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ABSTRACT

Electronic health record phenotyping is the use of raw electronic health record data to assert characterizations

about patients. Researchers have been doing it since the beginning of biomedical informatics, under different

names. Phenotyping will benefit from an increasing focus on fidelity, both in the sense of increasing richness,

such as measured levels, degree or severity, timing, probability, or conceptual relationships, and in the sense of

reducing bias. Research agendas should shift from merely improving binary assignment to studying and

improving richer representations. The field is actively researching new temporal directions and abstract repre-

sentations, including deep learning. The field would benefit from research in nonlinear dynamics, in combining

mechanistic models with empirical data, including data assimilation, and in topology. The health care process

produces substantial bias, and studying that bias explicitly rather than treating it as merely another source of

noise would facilitate addressing it.

INTRODUCTION

A phenotype is a specification of an observable, potentially changing

state of an organism, as distinguished from the genotype, which is

derived from an organism’s genetic makeup. The term phenotype

can be applied to patient characteristics inferred from electronic

health record (EHR) data.1,2 Researchers have been carrying out

EHR phenotyping since the beginning of informatics, from both

structured data3 and narrative data.4 The goal is to draw conclu-

sions about a target concept based on raw EHR data, claims data,

or other clinically relevant data. Phenotype algorithms – ie, algo-

rithms that identify or characterize phenotypes – may be generated

by domain exerts and knowledge engineers, including recent re-

search in knowledge engineering,5–11 or through diverse forms of

machine learning, with recent research in active learning,12 use of

surrogate training sets,13–16 and deep learning,17 to generate novel

representations of data.

In this paper, we discuss how to improve the fidelity of pheno-

type algorithms by addressing their richness and freedom from bias.

Richness moves beyond the binary presence or absence of a

condition to timing, degree, severity, cause, and relationship to fac-

tors like behavior, etc. We discuss temporal processing specifically,

and we describe new ways to infer phenotypes that are not directly

observable (eg, physiologic rate constants). We discuss phenotype

bias inherent in the health care process and how to deconvolve the

truth from these effects.

RICHNESS

Much of the work in phenotyping today answers the binary question

of whether a condition is present or absent. For example, 2 large-

scale phenotyping efforts, the Electronic Medical Records and Ge-

nomics (eMERGE) network18 and the Observational Health Data

Sciences and Informatics (OHDSI) network,19 place a strong empha-

sis on identifying cohorts of patients to carry out association studies.

Investigators may also seek to ascertain the probability, degree, se-

verity, or level of a condition or parameter. Taking type 2 diabetes

as an example (here and in further sections), one could pursue the

probability of having the disease, the severity of the disease in terms
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of required interventions or sequelae, or the estimation of related

parameters like glucose and hemoglobin A1c (HA1c). These, in

turn, could feed more sophisticated analyses than are possible with

just binary assignment, because they convey more information. For

example, one could better assess treatment effects and disease pro-

gression and do a finer adjustment for diabetes comorbidity in other

studies.

Manual queries usually produce binary answers or stated degrees

or levels. Machine learning approaches often produce probabilities

or scores (which can be converted to binary results with a thresh-

old), although recent use of mechanistic models and data assimila-

tion has produced continuous estimates of target concepts like

HA1c.20 Even binary data points (eg, diagnosis codes) can be con-

verted to continuous or ordinal values based on aggregating over

many observations of the same patient.

Richer input streams will feed richer phenotypes. There are

many data types beyond EHR data that will be useful for phenotyp-

ing.21 Mobile computing and self-monitoring produce streams of

data that provide increased resolution. For example, depression

symptoms have been inferred from mobile phone usage,22 and mo-

bile applications are being used to capture behavioral information to

characterize treatment response in type 2 diabetes.23 Linking dispa-

rate sources, such as EHR data with registries and national statistics,

can lead to improved phenotyping.24 Phenotype algorithms can

draw from complex concepts, such as those in narrative data, and

produce similarly complex concepts. Narrative data are clearly be-

coming the basis of much phenotyping,25 as further evidenced by

eMERGE.26,27 We refer readers to the many excellent reviews on

narrative data.28–31

We recommend that phenotyping research move beyond the em-

phasis on binary phenotypes and address richer phenotypes. While

much advanced phenotyping research is occurring, such as research

using deep learning, these advanced methods are often then used to

produce traditional binary classifications.32 More basic research on

nonbinary targets is needed. For example, one area relates to the dis-

tribution of target concepts. The target concept may be not a single

value, but a distribution. While distributions are often summarized

with a mean and variance, recent work has shown that distributions

with more than 2 parameters, such as the extreme value distribution

for glucose measurement,33 may better reflect the complexity of hu-

man physiology.

TIME

Time is important, because health is not static. Fundamentally,

exploiting time involves capturing the progression of data over time

to develop a more accurate estimate of whether a condition was pre-

sent (ie, using time as an input) and reporting back when it was (ie,

using time as an output). Time is essential, for example, in OHDSI,

because phenotype definition elements are specifically related to the

time of an index event.34 In type 2 diabetes, time is essential as an in-

put to diagnose the disease, as an output at short time scales to aid

in management such as nutrition, and as an output at long time

scales to assess disease progression. The latter could be represented

as a numeric severity scale that is dependent upon metrics like

HA1c, required treatment, and complications, or it could be repre-

sented as an ordinal level of severity. Patients could then be graded

in terms of stability: how quickly their diabetes is changing over

time and what might be causing it.

Temporal concepts from related fields like physics are beginning

to see use in biomedical informatics. For example, the extent to

which patients persist in a particular physiologic state is called sta-

tionarity. Many algorithms require stationarity to work properly,

but patients are often not stationary: they become ill and, hopefully,

become healthy again. Albers et al. aggregated short sequences of

data across patients and assessed their heterogeneity and bias,35,36

and applied this and related approaches to creatinine data,37 glucose

data,38,39 and seizures in the neurological intensive care unit.40 Jung

and Shah41 assessed the consequences of stationarity in predicting

wound healing, showing that the relative performance of algorithms

can be miscalculated and that simpler algorithms may be better in

the setting of nonstationarity. Although it has rarely been employed

in a health care setting, nonstationary can be addressed by applying

a moving window to analyses, assuming there are enough data to re-

solve the window sizes, or by using advanced techniques like tempo-

rally adaptable Markov chain Monte Carlo models42 that estimate

changing parameters over time. Sometimes nonstationarity is due to

the health care process rather than physiology, and that is covered

below under “Health Care Process Bias.”

Our field has certainly embraced time – for example, time has

been used to generate phenotype algorithms and related correla-

tions43–48 and to detect phenotypic patterns49–51 and temporal

abstractions,52–57 with related research dating back to the 1980s.

We recommend that this emphasis continue and that temporal meth-

ods from other fields like nonlinear dynamics be pulled in.

ABSTRACT REPRESENTATIONS AND INFERRED
VARIABLES

Some phenotypes are directly reported in the EHR, although gener-

ally with low fidelity and mediocre, highly variable accuracy; diag-

noses recorded as billing codes serve as one example of suboptimal

performance.58 Therefore, for many phenotypes, the goal is to iden-

tify a state that is seemingly apparent (the diagnosis) but actually

known only indirectly. By triangulating to the state, such as combin-

ing billing, laboratory, medication, and narrative data, one can ar-

rive at a more reliable identification. This is the basis for most

eMERGE phenotype algorithms.27

Other times, the target concept is latent, such that it is in no way

directly measured. We include 3 examples in this section. Some

learning techniques generate abstract representations that may serve

as useful phenotypes themselves in the sense that they can be the in-

put to subsequent learning or prediction algorithms. Other techni-

ques, such as data assimilation and topology, support more

interpretable inferred variables.

Abstract representations, including deep learning
The EHR is a high-dimensional space, and there are a number of

techniques to reduce the dimensions to produce a more useful and

sometimes more understandable representation. Traditional pheno-

typing employs feature selection based on clinical knowledge, but

this is difficult to scale to many phenotypes, and it is difficult to

know if the solution is in any way optimal. Bengio and colleagues59

provide an excellent review of learning representations, including

principle component analysis, autoencoders, and manifolds. Simi-

larly, topic modeling, such as through latent Dirichlet alloca-

tion,60,61 produces latent explanatory variables that are

combinations of measured variables. Tensor factorization was used

to generate latent groups of high-order features.62,63 If the goal of

phenotyping is to provide input for a subsequent automated process,

then these abstract representations may provide superior input.
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For example, Miotto et al.32 used deep learning layers to generate

abstract representations of EHRs and found that predictions based

on them were superior to other representation techniques. Our field

is embracing technologies like deep learning, with examples like

Deep Patient,32 and we recommend that this continue.

Combining mechanistic knowledge and empirical data

through data assimilation
Data assimilation64 is a technique that combines mechanical knowl-

edge encoded in a mathematical model, eg, physiology, with empiri-

cal data to overcome the limitations of each. It has been used to

predict weather, to fly jets, to run the power grid, and to create arti-

ficial pancreases for type 1 diabetes patients.65 Not many biomedi-

cal problems have the volume and accuracy of data required for

accurate prediction from purely empirical models; instead, clinical

data are often sparse, irregularly spaced, and inaccurate. Likewise,

most biomedical mechanistic models are limited by our imperfect

understanding and, without data and error analysis machinery, are

unlikely to be quantitatively relatable to human data. Data assimila-

tion is the machinery for combining mechanistic models with data

and managing their errors and uncertainty. Data assimilation typi-

cally updates a model iteratively by making a forecast, comparing

the forecast to observations, and updating the model parameters to

improve future forecasts. The mechanistic nature of the model

exploits knowledge to effectively constrain the search space so that

far fewer data elements are needed to train the model than would

otherwise be required. And the data optimize the parameters of the

model and keep it anchored to reality.

The technique can be used to predict, smooth, and control, but

most important for increasing phenotyping fidelity is its ability to esti-

mate unmeasurable variables, represented as model parameters. Con-

sider the setting of glucose metabolism. A mechanistic model could be

used to generate estimates of interstitial space, insulin secretion rates,

hepatic insulin extraction, glomerular filtration rate, and other things

that could, in theory, be of interest but would not be measurable with-

out advanced laboratory equipment. For example, Figure 1 shows the

optimization of glucose-related parameters based on sparse, irregular

finger-stick glucose measurements and meal estimates in normal and

type 2 diabetes subjects.20 We recommend that phenotyping research-

ers consider ways of adding mechanistic knowledge to their empirical

methods, including the use of data assimilation.

Topology
Topology66 is the study of properties that are preserved under the

continuous transformation of an object – such as stretching but not

tearing – in some real or conceptual space. It is therefore robust to

normalizations, measurement distortions, and changes in units. To-

pology provides the machinery needed to draw statistical inferences

about the shape of the clusters. Features of interest must be mapped

to some space, such as illustrated in Figure 2. Topology was used to

carry out unsupervised clustering of breast cancer patients based on

genomic analysis.67 A new cancer subtype with 100% survival that

was hidden from classical clustering techniques was found. In that

study, the genomic data were mapped to a space that signified nor-

mal tissue and deviation from normal tissue. Similarly, Li et al.68

identified 3 type 2 diabetes subgroups through topological analysis.

In another example, topological properties had a direct biological

interpretation: shape was used to determine the number and rate of

recombination events in viruses, as distinct from classic evolution

through mutation.69 Topology should be applicable to clinical infor-

matics, especially in these cases:

• Where the space represents the state of a system, and that system

has a continuously varying state rather than a set of distinct

states that jump from one to another.
• Where a space can be engineered so that critical (eg, invariant) fea-

tures map to topological structures and nonessential features map

to deformable parts that are ignored in the topological analyses.
• Where adjacent interactions are more important than differences

in objects on opposite ends of the problem space.

Figure 1. Data assimilation to find latent phenotypes. Data assimilation on a

mechanistic glucose model produces estimates for a set of physiologic

parameters, including plasma insulin degradation, shown here. Starting with

the same initial value but based on 5 different patients’ data, data assimilation

evolves the parameter to a different value for each patient (P1–P5). This repre-

sents a latent phenotype.

 

A B 

C D 

Figure 2. Topology. (A) Based on an underlying, unknown space that is

shown in blue, a sample of black points are drawn. (B) We attempt to recreate

the underlying space by creating green neighborhoods of radius epsilon

around each point and joining touching neighborhoods. (C) As epsilon grows,

we see features of the underlying space recreated, such as 2 distinct groups

where one of them is a ring. (D) As epsilon grows further, all the points be-

come joined. Arithmetic topology supplies the tools needed to infer proper-

ties of the underlying space based on properties of the neighborhoods as

epsilon varies over its range.
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• Where a problem can be mapped to a space, but the dimensions

of that space cannot easily be normalized to produce a well-

defined distance metric.

We recommend that phenotyping researchers consider topologi-

cal methods for their phenotyping research.

HEALTH CARE PROCESS BIAS

The health care process places its mark on phenotyping data.1,70

Measurements are made when a patient is ill, measurements are

modified according to external goals, and a feed-forward loop is

formed in which measurement affects state and state affects mea-

surement. For example, laboratory tests show strong diurnal varia-

tion37,71 and other bias72; while this may reflect physiologic

variation, we posit that overnight measurements, which are gener-

ally of sicker patients, might also play a role. Lasko et al.45 used

time series analysis methods with unsupervised learning to address

noisy, sparse, irregular health record data, applying it to uric acid

laboratory data to distinguish clinical context. Weber and Kohane73

looked specifically at the time between laboratory tests to automati-

cally determine normal ranges in a manner that exploits more medi-

cal intelligence than merely tallying standard deviations; it also

identifies abnormal subpopulations and test overordering. In related

work, physicians were found to oversample to correct for increases

in a patient’s variance,74 but perhaps not enough.75

Many other effects arise; for example, ICD9-CM and ICD10-

CM codes, which are used for billing and reflect financial incentives,

may not reflect clinical state well.58 Such codes vary in granularity,

with some representing heterogeneous collections of diseases as “not

elsewhere classified,” and those definitions change over time as dis-

eases are added elsewhere in the hierarchy. The clinical context of

data collection can directly bias study results.76 One approach is to

measure the effect of the health care process on clinical variables

and group them by the effect,70 with the hope that the total pheno-

typing definition workload can be reduced by treating similarly af-

fected variables with similar heuristics. For example, for chronic but

not acute conditions, one can look for a longitudinal pattern of bill-

ing codes. Temporal information can help to decipher physiology

from health care process effects, such as what is shown in a study of

lagged linear correlation of EHR variables.44 More sophisticated

lagged regression models, such as vector autoregression, can be used

to correct for health care covariates.77

In our type 2 diabetes example, we must account for biased sam-

pling of glucose78 – such as during an emergency department visit

for an infection – when we attempt to assess a person’s chronic dia-

betes state, and we must realize that type 1 and 2 diabetes diagnosis

codes are often interchanged. We recognize that phenotyping

researchers are well aware of EHR bias, but we recommend that

health care process bias be addressed as an area of research in itself

and that its findings and techniques be shared, rather than merely

treating the bias as one more detail to handle in the larger phenotyp-

ing process. Put another way, the EHR is actually a measure of the

health care process, and that process must be understood well to in-

fer details about the underlying patient; treating the EHR as a direct

measure of the patient with noise misses the opportunity to correct

the bias instead of just quantifying it.

CONCLUSIONS

Phenotyping is already expanding in scope in biomedical informat-

ics, supporting richer phenotypes and addressing bias. Biomedical

informatics can draw from other fields, such as deep learning, data

assimilation, and topology, to further expand its treatment. Health

care process bias should be addressed explicitly. Combinations of

methods, such as applying temporal deep learning to address health

care process bias, may bear fruit.

CONTRIBUTORS

Both authors made substantial contributions to the conception and

design of the work, drafted the work or revised it critically for im-

portant intellectual content, had final approval of the version to be

published, and agreed to be accountable for all aspects of the work

in ensuring that questions related to the accuracy or integrity of any

part of the work are appropriately investigated and resolved.

FUNDING

This work was funded by grants from the National Institutes of Health: R01

LM006910 “Discovering and applying knowledge in clinical databases” and

U01 HG008680 “Columbia GENIE (GENomic Integration with EHR).”

COMPETING INTERESTS

None.

REFERENCES

1. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health

records. J Am Med Inform. Assoc. 2013;20:117–21.

2. Pathak J, Kho AN, Denny JC. Electronic health records–driven phenotyp-

ing: challenges, recent advances, and perspectives. J Am Med Inform

Assoc. 2013;20(e2):e206–11.

3. Warner HR. Knowledge sectors for logical processing of patient data in

the HELP system. Proc Annu Symp Comput Appl Med Care. 1978:

401–04.

4. Hripcsak G, Friedman C, Alderson PO, DuMouchel W, Johnson SB, Clay-

ton PD. Unlocking clinical data from narrative reports: a study of natural

language processing. Ann Intern Med. 1995;122:681–88.

5. Newton KM, Peissig PL, Kho AN, et al. Validation of electronic medical

record–based phenotyping algorithms: results and lessons learned from

the eMERGE network. J Am Med Inform Assoc. 2013;20(e1):e147–54.

6. Rasmussen LV, Thompson WK, Pacheco JA, et al. Design patterns for the

development of electronic health record–driven phenotype extraction

algorithms. J Biomed Inform. 2014;51:280–86.

7. Rasmussen LV, Kiefer RC, Mo H, et al. A modular architecture for elec-

tronic health record–driven phenotyping. AMIA Jt Summits Transl Sci

Proc. 2015;147–51.

8. Rea S, Pathak J, Savova G, et al. Building a robust, scalable and standards-

driven infrastructure for secondary use of EHR data: the SHARPn project.

J Biomed Inform. 2012;45:763–71.

9. Conway M, Berg RL, Carrell D, et al. Analyzing the heterogeneity and

complexity of Electronic Health Record oriented phenotyping algorithms.

AMIA Annu Symp Proc. 2011;274–83.

10. Overby CL, Pathak J, Gottesman O, et al. A collaborative approach to de-

veloping an electronic health record phenotyping algorithm for drug-

induced liver injury. J Am Med Inform Assoc. 2013;20:e243–52.

11. Morley KI, Wallace J, Denaxas SC, et al. Defining disease phenotypes us-

ing national linked electronic health records: a case study of atrial fibrilla-

tion. PLoS One. 2014;9:e110900.

12. Chen Y, Carroll RJ, McPeek Hinz ER, Shah A, Eyler AE, Denny JC, Xu

H. Applying active learning to high-throughput phenotyping algorithms

for electronic health records data. J Am Med Inform Assoc. 2013;20:

e253–59.

292 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3



13. Halpern Y, Choi Y, Horng S, Sontag D. Using anchors to estimate clini-

cal state without labeled data. AMIA Annu Symp Proc. 2014;2014:

606–15.

14. Agarwal V, Lependu P, Podchiyska T, Barber R, Boland M, Hripcsak G,

Shah N. Using narratives as a source to automatically learn phenotype

models. 1st Workshop on Data Mining for Medical Informatics: Elec-

tronic Phenotyping, Washington, DC; 2014.

15. Halpern Y, Horng S, Choi Y, Sontag D. Electronic medical record pheno-

typing using the anchor and learn framework. J Am Med Inform Assoc.

2016;23:731–40.

16. Agarwal V, Podchiyska T, Banda JM, et al. Learning statistical models of

phenotypes using noisy labeled training data. J Am Med Inform Assoc.

2016;23:1166–73.

17. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

18. Gottesman O, Kuivaniemi H, Tromp G, et al.; eMERGE Network. The

Electronic Medical Records and Genomics (eMERGE) Network: past,

present, and future. Genet Med. 2013;15(10):761–71.

19. Hripcsak G, Duke JD, Shah NH, et al. Observational Health Data Scien-

ces and Informatics (OHDSI): Opportunities for Observational Research-

ers. MEDINFO’15; August 19–23, S~ao Paulo, Brazil; 2015.

20. Albers DJ, Levine ME, Gluckman BJ, Ginsberg H, Hripcsak G, Mamykina

L. Personalized glucose forecasting for type 2 diabetics using data assimi-

lation. PLOS Comput Biol. 2017;13(4):e1005232.

21. Weber GM, Mandl KD, Kohane IS. Finding the missing link for big bio-

medical data. JAMA. 2014;311:2479–80.

22. Hung GC, Yang PC, Chang CC, Chiang JH, Chen YY. Predicting negative

emotions based on mobile phone usage patterns: an exploratory study.

JMIR Res Protoc. 2016;5(3):e160.

23. Mamykina L, Levine ME, Davidson PG, Smaldone AM, Elhadad N, Al-

bers DJ. Data-driven health management: reasoning about personally gen-

erated data in diabetes with information technologies. J Am Med Inform

Assoc. 2016;23:526–31.

24. Denaxas SC, George J, Herrett E, et al. Data resource profile: cardiovascu-

lar disease research using linked bespoke studies and electronic health

records (CALIBER). Int J Epidemiol. 2012;41:1625–38.

25. Pivovarov R, Perotte AJ, Grave E, Angiolillo J, Wiggins CH, Elhadad N.

Learning probabilistic phenotypes from heterogeneous EHR data. J

Biomed Inform. 2015;58:156–65.

26. PheKB: a Knowledgebase for Discovering Phenotypes from Electronic

Health Records. https://phekb.org. Accessed June 4, 2017.

27. Kirby JC, Speltz P, Rasmussen LV, et al. PheKB: a catalog and workflow

for creating electronic phenotype algorithms for transportability. J Am

Med Inform Assoc. 2016;23:1046–52.

28. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson

SB, Lai AM. A review of approaches to identifying patient phenotype

cohorts using electronic health records. J Am Med Inform Assoc.

2014;21:221–30.

29. Pathak J, Bailey KR, Beebe CE, et al. Normalization and standardization

of electronic health records for high-throughput phenotyping: the

SHARPn consortium. J Am Med Inform Assoc. 2013;20(e2):e341–48.

30. Liao KP, Cai T, Savova GK, et al. Development of phenotype algorithms

using electronic medical records and incorporating natural language proc-

essing. BMJ. 2015;350:h1885.

31. Yu S, Liao KP, Shaw SY, et al. Toward high-throughput phenotyping: un-

biased automated feature extraction and selection from knowledge sour-

ces. J Am Med Inform Assoc. 2015;22:993–1000.

32. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised repre-

sentation to predict the future of patients from the electronic health

records. Sci Rep. 2016;6:26094.

33. Albers D, Pivovarov R, Schmidt JM, Elhadad N, Hripcsak G. Model selec-

tion for EHR laboratory tests preserving healthcare context and underly-

ing physiology (abstract). Proc AMIA Symp. 2015;1–2.

34. Observational Health Data Sciences and Informatics (OHDSI). www.

ohdsi.org. Accessed June 4, 2017.

35. Albers DJ, Hripcsak G. Using time-delayed mutual information to dis-

cover and interpret temporal correlation structure in complex popula-

tions. Chaos. 2012;22:013111.

36. Albers DJ, Hripcsak G. Estimation of time-delayed mutual information

and bias for irregularly and sparsely sampled time-series. Chaos, Solu-

tions, Fract. 2012;45;853–60.

37. Albers DJ, Hripcsak G. A statistical dynamics approach to the study of hu-

man health data: resolving population scale diurnal variation in labora-

tory data. Phys Lett A. 2010;374:1159–64.

38. Albers DJ, Hripcsak G, Schmidt M. Population physiology: leveraging

electronic health record data to understand human endocrine dynamics.

PLoS One. 2012;7(12):e48058.

39. Albers DJ, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical phe-

notyping: using temporal analysis of clinically collected physiologic data

to stratify populations. PLoS One. 2014;9(6):e96443.

40. Claassen J, Albers D, Schmidt JM, et al. Nonconvulsive seizures in sub-

arachnoid hemorrhage link inflammation and outcome. Ann Neurol.

2014;75:771–81.

41. Jung K, Shah NH. Implications of non-stationarity on predictive modeling

using EHRs. J Biomed Inform. 2015;58:168–74.

42. Hagar Y, Albers D, Pivovarov R, Chase H, Dukic V, Elhadad N. Survival

analysis with electronic health record data: experiments with chronic kid-

ney disease. Statistical Analy Data Mining. 2014;7:385–403.

43. Warner JL, Zollanvari A, Ding Q, Zhang P, Snyder GM, Alterovitz G.

Temporal phenome analysis of a large electronic health record cohort ena-

bles identification of hospital-acquired complications. J Am Med Inform

Assoc. 2013;20:e281–87.

44. Hripcsak G, Albers DJ, Perotte A. Exploiting time in electronic health re-

cord correlations. J Am Med Inform Assoc. 2011;18 (Suppl 1): i109–15.

45. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery us-

ing unsupervised feature learning over noisy, sparse, and irregular clinical

data. PLoS One. 2013;8:e66341.

46. Hauskrecht M, Visweswaran S, Cooper G, Clermont G. Data-driven iden-

tification of unusual clinical actions in the ICU. Annual American Medical

Informatics Association Symposium, Washington, DC; 2013;580.

47. Liu Z, Hauskrecht M. Sparse linear dynamical system with its application

in multivariate clinical time series. NIPS 2013 Workshop on Machine

Learning for Clinical Data Analysis and Healthcare, December 2013;

preprint available online at https://arxiv.org/abs/1311.7071. Accessed

October 4, 2017.

48. Liu Z, Hauskrecht M. Clinical time series prediction with a hierarchical

dynamical system. The 14th Conference on Artificial Intelligence in Medi-

cine, Murcia, Spain; 2013;227–37.

49. Wang F, Lee N, Hu J, Sun J, Ebadollahi S. Towards heterogeneous tempo-

ral clinical event pattern discovery: a convolutional approach. In:

KDD’12, August 12–16, 2012, Beijing, China; 2012:453–61.

50. Batal I, Valizadegan H, Cooper GF, Hauskrecht M. A pattern mining

approach for classifying multivariate temporal data. In: Proc IEEE Int

Conf Bioinformatics Biomed. 2011;358–65.

51. Noren GN, Hopstadius J, Bate A, Star K, Edwards IR. Temporal pattern

discovery in longitudinal electronic patient records. Data Min Knowl Dis-

cov. 2010;20:361–87.

52. Shahar Y. A framework for knowledge-based temporal abstraction. Artif

Intell. 1997;90 (1–2):79–133.

53. Stacey M, McGregor C. Temporal abstraction in intelligent clinical data

analysis: a survey. Artif Intell Med. 2007;39:1–24.

54. Moskovitch R, Peek N, Shahar Y. Classification of ICU patients via tem-

poral abstraction and temporal patterns mining. Notes of the Intelligent

Data Analysis in Medicine and Pharmacology (IDAMAP 2009) Work-

shop. Verona, Italy; 2009;35–40.

55. Sohn S, Savova GK. Mayo Clinic smoking status classification system: exten-

sions and improvements. AMIA Annu Symp Proc. 2009;2009:619–23.

56. Zhou L, Hripcsak G. Temporal reasoning with medical data – a review

with emphasis on medical natural language processing. J Biomed Inform.

2007;40:183–202.

57. Hripcsak G, Elhadad N, Chen C, Zhou L, Morrison FP. Using empirical

semantic correlation to interpret temporal assertions in clinical texts. J

Am Med Inform Assoc. 2009;16:220–27.

58. Hogan WR, Wagner MM. Accuracy of data in computer-based patient

records. J Am Med Inform Assoc. 1997;4:342–55.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3 293

https://phekb.org
www.ohdsi.org
www.ohdsi.org


59. Bengio Y, Courville A, Vincent P. Representation learning: a review

and new perspectives. IEEE T Pattern Anal Mach Intell. 2013;35:

1798–828.

60. Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Machine

Learning Res. 2003;3:993–1022.

61. Pivovarov R, Perotte AJ, Grave E, Angiolillo J, Wiggins CH, Elhadad N.

Learning probabilistic phenotypes from heterogeneous EHR data. J

Biomed Inform. 2015;58:156–65.

62. Luo Y, Wang F, Szolovits P. Tensor factorization toward precision medi-

cine. Brief Bioinform. 2017;18:511–14.

63. Luo Y, Xin Y, Hochberg E, Joshi R, Uzuner O, Szolovits P. Subgraph aug-

mented non-negative tensor factorization (SANTF) for modeling clinical

narrative text. J Am Med Inform Assoc. 2015;22:1009–19.

64. Law K, Stuart A, Zygalakis K. Data Assimilation. Cham, Switzerland:

Springer; 2015.

65. Kovatchev B, Breton M, Man C, Cobelli C. In silico preclinical trials: a

proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci

Technol. 2009;3:44–55.

66. Carlsson G. Topology and data. Bull Am Mathematical Soc. 2009;46(2):

255–308.

67. Nicolau M, Levine AJ, Carlsson G. Topology based data analysis identi-

fies a subgroup of breast cancers with a unique mutational profile and ex-

cellent survival. Proc Natl Acad Sci USA. 2011;108(17):7265–70.

68. Li L, Cheng WY, Glicksberg BS, et al. Identification of type 2 diabetes sub-

groups through topological analysis of patient similarity. Sci Transl Med.

2015;7:311ra174.

69. C�amara PG, Levine AJ, Rabad�an R. Inference of ancestral recombination

graphs through topological data analysis. PLoS Comput Biol. 2016;12(8):

e1005071.

70. Hripcsak G, Albers DJ. Correlating electronic health record concepts with

healthcare process events. J Am Med Inform Assoc. 2013;20:e311–18.

71. Albers DJ, Hripcsak G. An information-theoretic approach to the phe-

nome (abstract). AMIA Summit on Translational Bioinformatics, March

15–17; San Francisco; 2009.

72. Pivovarov R, Albers DJ, Sepulveda JL, Elhadad N. Identifying and miti-

gating biases in EHR laboratory tests. J Biomed Inform. 2014;51:24–34.

73. Weber GM, Kohane IS. Extracting physician group intelligence from elec-

tronic health records to support evidence based medicine. PLoS One.

2013;8:e64933.

74. Hripcsak G, Albers DJ, Perotte A. Parameterizing time in electronic health

record studies. J Am Med Inform Assoc. 2015;22(4):794–804.

75. Lasko TA. Nonstationary Gaussian process regression for evaluating clini-

cal laboratory test sampling strategies. Proc 29th AAAI Conference on Ar-

tificial Intelligence 2015;1777–83.

76. Hripcsak G, Knirsch C, Zhou L, Wilcox A, Melton GB. Bias associated with

mining electronic health records. J Biomed Discov Collab. 2011;6:48–52.

77. Levine ME, Albers DJ, Hripcsak G. Comparing lagged linear correlation,

lagged regression, Granger causality, and vector autoregression for uncov-

ering associations in EHR data. Proc AMIA Symp. 2017;2016:779–88.

78. Albers DJ, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical phe-

notyping: using temporal analysis of clinically collected physiologic data

to stratify populations. PLoS One. 2014;9:e96443.

294 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3


