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Abstract: Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have revolutionised the management of patients with 
high-grade serous and endometrioid ovarian cancer demonstrating significant improvements in progression-free survival. Whilst the 
greatest benefit is seen with BRCA1/2 mutant cancers, it is clear that the benefit extends beyond this group. This sensitivity is thought 
to be due to homologous recombination deficiency (HRD), which is present in up to 50% of the high-grade serous cancers. Several 
different HRD assays exist, which fall into one of three main categories: homologous recombination repair (HRR)-related gene 
analysis, genomic “scars” and/or mutational signatures, and real-time HRD functional assessment. We review the emerging data on 
HRD as a predictive biomarker for PARP inhibitors and discuss the merits and disadvantages of different HRD assays. 
Keywords: ovarian cancer, PARP inhibitors, BRCA mutations, homologous recombination deficiency, maintenance therapy

Introduction
Maintenance therapy with poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors has transformed the treatment of 
the most common and lethal forms of ovarian cancer (high-grade serous and endometrioid, HGOC). The introduction of PARP 
inhibitor (PARPi) maintenance therapy has resulted in significant improvements in progression-free survival (PFS) in both 
relapsed and first-line settings.1–6 Whilst PARPi were initially only licensed for BRCA1 or BRCA2 (BRCA1/2) mutant 
cancers,7,8 it soon became apparent that the benefit extended beyond this group. The basis of this sensitivity is thought to be 
due to homologous recombination deficiency (HRD) which can be identified in up to 50% of high-grade serous ovarian cancer 
(HGSC).9,10 Most frequently, this is due to the lack of a functional copy of either BRCA1 or BRCA2. However, BRCA1/2 genes 
can be inactivated by non-mutational process such as DNA methylation, and there are other proteins involved in homologous 
recombination repair (HRR) whose loss results in an HRD phenotype, similar to that observed with BRCA1/2 loss.11

Maintenance therapy with PARPi is approved for patients with HGOC in recurrent platinum-sensitive disease 
regardless of biomarker status, and this also applies to niraparib in the first-line setting.1,4,6,12,13 Despite this broad 
approval, a common theme is apparent across most PARPi studies; maximal benefit is observed in those cancers 
characterised by a BRCA1/2 mutation, followed by HRD/BRCA1/2 wild-type cancers with minimal benefit seen in 
tumors that are negative on HRD testing.11 Reflecting this, the most recent PAPRi approval for olaparib in combination 
with bevacizumab was only granted for HRD cancers (defined by the presence of a BRCA1/2 mutation and/or a high 
genomic instability score; GIS).14,15 In this review, we discuss the pivotal studies of PARPi used in HGOC. Specifically, 
we consider the relevance of HRD in ovarian cancer from a molecular and clinical perspective.

Homologous Recombination Repair (HRR) and PARP Inhibitors
Environmental exposure and endogenous toxins lead to constant DNA damage that is repaired by complex pathways to 
ensure genomic integrity, progression through the cell cycle and error-free replication.16 DNA damage results in single- 
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strand DNA (ssDNA) and double-strand DNA (dsDNA) breaks and repair is essential for maintaining genomic integrity. 
dsDNA breaks are the most serious lesions and these are repaired mainly by homologous recombination repair (HRR). 
Complex pathways are involved in this process and BRCA1 and BRCA2 proteins play a key role in the repair process. In 
the absence of HRR (as occurs with deleterious BRCA1/2 and other HRR gene mutations), the repair of dsDNA breaks is 
reliant on other processes such as non-homologous end-joining (NHEJ) and ssDNA repair mechanisms; however, these 
mechanisms are more error-prone than HRR.17 Several of these alternative ssDNA repair pathways are modulated by 
PARP, leaving the cells sensitive to PARP inhibition.18 The selective killing of BRCA1/2 deficient cells by PARP 
inhibitors exploits the process of synthetic lethality,19,20 now used for cancer treatment. PARP proteins are trapped onto 
DNA at sites of ssDNA breaks by PARPi. When trapped PARP is encountered by the DNA replication machinery, it 
leads to stalling of the replication fork, collapse and the generation of a dsDNA break leading to genetic disarray and 
ultimately cell death, which is particularly marked in cells with HRD.21 Almost half of HGSCs exhibit defects with the 
HRR pathway, through a variety of underlying mechanism, some of which are yet unexplained.9 Most frequently, this is 
due to loss of function mutations and epigenetic modification in BRCA1/2 or another HRR genes including RAD51C/D, 
BRIP1, PALB2, ATM and Fanconi anaemia genes.9 These cancers are more reliant on error prone forms of DNA repair 
and exhibit a distinct clinical phenotype including greater response to platinum-based chemotherapy and PARPi.10,22

Testing for Homologous Recombination Deficiency (HRD)
The value of HRD status as a predictive and prognostic biomarker is becoming increasingly apparent and some 
international guidelines now recommend HRD testing in addition to BRCA1/2 testing in all patients with newly 
diagnosed high-grade epithelial ovarian cancer.23 Three main categories of HRD assays have been developed 
(Figure 1): 1) HRR pathway-related genes that identify specific causes of HRD, 2) genomic “scars” or mutational 
signatures that measure the patterns of somatic mutations that accumulate in HRD cancers irrespective of the underlying 
cause and 3) functional assays that have the potential to reflect the current HRD status. To date, the only HRD assays that 
have been validated in clinical trials are those based on next-generation sequencing of DNA from tumor tissue. The key 
component of the assay is to detect genomic “scars” and measure levels of loss of heterozygosity (LOH); additional 
measurements such as telomeric allelic imbalance (TAI) and large-scale transition (LST) are applied to one assay.11

HRR Gene Tests
BRCA1/2
Deleterious germline (inherited) BRCA1/2 mutations are present in between 13% and 15% of HGSC.9,24 Cancers that 
develop in patients with germline BRCA1/2 mutations frequently contain a somatic loss of function mutation in the 
corresponding wild-type BRCA1/2 allele resulting in defective HRR. Germline genetic testing by either direct sequen-
cing or panel testing is relatively cheap and quick. However, it will fail to identify epigenetic BRCA1/2 modifications 
and has a limited scope in identifying HRD cancers in the whole ovarian cancer population. An additional 5–7% of 
HGSC harbour somatic BRCA1/2 mutations that have arisen during tumorigenesis.9 Data from clinical trial samples 
suggest that there is biallelic inactivation in >80% of the somatic BRCA1/2 tumors, with mutations predominately clonal, 
suggesting that somatic BRCA1/2 mutations arise early in tumor development.25 Clinical outcomes with PARPi 
treatment in patients with somatic BRCA1/2 mutations are comparable to those with germline BRCA1/2 mutations 
with similar response rates and progression-free survival across multiple Phase 3 trials.2,26,27

Non BRCA1/2 HRR Genes
Germline mutations in HRR genes such as RAD51C, RAD51D, PALB2 and BRIP1 are associated with an increased 
lifetime risk of HGSC.28–30 Together with somatic aberrations in these genes and other key HRR pathway genes 
including CHK1/2, ATM, CDK12 and Fanconi anaemia pathway, these are present in approximately 30% of HGSC 
and thought to confer an HRD phenotype.31 This is supported by preclinical studies, which have established that 
mutations in these genes result in sensitivity to DNA repair inhibition.10,32,33 Clinical studies have shown that somatic 
mutations in non-BRCA1/2 HRR genes result in a PFS and overall survival advantage, similar to that seen with BRCA1/ 
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2 mutations in patients treated with platinum chemotherapy and PARPi compared to those that are BRCA1/2 and HRR 
wild-type.22,34 For example, in a retrospective analysis from Study 19 (see below), a cohort of BRCA1/2 wild-type 
patients were identified with HRR mutations (from tumor tissue). This cohort derived a similar benefit from olaparib as 
those with a BRCA1/2 mutation (hazard ratio [HR] 0.21 and HR 0.18, respectively), which was of a greater magnitude 
than those without an HRR gene mutation (HR 0.71).34 However, a major limitation is that because of the relatively 
rarity of non-BRCA1/2 HRR mutations, these studies usually group all HRR mutations together making it difficult to 
draw conclusion on the relevance of an individual mutation. Evidence for individual HRR genes are often anecdotal and 
emerging data suggests that mutations in different HRR genes, such as ATM and BRCA1/2, can be associated with 

Figure 1 Homologous recombination deficiency (HRD) and types of HRD testing.
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different sensitivities to PARPi.35 Therefore, adopting a one-size fits all approach when using individual HRR mutations 
to predict PARPi response is discouraged.

Determining the clinical significance of variants of uncertain significance (VUS) remains a challenge. VUS are 
usually rarer missense mutations with unknown consequences on the function of the gene product.36 The rate of germline 
VUS reporting varies from different laboratories and depends on testing prevalence and the ancestry of the population 
tested.36 The frequency of VUS is often elevated in underrepresented populations such as in African American and 
Asiatic groups.37,38 Somatic VUS may be more frequent and diverse than germline variants, having arisen in the context 
of an elevated mutation rate or genomic instability. Considering the difficulty of predicting the functional relevance of an 
individual mutation and the variation in the assignment of VUS, corroborating evidence from a phenotypic assay should 
ideally be required.11

HRR Gene Hypermethylation
Clinical studies provide conflicting evidence for the accuracy of HRR gene promoter methylation as a biomarker for 
predicting PARPi (or platinum) responses in HGSC.39–42 Defective methylation of cytosine residues of cytosine- 
phosphate-guanine (CpG) dinucleotides within promoter regions, results in decreased gene expression.43 Epigenetic 
silencing of BRCA1 and other HRR genes such as RAD51C are associated with high HRD scores and account for up to 
15% of HRD HGSC.44,45 Whilst some studies have reported that BRCA1/RAD51C methylation is associated with better 
prognosis39,46 other studies have described inconsistent findings and poor reliability of this as a biomarker for PARPi 
response.39,47,48 Subsequently it became clear that prior studies were affected by technical factors and that the zygosity of 
BRCA1 methylation is a key factor in determining PARPi sensitivity. For example, Kondrashova et al showed that both 
copies of BRCA1 must be methylated for PARPi response and that losing methylation of a single BRCA1 copy was 
enough to restore HRR DNA repair and lead to platinum/PARPi resistance.49 However, it remains to be confirmed if the 
same requirements for methylation zygosity are applicable to RAD51C methylated cases.11 Chemotherapy exposure has 
also been shown to result in demethylation of previously methylated BRCA1 copies, which may occur more easily than 
resistance mechanisms such as reversion mutations, described with pathogenic BRCA1/2 mutations.50–52 Caution is 
required when assigning methylation status of HRR genes and gene copy number is critical for accurate HRD 
assessment. Furthermore, epigenetic modifications are not detected using present-day next-generation sequencing, 
which limits the use of this method to identify HRD cancers.

Genomic Signatures and Scars
Copy Number Scar Assays
HRD cancers display genomic instability illustrated by abnormal copy-number profiles and thousands of somatic 
mutations. The resulting genomic “scars” serve as an indirect measure of HRD as they represent a permanent footprint 
of genomic changes induced by historical DNA repair deficiency regardless of underlying aetiology.11 To date, two 
commercial assays have been prospectively validated in ovarian cancer PARPi clinical trials: Foundation One CDx 
(Foundation Medicine) which evaluates for the percentage of genomic regions with LOH determined through tumor 
single-nucleotide polymorphism (SNP) sequencing and myChoice CDx (Myriad Genetics) which generates a GIS score 
by combining measurements of LOH, TAI, and LSTs obtained from allele-specific copy number profiles. LOH, LST, and 
TAI are highly associated with each other and indicate increasing genomic instability. Prior studies have reported that 
SNP-based copy-number variant assays reliable predict BRCA1/2 status by quantification of LST, LOH and TAI.44,53,54 

Further studies demonstrated that combining information from two or more of these assays further improved the ability to 
distinguish between HRR proficient and deficient tumors.55 Many of the pivotal clinical trials exploring PARPi in ovarian 
cancer discussed below (see also Table 1) incorporated either the myChoice CDx or Foundation Medicine LOH assay to 
determine tumor HRD. However, it should be noted that subgroup analyses based on HRD status were often performed 
as predefined exploratory endpoints which were not sufficiently powered or adjusted, preventing definitive analysis. 
Despite this limitation, these assays consistently identify a subgroup of BRCA1/2 wild-type cancers which derive a 
greater magnitude of benefit from PARPi therapy.11 There have been no direct comparisons of these assays within clinical 
trials. However, a retrospective analysis from two clinical datasets demonstrated positive agreement between MyChoice 
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GIS and %LOH of only 65–83% suggesting these assays should not be considered interchangeable in predicting PARPi 
response in clinical practice.56 Furthermore, these tests are expensive and not affordable for all healthcare systems. As 
such there is a need to develop more accessible, cheaper assays. Currently, an international academic effort is underway 
to identify more reliable, cost-effective HRD assays using samples from the PAOLA1 trial.13,57

Mutational Signatures
Mutational signatures are alternative means of assessing the impact of HRD on the genome by quantifying the type of 
mutations found and the patterns of nucleotide transitions.58 Each mutational process contains components of DNA 
damage, repair and replication and generates a characteristic mutational pattern or signature.58 In HGSC, mutational 
signatures have been associated with response to platinum and overall survival.59,60 Signature 3 is a mutational signature 
based on single base substitutions and is characterized by a large number of bigger deletions with overlapping 
microhomology at breakpoint junctions. Signature 3 has been associated with BRCA1/2 mutation and BRCA1 promoter 
methylation in ovarian, breast, pancreatic and stomach cancers and has been proposed as an HRD biomarker.11,61,62 

HRDect in another mutational signature-based assays which may provide better sensitivity and specificity. This assay 
utilises whole-genome sequencing (WGS), and an algorithm incorporates a weighted aggregate of six HRD-associated 
signatures predictive of BRCA1/2 deficiency into a single score (rearrangement signature3, base-substitution signature3, 
rearrangement signature5, HRD index, base-substitution signature8, microhomology-mediated deletions).63 This assay 
was developed using WGS data from BRCA1/2 mutant and control (BRCA1/2 wild-type) breast cancer samples and 
validated in further breast, ovarian and pancreatic cancer cohorts. HRDdetect significantly outperforms current genomic 
scar assays in predicting BRCA1/2 deficiency.63,64 However, the role of HRDdetect and other mutational signature assays 
in predicting PARPi sensitivity is unknown, and they have not been utilised in prospective clinical trials.

The major limitation of genomic scar and signature assays is that by definition they reflect prior existence of HRD and 
do not reflect current HRR status, which can be restored by a variety of mechanisms. For example, a BRCA1/2 mutation 
may have imprinted a genomic HRD scar, but upon gene reversion, the tumor may regain HRR function. Functional 
assays could overcome this limitation as they provide a dynamic evaluation of the current HRR level.

Functional Assays
Considering the limitations of scar and signature-based assays, measuring RNA, protein expression or a functional assay 
may provide a better assessment of the current HRD state. Measurement of RAD51 foci formation is one such functional 
assay. RAD51, a DNA recombinase, is a downstream HR protein that enables high-fidelity dsDNA repair by enabling 
DNA strand invasion into the sister chromatid, supported by the BRCA1/PALB2/BRCA2 complex. Preclinically, reduced 
DNA damaged induced nuclear RAD51 foci has been associated with BRCA1/2 mutations in addition to response to 
PARPi in both ovarian and breast cancer models and in small numbers of patient samples.65,66 Although measuring 
reduced RAD51 foci as a surrogate for HRD holds promise, translating a real-time RAD51 foci assay into the clinic 
remains challenging and several hurdles need to be overcome before it is ready for clinical use. This includes determining 
the optimal source of tissue, mode of evaluation of RAD51 foci and standardisation of definition of RAD51-positive 
cells.67 Furthermore, this approach will not identify defects in the HR pathway downstream of RAD51 and the RAD51 
signal is normally elicited by exogenous DNA damage, further reducing the clinical feasibility of implementing this 
method as standard of care.11

Currently, there is a lack of evidence to support the clinical validity of functional assays in predicting PARPi 
response, however these assays hold potential for determining real-time HRD status and should be incorporated into 
prospective clinical trials as a priority.

HRD Nomenclature
It is noteworthy that the HRD tests that are currently being used in the clinic or that have been evaluated within published 
randomised clinical trials measure a genotype (deleterious gene mutation, methylation and/or genomic scar assay) that 
correlates with an HRD phenotype and deficient HRR, but they do not measure HRR directly. For tumors with positive 
GIS or LOH scores, the term “HRD” is applied universally. However, there is disagreement as to how to label those 
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tumors which test negative for HRD. The terms “HR proficient (HRP)”, “HRD negative” and “HRD test negative” have 
all been coined.68 Using current assays, we believe the term HRP is best avoided as it implies the tumor can overcome 
dsDNA breaks, meaning PARPi will not work. It also suggests a categorical HRR deficiency or proficiency, based on a 
test which we know to be imperfect. There are several examples of observed PARPi response, albeit to a smaller 
magnitude, in HRD test-negative patient subgroups,4,6,11,12 suggesting that these tests fail to reliable identify all patients 
with defective HRR. Therefore, we would suggest the preferred term applied to those that test negative for HRD on 
current assays is either HRD negative or HRD test negative.

HRD as a Predictive Biomarker for PARPi Response
PARP Inhibitor Maintenance in Recurrent Ovarian Cancer
The first randomised Phase 2 trial (Study 19) PARPi maintenance trial, Study 19, randomised 265 patients to receive 
olaparib or placebo until disease progression or unacceptable toxicity. Patients must have had either a complete response 
(CR) or partial response (PR) to prior platinum chemotherapy. BRCA1/2 mutation status was not required for trial 
inclusion but was determined retrospectively.69 Overall, median progression-free survival (PFS) was increased from 4.8 
to 8.4 months (HR 0.35 95% CI 0.25–0.49; p<0.001).69 Subsequent analysis by BRCA1/2 status revealed a greater 
benefit in the BRCA1/2 mutant group (HR 0.18; 95% CI 0.10–0.31), although a significant benefit was still observed in 
the BRCA1/2 wild-type group (HR 0.54; 95% CI 0.34–0.85).3 SOLO2 the confirmatory randomised phase 3 trial, 
enrolled patients with germline BRCA1/2 mutant HGOC, following a response to platinum-based chemotherapy to 
receive olaparib or placebo. There was a significant improvement in PFS with olaparib (19.1 versus 5.5 months, HR: 
0.30; 95% CI 0.22–0.41, Table 1).5 A similar benefit for maintenance PARPi in platinum-sensitive, relapsed BRCA1/2 
mutated HGOC has been demonstrated with both niraparib (NOVA trial) and rucaparib (ARIEL 3 trial, Table 1).4,6

Both the NOVA and ARIEL3 trials also included germline BRCA1/2 wild-type patients and a benefit was observed 
for all patients compared to placebo, regardless of BRCA1/2 status (Table 1); NOVA (BRCA1/2 wild-type 9.3 versus 3.9 
months HR: 0.45; 95% CI 0.34–0.61) and ARIEL3 (intention to treat population 10.8 versus 5.4 months HR: 0.36 95% 
CI 0.30–0.45).4,6 Exploratory analyses were performed in patients who were grouped according to HRD status using 
either the myChoice CDx (NOVA) or Foundation One CDx (ARIEL3) HRD assays.4,6 In both studies, a PFS benefit was 
observed in all subgroups, regardless of BRCA1/2 or HRD status, but there was an incremental reduction in benefit from 
BRCA1/2 mutated to HRD/BRCA1/2 wild-type to HRD test negative (Table 1).4,6 However, neither HRD assay was 
reliably able to recognise a subgroup of patients who had no benefit. The false-negative rate in these trials may be due to 
the fact that patients were highly selected for platinum sensitivity, which is a strong surrogate for HRD. Based on these 
data, olaparib, niraparib and rucaparib are now all licensed as maintenance treatment in recurrent HGOC that have 
responded to platinum-based therapy, regardless of BRCA1/2 status.8,15,70–73 These PARPi have now been adopted as 
standard of care maintenance therapy in recurrent HGOC. Although a significant improvement in PFS with PARPi 
maintenance therapy has been demonstrated in patients with recurrent platinum-sensitive disease, this has not consis-
tently translated into an improvement in overall survival (OS). The improvement in OS seen with olaparib in patients 
with a BRCA1/2 mutant patients within the SOLO2 trial (median OS 51.7 months with olaparib and 38.8 months with 
placebo (HR 0.74, 95% CI 0.54–1.00) did not achieve statistical significance (p=0.054).74 In the NOVA trial with 
niraparib there was a numerically superior median OS of 45.9 months niraparib versus 43.2 months with placebo in the 
gBRCA1/2 cohort, but the HR was 0.93 (95% CI 0.63–1.36). In the non-gBRCA1/2 cohort the median OS was 38.5 
months versus 39.1 months with placebo, and the HR was 1.10 (95% CI 0.83–1.46). However, interpretation of the 
results is difficult as the analysis was confounded by a high rate of crossover and missing follow-up data.75 Cross-over 
may an important factor to explain why significant benefits in PFS, or PFS2 are not translated into survival benefits, but 
other factors, such as the development of platinum resistance after PARPi may also be responsible. A worse PFS 
following platinum rechallenge has been seen patients who received olaparib in the SOLO2 trial.76 There are concerns 
about drug resistance following PARPi used as monotherapy in place of chemotherapy. In the ARIEL 4 trial, patients 
with BRCA1/2 mutant relapsed ovarian cancer were randomised to receive rucaparib or standard chemotherapy, with the 
chemotherapy choice determined by platinum-free interval.77 Overall, there was an increase in PFS with rucaparib (7.4 
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Table 1 Pivotal PARP Inhibitor Trials

Trial Name Drug Treatment Setting Study Group Treatment Arms HRD Test Subgroup Analysis HR (95% CI) PFS in Months

SOLO1 

(NCT01844986)

Olaparib Frontline maintenance 

after CR/PR to platinum- 

based chemotherapy

Stage III or IV high-grade EOC 

with BRCA mutation

Arm 1: Olaparib 300 mg 

BD 

Arm 2: Placebo

Germline or somatic 

BRCA sequencing (Myriad 

or BGI)

ITT (gBRCA mut) 0.33 (0.23–0.41) 56.0 versus 13.8

PRIMA 

(NCT02655016)

Niraparib Frontline maintenance 

after CR/PR to platinum- 

based chemotherapy

Stage III or IV high-grade EOC Arm 1: Niraparib 200/300 

mg OD 

Arm 2: Placebo

1.Myriad myChoice CDx 

(HRD GIS ≥42) 

2. somatic BRCA 

mutations

ITT (all patients) 

HRD (somatic BRCA mut) 

HRD (high GIS, sBRCA 

mut) 

HRD (high GIS,sBRCA wt) 

HRD negative (low GIS)

0.62 (0.5–0.76) 

0.4 (0.27–0.62) 

0.43 (0.31–0.59) 

0.5 (0.31–0.83) 

0.68 (0.49–0.94)

13.8 versus 8.2 

22.1 versus 10.9 

21.9 versus 10.4 

19.6 versus 8.2 

8.1 versus 5.4

PAOLA1 

(NCT02477644)

Olaparib 

and 

bevacizumab

Frontline maintenance 

after CR/PR to platinum- 

based chemotherapy plus 

bevacizumab

Stage III or IV high-grade EOC Arm 1: Olaparib 300 mg 

BD + bevacizumab 15mg/ 

kg q 3 weeks 

Arm 2: Placebo + 

bevacizumab 15mg/kg q 3 

weeks

Myriad myChoice CDx 

(HRD GIS ≥42)

ITT (all patients) 

HRD (somatic BRCA mut) 

HRD (high GIS or sBRCA 

mut) 

HRD (high GIS and sBRCA 

wt) 

HRD -ve (low GIS and 

sBRCA wt) 

HRD -ve (low GIS/ 

unknown)

0.59 (0.49–0.72) 

0.31 (0.2–0.47) 

0.33 (0.25–0.45) 

0.43 (0.28–0.66) 

0.71 (0.58–0.88) 

0.92 (0.72–1.17)

22.1 versus 16.6 

37.2 versus 21.7 

37.2 versus 17.7 

28.1 versus 16.6 

18.9 versus 16 

16.9 versus 16

ATHENA- 

MONO 

(NCT03522246)

Rucaparib Frontline maintenance 

CR/PR to platinum-based 

chemotherapy

Stage III–IV high-grade EOC Arm 1: Rucaparib 600mg 

BD 

Arm 2: Placebo

FoundationOne CDx 

testing for tumor BRCA 

mutation and LOH (LOH 

high > 16%)

ITT (all patients) 

HRD (BRCA mut) 

HRD (high LOH or BRCA 

mut) 

HRD (high LOH and 

BRCA wt) 

HRD -ve (low LOH and 

BRCA wt)

0.52 (0.40–0.68) 

0.40 (0.21–0.75) 

0.47 (0.31–0.72) 

0.58 (0.33–1.01) 

0.65 (0.45–0.95)

20.2 versus 9.2 

NR versus 14.7 

28.7 versus 11.3 

20.3 versus 9.1 

12.1 versus 9.1

(Continued)
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Table 1 (Continued). 

Trial Name Drug Treatment Setting Study Group Treatment Arms HRD Test Subgroup Analysis HR (95% CI) PFS in Months

VELIA 

(NCT0247058)

Veliparib Frontline induction with 

platinum-based 

chemotherapy and 

continued as maintenance

Stage III or IV high-grade serous 

EOC undergoing PCS or ICS

Arm 1: Chemotherapy 

+placebo, followed by 

placebo maintenance 

Arm 2: Chemotherapy + 

Veliparib, followed by 

placebo maintenance 

Arm 3: Chemotherapy + 

Veliparib 150mg, followed 

by Veliparib maintenance 

400 mg BD

Myriad myChoice CDx 

(HRD GIS ≥33)

ITT (all patients) 

HRD (somatic BRCA mut) 

HRD (high GIS or sBRCA 

mut) 

HRD -ve (BRCA wt) 

HRD -ve (low GIS and 

sBRCA wt)

0.68 (0.56–0.83) 

0.44 (0.28–0.68) 

0.57 (0.43–0.76) 

0.8 (0.64–1.00) 

0.81 (0.6–1.09)

23.5 versus 17.3 

34.7 versus 22 

31.9 versus 20.5 

NA 

NA

ARIEL3 

(NCT01968213)

Rucaparib Maintenance for 

recurrent platinum- 

sensitive disease

Recurrent high-grade EOC Arm 1: Rucaparib 600mg 

BD 

Arm 2: Placebo

Foundation Medicine 

T5 NGS assay 

(genomic LOH high 

>16%)

ITT (all patients) 

HRD (g/sBRCA mut) 

HRD (g/sBRCA mut or 

high LOH) 

HRD (high LOH and 

BRCA wt) 

HRD -ve (low LOH and 

BRCA wt)

0.37 (0.3–0.45) 

0.23 (0.16–0.34) 

0.32 (0.24–0.42) 

0.44 (0.29–0.66) 

0.58 (0.4–0.8)

10.8 versus 5.4 

16.6 versus 5.4 

13.6 versus 5.4 

9.7 versus 5.4 

6.7 versus 5.4

NOVA 

(NCT01847274)

Niraparib Maintenance for 

recurrent platinum- 

sensitive disease

Recurrent high-grade EOC Arm 1: Niraparib 300mg 

OD 

Arm 2: Placebo

Myriad myChoice CDx 

(HRD GIS ≥42)

HRD (gBRCAmut) 

HRD (high GIS and 

gBRCAwt) 

HRD -ve (gBRCAwt)

0.27 (0.17–0.41) 

0.38 (0.24–0.59) 

0.45 (0.34–0.61)

21 versus 5.5 

12.9 versus 3.8 

9.3 versus 3.9

SOLO2 

(NCT01874353)

Olaparib Maintenance for 

recurrent platinum- 

sensitive disease

Rurrent high-grade EOC in 

patients with BRCA mutation 

and at least 2 previous lines of 

chemotherapy

Arm 1: Olaparib 300 mg 

BD 

Arm 2: Placebo

Germline BRCA 

mutations (Myriad 

genetics)

ITT (gBRCA mutation) 0.33 (0.24–0.44) 19.1 versus 5.5

Study19 

(NCT00753545)

Olaparib Maintenance for 

recurrent platinum- 

sensitive disease

Recurrent high-grade EOC in 

patients who had at least 2 

previous lines of chemotherapy

Arm 1: Olaparib 400 mg 

BD 

Arm 2: Placebo

Somatic BRCA mut HRD (sBRCA mut) 

HRD -ve (sBRCAwt)

0.18 (0.1–0.31) 

0.54 (0.34–0.85)

11.2 versus 4.3 

7.4 versus 5.5

Abbreviations: PFS, progression-free survival; ITT, intention to treat; HRD, homologous recombination deficient; gBRCA, germline BRCA1/2; sBRCA, somatic BRCA1/2; wt, wild-type; mut, mutant; EOC, epithelial ovarian cancer; PCS, 
primary cytoreductive surgery; ICS, interval cytoreductive surgery; GIS, genomic instability; LOH, loss of heterozygosity; NR, not reached.
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months in the rucaparib group versus 5.7 months in the chemotherapy group (HR 0.64 [95% CI 0.49–0.84].77 At a 
planned interim analysis, a detrimental effect in terms of OS was observed for rucaparib compared to the chemotherapy- 
containing control arm (19.6 months and 27.1 months, respectively, HR 1.550, 95% CI: 1.085,-2.214).78

PARP Inhibitors in First-Line Maintenance Therapy
The majority of patients with recurrent HGOC will ultimately progress and die from their cancer, despite the notable 
improvements with PARPi maintenance therapy. First-line therapy is the best opportunity for cure and recent studies have 
investigated whether the early introduction of PARP inhibitors following cytoreductive surgery and platinum-based che-
motherapy results in a greater benefit than observed in the recurrent setting. Early efforts focused on BRCA1/2 mutant 
HGOCs. In the SOLO1 trial, patients with newly diagnosed FIGO stage 3 or 4 HGOC and a BRCA1/2 mutation who had 
responded to platinum-based chemotherapy were randomised to receive olaparib or placebo.1 Maintenance treatment with 
olaparib led to an exceptional improvement in outcome with a 70% reduction in the risk of disease progression or death 
compared to placebo (60 vs 27% HR 0.30, 95% CI 0.23–0.41) with a median PFS of 56.0 months with olaparib versus 13.8 
months on placebo (HR 0.33, 95% CI 0.25–0.48), and 48% of olaparib treated patients free from progression at five years, 
compared to 21% on placebo,1,79 leading to FDA (2018) and EMA (2019) approval in this setting.8,15 The PAOLA-1, PRIMA 
and VELIA and ATHENA randomised phase 3 trials subsequently investigated the value of maintenance PARPi in BRCA1/2 
wild-type patients, in addition to BRCA1/2 mutation populations (Table 1).2,12,13,80 As with SOLO1, the presence of a 
BRCA1/2 mutation reliably predicted a benefit to PARPi with a similar degree of gain to that seen in the relapsed setting (HR 
range 0.30–0.44) although the duration of benefit observed was longer.2,12,13 Each of these trials explored the role of HRD as a 
predictive biomarker to determine PARPi response, with HRD stratification in the PRIMA and ATHENA-MONO trials. A 
consistent pattern was observed; the largest benefit was seen in the BRCA1/2 cohort, followed by the HRD-positive cohort, 
with minimal or no benefit observed in the HRD-negative subgroup (Table 1).2,12,13,80 For example, in the PRIMA study 
which randomised between niraparib with placebo with patients stratified by HRD-score (myChoice CDx) BRCA1/2 wild- 
type/HRD patients benefited from niraparib with a median PFS of 19.6 months versus 8.2 months (HR; 0.5, 95% CI 0.31– 
0.83). The trial was not powered to detect benefit in the HRD-negative subgroup although exploratory analyses indicate some 
benefit, albeit of a lesser magnitude (HR 0.68; 95% CI 0.49–0.94).12 In the PAOLA1 study, olaparib (or placebo) was added to 
maintenance therapy with the anti-angiogenic drug, bevacizumab. A benefit from olaparib was observed in the BRCA1/2 
mutant (PFS 37.2 months versus 21.7 months with placebo, HR 0.31; 95% CI, 0.20–0.47) and BRCA1/2 wild-type/HRD 
tumors (PFS 28.1 vs 16.6 months, HR 0.43; 95% CI 0.28–0.66) but not in the HRD-negative tumors (16.0 to 16.9 months, HR 
0.92; 95% CI 0.72–1.17).13 Based on these results the FDA and EMA approved olaparib and bevacizumab maintenance 
therapy for HRD HGOC and niraparib maintenance therapy for all HGOCs following first-line platinum-based 
chemotherapy.15,70,81,82 A similar pattern of benefit was seen in the ATHENA-MONO trial, and in the LOH low group 
(using FoundationOne CDx assay for HRD) the HR was 0.65 (95% CI 0.45–0.95). However, rucaparib has not yet been 
licensed for first-line use.80 VELIA was a three-arm trial, the PARPi veliparib was added concurrently with chemotherapy in 
two arms, continuing as maintenance in one arm, and the third arm received placebo throughout both phases.2 There was no 
benefit with concurrent veliparib use only and as observed within the other studies, the greatest benefit from maintenance 
therapy was observed within the BRCA1/2 mutant population. In the BRCA1/2 wild-type tumors a smaller benefit was 
observed from the addition of veliparib given with chemotherapy and as maintenance therapy in the HRD-positive (HR 0.80; 
95% CI 0.64–0.997) and HRD-negative (HR; 0.81; 95% CI 0.6–1.09) groups. Comparisons between trials are difficult, 
particularly as the VELIA trial used an unvalidated HRD cut-off score compared to the other two first-line studies.2 To date, 
veliparib has not been submitted for licensing for the treatment of ovarian cancer.

These studies demonstrate that in the first-line setting, maintenance PARPi following chemotherapy leads to an 
unprecedented increase in PFS, especially within the BRCA1/2 mutant population. Overall survival data are immature, 
but it is anticipated that the significant PFS gains will translate into an overall survival benefit and even increased rates of 
cure. This benefit extends to the BRCA1/2 wild-type/HRD patients, although to a lesser degree and highlights the 
importance of using discriminating HRD assays. The role of PARPi for HRD-negative patients in the first-line setting is 
less established with differing results obtained between PRIMA and ATHENA-MONO, and PAOLA1/VELIA studies.

OncoTargets and Therapy 2022:15                                                                                                 https://doi.org/10.2147/OTT.S272199                                                                                                                                                                                                                       

DovePress                                                                                                                       
1113

Dovepress                                                                                                                                                            Miller et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


HRD as a Prognostic Biomarker
It has long been recognised that BRCA1/2 mutant cancer are associated with better prognosis than BRCA1/2 wild-type 
cancers.83,84 This extends to HRD, even in the absence of PARPi use.85–87 For example, in the placebo arms of the PRIMA 
trial, the median PFS was 10.9, 8.2, and 5.4 months, respectively, for the BRCA1/2 mutant, HRD/(BRCA1/2 wild-type) and 
HRD-negative cohorts.12 In large clinical datasets, using whole-genome data, HRD was significantly associated with longer 
OS, an effect that persists even after exclusion of BRCA1/2 patients.86

Conclusions
One of the key challenges with HRD testing is to decide on a “gold-standard”. There are advantages and disadvantages 
with the current genomic, functional, clinical and molecular tests. The genomic scar HRD tests validated to date, have 
value in predicting the magnitude of benefit from PARPi and can be used to direct treatment selection. However, their use 
is limited by a failure to consistently predict a group of patients who do not benefit (particularly in the platinum-sensitive 
recurrent setting), and they fail to address the complex and dynamic nature of the HRD phenotype. As such, there is a 
need to develop better biomarkers to identify current HR status and this may require composite tests in order to maximise 
the potential for PARPi in patients with HGOCs.
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