRI. These
findings, however, are insufficient to inform the distinction of
GSM from GBM. Some advanced imaging modalities, such as
DWI, PWI, and MRS (7, 12, 20), have therefore been used to
better identify the characteristics of GSM. On DWI, the thicker
or more solid components of GSM show a restricted diffusion
ratio of as high as 72.7% (8/11) (7); on PWI, the tumor featured
high perfusion (7); on MRS, GSM shows a lactate peak indicating
local necrosis and hypoxia of the tumor and a higher lipid-
choline ratio than do GBM (12, 20). These indices obtained from
the advanced MR modalities were all derived from analysis of
the solid part of the tumor. However, due to the fact that GSM
and GBM usually evince necrosis and cystic changes, a
comprehensive differentiation between the two tumors should
FIGURE 2 | A heat map shows the stable radiomic features. Each column and row correspond to one patient and z-score normalized radiomic feature, respectively.
TABLE 2 | The AUC of the cross-combination methods.

AUC Ada RF SVM

TMF
LASSO 0.91 (0.81) 0.89 (0.82) 0.96 (0.85)
Relief 0.85 (0.79) 0.91 (0.84) 0.94 (0.81)
RF 0.87 (0.81) 0.84 (0.77) 0.82 (0.79)

PEF
LASSO 0.84 (0.75) 0.79 (0.71) 0.81 (0.77)
Relief 0.78 (0.76) 0.84 (0.77) 0.84 (0.78)
RF 0.81 (0.69) 0.80 (0.73) 0.76 (0.68)
The AUC of the cross-combination methods based on tumor mass and peritumoral
edema features is showed in the training set (no brackets) and the validation set
(in brackets). Ada, adaboost; AUC, area under the receiver-operating characteristic
curve; LASSO, least absolute shrinkage and selection operator; PEF, peritumoral
edema feature; RF, random forest; SVM, support vector machine; TMF, tumor
mass feature.
TABLE 3 | The ACC of the cross-combination methods.

ACC Ada RF SVM

TMF
LASSO 0.83(0.74) 0.81(0.75) 0.87(0.77)
Relief 0.77(0.70) 0.80(0.72) 0.84(0.75)
RF 0.77(0.71) 0.76(0.70) 0.71(0.65)

PEF
LASSO 0.73(0.68) 0.69(0.63) 0.71(0.67)
Relief 0.72(0.64) 0.75(0.70) 0.79(0.73)
RF 0.74(0.63) 0.71(0.68) 0.71(0.63)
The ACC of the cross-combination methods based on tumor mass and
peritumoral edema features are showed in the training set (no brackets) and the
validation set (in brackets). ACC, accuracy; ACC, accuracy; Ada, adaboost;
LASSO, least absolute shrinkage and selection operator; PEF, peritumoral
edema feature; RF, random forest; SVM, support vector machine; TMF, tumor
mass feature.
TABLE 4 | Comparison of predictive performance between radiomic model and
neuroradiologists in the validation set.

Sensitivity,
P

Specificity,
P

Accuracy,
P

Neuroradiologist with 3 years of
experiences

0.40,
<0.001*

0.44,
<0.001*

0.42,
<0.001*

Neuroradiologist with 10 years of
experiences

0.70, 0.015* 0.34,
<0.001*

0.50,
<0.001*

LASSO_SVM 0.78, — 0.76, — 0.77, —
Au
gust 2021 | V
olume 11 | Ar
*Chi-square test. LASSO, least absolute shrinkage and selection operator; SVM, support
vector machine.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qian et al. Differentiation of Gliosarcoma From Glioblastoma
FIGURE 3 | Scatterplots depict the AUC of the cross-combination methods based on the features derived from the tumor and peritumoral edema, respectively.
AUC, area under the curve.
FIGURE 4 | Scatterplots show the ACC of the cross-combination methods based on the features derived from the tumor and peritumoral edema, respectively.
ACC, accuracy.
A B

FIGURE 5 | ROC curve shows the optimal classifier for differentiating GSM from GBM. (A) The AUC of 5-fold cross-validated ROC is 0.96 in the training set. (B) The
AUC of 5-fold cross-validated ROC is 0.85 in the validation set. AUC, area under the curve; GBM, glioblastoma; GSM, gliosarcoma; ROC, receiver operating characteristic.
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simultaneously involve the solid part and non-solid components.
The peritumoral region, which usually shows as edema, is also
neglected during differentiation.

In our study, the differentiation between GSM and GBM not
only included the whole part of the lesion but also the peritumoral
edema outside of the lesion. Our investigation revealed that, based
on the peritumoral edema region, the two tumors can be
differentiated with the radiomics method of Relief + SVM (AUC,
0.78; ACC, 0.73). Showing as high signal intensity on T2WI, this
region included both vasogenic edema and the infiltration of tumor
cells (21–23). However, compared with this region, analysis of the
tumor mass itself allowed for the more efficient differentiation
between tumor types. This can be explained by the fact that there
are far more tumor cells in the region of tumor mass than in the
peritumoral region. Moreover, the whole region of the tumor mass,
including necrosis, cystic changes, and other non-enhanced
components, was analyzed for its capacity to inform
differentiation. As previous studies that employed PWI, DWI,
and MRS (7, 12), only focused on the solid part of the two kinds
of tumors, our analysis is more factual and practicable.

Radiomics is an emerging non-invasive method that extracts
high-dimensional sets of imaging features to build appropriate
models for survival prediction (24), distant metastasis prediction
(25), and molecular characteristics classification (26). However,
dimensionality is a critical challenge in radiomics analysis and
limits the potential of the radiomics model. Hence, this study
compared three feature selection methods and classification
methods for improving the stability and classification
performance of the radiomics model. After performing nine
cross-combinations comparisons, we found the LASSO
selection method and the classifier SVM to best differentiate of
GSM from GBM. The LASSO is a regularization technique used
to minimize the number of non-zero elements and make the
solution unique (27). It is therefore often used to solve the
problem of large sets of radiomics features derived from a
relatively small sample size. The SVM is a powerful
classification algorithm that can estimate the classification
probabilities and control complexity. These properties account
for its effective application in the fields of neuroimaging and
molecular biology (16, 28) and its superb pairing with the LASSO
selection method in our radiomics analysis.

Our study has several limitations. First, it may be subjective to
selective bias as a retrospective study. Second, the scanning
parameters were not uniform, requiring the preprocessing of
the data. Third, compared with the large radiomic features
dataset, the sample size was relatively small. Therefore, our
results may be caused by overfitting. Fourth, only T2WI and
axial post contrast T1WI were used in our radiomic analysis,
multi-model imaging data (such as DWI, PWI, MRS) needs to be
integrated into our model in the future, to improve its
Frontiers in Oncology | www.frontiersin.org 7
performance. Finally, being a single center study, our study is
lack of external independent validation.

In conclusion, this retrospective study presents the machine
learning-based MR radiomics model as a non-invasive tool for
preoperatively differentiating GSM from GBM with favorable
predictive accuracy and stability. Prospective studies are needed
to further validate its classification ability.
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