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Background. This study is aimed at investigating natriuretic peptide B (NPPB) coexpression genes and their pathways involved in
heart failure (HF) among patients both with and without type 2 diabetes mellitus (T2DM). Methods. The microarray dataset
GSE26887, containing 19 postischemic HF patients’ peripheral blood samples (7 with T2DM and 12 without T2DM), was
examined to detect the genes coexpressed with NPPB using the corr.test function in the R packet. Furthermore, using online
analytical tools, we determined the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene
Ontology (GO) annotation, and protein-protein interaction (PPI) network of the coexpression genes. The modules and hub
genes of the PPI network were then identified using the Cytoscape software. Results. In patients with T2DM, a total of 41
biological processes (BP), 20 cellular components (CC), 13 molecular functions (MF), and 41 pathways were identified.
Furthermore, a total of 61 BPs, 16 CCs, 13 MFs, and 22 pathways in patients without T2DM were identified. In both groups of
patients, 17 BPs, 10 CCs, 6 MFs, and 13 pathways were enriched. We also identified 173 intersectional coexpression genes (63
positively, 106 negatively, and 4 differently coexpressed in patients with and without T2DM, respectively) in both types of
patients, which were enriched in 16 BPs, 8 CCs, 3 MFs, and 8 KEGG pathways. Moreover, the PPI network (containing 237
edges and 170 nodes) with the top module significantly enriched in 4 BPs (tricarboxylic acid metabolic process, citrate metabolic
process, tricarboxylic acid cycle, and aerobic respiration) and 3 pathways (citrate cycle, malaria parasite metabolic pathway, and
AGE-RAGE signaling pathway in diabetic complications) was constructed. DECR1, BGN, TIMP1, VCAN, and CTCF are the top
hub genes. Conclusions. Our findings may elucidate the functions and roles of the NPPB gene in patients with postischemic HF
and facilitate HF management.

1. Introduction

Heart failure (HF) is a challenge for numerous cardiovascular
specialists, as it affects both the health and quality of life of a
tremendous number of patients. It is estimated that 26 mil-
lion people worldwide suffer from HF, according to data
from a prior survey [1]. Moreover, annual costs to treat and
manage HF ranges from International Dollars (Int$)
2,496.00 to Int$ 84,434.00 per patient [2]. However, it is esti-
mated that the in-hospital mortality ranges from 4% to 30%

and that the all-cause 1-year mortality rates among patients
with acute HF and patients with chronic HF were 23.6%
and 6.4%, respectively [3]. The etiology of heart failure
involves coronary artery disease, rheumatic heart disease,
cardiomyopathies, hyperthyroidism, and so on. Among
these diseases, ischemic heart failure is common, especially
when caused by ST-segment elevation myocardial infarction
[4]. Although the numbers of chest-pain centers and cardiac
care units (CCUs) have been increasing and thus more
patients have received timely and effective interventions,
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postischemic HF remains a challenge that cannot be
neglected any further.

Type 2 diabetes mellitus (T2DM), which is an endocrine
disease that mainly leads to vascular and nerve damage, is
regarded as an equal-risk syndrome of coronary heart disease
and accompanies patients for the rest of their lives [5]. It is
reported that T2DM not only promotes the development of
HF but also increases the risk of cardiovascular disease
(CVD) 2- to 4-fold [6, 7]. It is estimated that more than
400 million persons are affected by T2DM worldwide, cost-
ing $1.3 trillion annually [8]. In addition, the coexistence of
HF and T2DM is common, and in populations ranging from
33 years to 84 years, the prevalence of HF in people with
T2DMwas 12% [9]. Moreover, T2DM and HF mutually pro-
mote the development of each other, and it is more compli-
cated to treat HF patients with T2DM [10].

Currently, the diagnosis of HF is mainly based on clinical
manifestations. Fortunately, serum BNP (encoded by the
NPPB gene) and NT-pro-BNP levels have greatly contributed
to the proper diagnosis of HF [11]. BNP is mainly secreted by
atrial myocytes and thus reflects the heart load. BNP can
represent powerful biological effects, such as natriuresis,
vasodilation, myocardial apoptosis inhibition, and modula-
tion of immune and inflammatory responses of cardiac
injury [12–14]. Some prior studies suggest that BNP can be
used as a biomarker for prognosis in patients with HF, and
it also participates in both occurrence and development of
T2DM and ischemic cardiomyopathy [15, 16]. What’s more,
in diabetic patients, BNP can be used for screening the
absence of left ventricular dysfunction [17]. Therefore, BNP
is associated with HF as well as T2DM. However, results
from early researches show us that serum BNP levels are
higher in HF patients with diabetes than in HF patients

without diabetes, while some others report the opposite
result [18, 19]. It is not yet clear whether there are some
shared and specific mechanisms of the NPPB gene in HF
patients with and without T2DM.

In recent years, microarray sequencing technology has
rapidly developed and has significantly assisted basic and
clinical medicine. The Gene Expression Omnibus (GEO)
database is a huge repository that stores a series of high-
throughput microarray and next-generation sequence func-
tional genomic datasets and is free for global researchers to
use for mining purposes [20]. In this study, we aimed to fur-
ther understand the function of the NPPB gene in HF
patients and better inform HF management by detecting
the NPPB coexpression genes and pathways enriched in
patients with postischemic HF either with or without T2DM.

2. Methods

2.1. Affymetrix Microarray Data. The microarray dataset
GSE26887 was retrieved from the GEO database. This dataset
contained 24 samples from 19 patients with postischemic
heart failure (7 with T2DM and 12 without T2DM) and 5
from control nonfailing hearts [21]. We recruited patients
with postischemic heart failure either with T2DM (DHF
group, n = 7) or without T2DM (nDHF group, n = 12) for
analysis. The extracted data were normalized before further
analysis in order to ensure the comparability of samples by
the limma package that is available in the R platform [22]
(Figure 1).

2.2. Identification of NPPB Coexpression Genes. A screening
of coexpression genes for NPPB from the samples was
performed by the corr.test function in R (version 3.6.1).
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Figure 1: Normalization of gene expression. The orange box represents the expression of genes, and the black line in the box represents the
median. The x-axis represents the sample name, and the y-axis represents the expression level.
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Screening criteria were as follows: P < 0:05 and ∣Pearson
correlation coefficient ∣ ≥0:4. The online analytical tool
Draw Venn Diagram (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was then used to determine the intersec-
tional coexpression genes of both groups.

2.3. GO and KEGG Pathway Enrichment Analyses. The
online database DAVID (version 6.8) [23] was used for GO
and KEGG enrichment analyses [24, 25]. A P value of
<0.05 was set as significant. The ggplot2 package was used
for the visualization of the results in R (version 3.6.1).

2.4. Integration of the PPI Network. The STRING (version
10.5) database was used for evaluating the interactions
among the coexpression genes, and a combined interaction
score of >0.4 was set as significant [26]. In addition, the top
10 hub genes were identified using Cytoscape plugin cyto-
Hubba (version 0.1) with the degree ratio ranking method.
Furthermore, the MCODE and ClueGO apps in Cytoscape
were used to identify the modules, namely the GO annota-
tion and KEGG pathway enrichment analyses, respectively,
of the PPI network [27].

3. Results

3.1. Identification of NPPB Coexpression Genes. A total of 577
negatively coexpressed genes and 457 positively coexpressed
genes in the DHF group were identified, along with 666 neg-
atively coexpressed genes and 422 positively coexpressed
genes in the nDHF group. Figure 2 portrays 106 negatively
and 63 positively coexpressed genes in both patient types,
whereby 173 intersectional coexpression genes were screened
out. Interestingly, of these intersectional coexpression genes,
we found 3 genes (CENPBD1P1, KHDRBS3, and PHOX2B)
that were positively coexpressed with NPPB in patients with
T2DM, but negatively coexpressed in patients without
T2DM, and 1 gene (NQO1) that was negatively coexpressed
with NPPB in patients with T2DM, but positively coex-
pressed in patients without T2DM.

3.2. Functional GO and KEGG Pathway Enrichment
Analyses. GO analyses revealed 41 BPs, 20 CCs, and 13
MFs in the DHF group, and 61 BPs, 16 CCs, and 13 MFs in
the nDHF group (details in Tables S1 and S2). Due to the
excessive number of enrichment analyses, the top seven
BPs, CCs, and MFs were selected for visualization with P <
0:05 (Figures 3(a) and 3(b)). Furthermore, there were 10
BPs (fatty acid beta-oxidation, oxidation-reduction process,
metabolic process, mitochondrial respiratory chain complex
I assembly, glyoxylate metabolic process, ubiquinone
biosynthetic process, positive regulation of cell growth,
tricarboxylic acid cycle, cell adhesion, and aerobic
respiration), 8 CCs (mitochondrial inner membrane,
extracellular space, mitochondrion, extracellular matrix,
myelin sheath, extracellular exosome, Z disc, and
mitochondrial matrix), and 3 MFs (growth factor activity,
protein binding, and electron carrier activity) enriched in
both patient groups. There were 41 identified pathways in
patients with T2DM (Figure 4(a)) and 22 in patients

without T2DM (Figure 4(b)) (details in Tables S1 and S2).
Moreover, common pathways are shown in Table 1.

The analyses further identified 16 BPs, 8 CCs, and 3 MFs
that were enriched by intersectional coexpression genes in
both patient groups (Figure 3(c)), and these genes mainly
clustered in the following 8 pathways: the citrate cycle
(TCA cycle), carbon metabolism, biosynthesis of antibiotics,
malaria, glyoxylate metabolism, dicarboxylate metabolism,
cardiac muscle contraction, and African trypanosomiasis
(Figure 4(c)) (details in Table S3).

3.3. PPI Network Construction and Hub Gene Identification.
As Figure 5 shows, the interactions among intersectional
coexpression genes were displayed by a PPI network with
273 edges and 170 nodes. This finding was saved in TSV for-
mat and then imported into Cytoscape for visualization.
With a cutoff criterion of a degree that is >5 and a K − core
> 5, only one module with 4 BPs (tricarboxylic acid meta-
bolic process, citrate metabolic process, tricarboxylic acid
cycle, and aerobic respiration) and 3 pathways (citrate cycle,
malaria parasite metabolic pathway, and AGE-RAGE signal-
ing pathway in diabetic complications) significantly enriched
was identified. With the degree ratio ranking method, the top
10 hub genes of this PPI network were also identified (CS,
DECR1, ACO2, BGN, TIMP1, CTGF, VCAN, SERPINE1,
SDHC, and CCL2). With the same cutoff criterion, a PPI net-
work that consists of 953 nodes and 4,946 edges of NPPB
coexpression genes in the DHF group, and a PPI network
of 1,009 nodes and 4,245 edges in the nDHF group were also
constructed. The top 10 hub genes of the former were CYCS,
FN1, CS, DECR1, ACO2, ATP5A1, NDUFAB1, EGF, ATP5H,
and ATP5C1, while the top 10 hub genes of the latter were CS,
DECR1, BGN, TIMP1, ACO2, CTGF, VCAN, SERPINE1,
CCL2, and SDHC (Figures 6(a) and 6(b), respectively). The
visualization of these two PPI networks and their modules
were concluded in Supplementary Materials (Figures S1–S4).

3.4. Verification of Hub Genes. Another dataset, GSE5406,
containing 210 left ventricular myocardium samples (86 with
idiopathic dilated cardiomyopathy, 108 with ischemic car-
diomyopathy, and 18 unused donor hearts) was downloaded
from the GEO database to verify the hub genes. We selected
the heart failure with advanced ischemic cardiomyopathy
samples (n = 108) for NPPB coexpression gene analysis with
the same method as described in Methods. The correlation
values of theNPPB coexpression gene in the GSE5406 dataset
and in the GSE26887 dataset are shown in Table 2. Except
for CCL2, other hub genes are coexpressed to NPPB with
P < 0:05 and ∣Pearson correlation coefficient ∣ >0:2. Both the
positive coexpressed relationship and negative coexpressed
relationship correspond.

4. Discussion

Although living and medical standards have undergone
remarkable progress, heart failure remains a worldwide chal-
lenge, which costs countries a tremendous amount of money
and affects the quality of life of patients at different degrees.
Ischemic cardiomyopathy is one of the most common causes
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Figure 2: Venn diagram of coexpression genes. (a) Venn diagram of genes positively coexpressed with NPPB. (b) Venn diagram of genes
negatively coexpressed with NPPB. (c) Venn diagram of NPPB coexpression genes. DHF: postischemic patients with T2DM. nDHF:
postischemic patients without T2DM.
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of heart failure; moreover, a portion of these patients also suf-
fer from other diseases, such as type 2 diabetes mellitus,
which complicates the treatment interventions for heart fail-
ure. Angiotensin-converting enzyme inhibitors, beta-
blockers, diuretics, positive inotropic drugs, and cardiac
resynchronization therapy (CRT) have been widely used in
postischemic heart failure therapy, but quite a few patients
inevitably go into end-stage heart failure for a variety of rea-

sons [8]. Thus, they experience repeated hospitalizations, a
severe decline in quality of life, complications in other
organs, and even death. Serum BNP, encoded by NPPB, is
secreted primarily by atria muscle cells, and BNP level
increases when the heart is overloaded. It has been applied
in clinics as a diagnostic and prognostic biomarker of HF
for a long time, which is a great achievement [28]. Besides,
BNP is also reportedly associated with the development of
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Figure 3: GO annotation of NPPB coexpression genes in postischemic heart failure patients: (a) in postischemic patients with T2DM and (b)
in postischemic patients without T2DM. (c) Based on the intersectional coexpression genes of the two types of patients.
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T2DM, and in turn, diabetes affected its expression in
patients with HF. Some early researches reveal that the serum
BNP level in HF patients without diabetes is higher than that
in HF patients with diabetes, while other researches report
the opposite result. Up to now, the mechanism is still
completely clear. In this study, NPPB coexpression genes
and their GO and KEGG pathways were identified in postis-
chemic HF with T2DM and without T2DM, respectively, in
order to further understand the potential mechanism of
NPPB in postischemic HF patients with and without T2DM.

Heart failure is the result of the contradiction between the
supply and demand of oxygen, blood, and energy, and the tri-
carboxylic acid cycle (TCA cycle) and mitochondrial respira-
tory transport chain are important links in glycolysis. As
screened by the Venn diagram, a total of 63 positively coex-
pressed genes were identified. Carnitine palmitoyl transferase
1 (CPT1) encodes an important enzyme in the body, involved
in fatty acid metabolism. As a subtype of CPT1, CPT1C can
promote cell survival under metabolic stress conditions
[29]. Furthermore, HtrA serine peptidase 1 (HTRA1)
encodes a protein that is suggested to be a cell growth regula-
tor, and its loss impairs smooth muscle cell maturation [30].
In a previous research, hypermethylation of the SOCS3 gene
could be an underlying mechanism of intimal hyperplasia
and restenosis. SOCS3 can also regulate cavin-1 function by
enhancing its stability and consequently maintaining expres-
sion levels of caveolin-1 and cell surface caveolae. Moreover,
proteins encoded by cavin-1 are also believed to modify lipid
metabolism and insulin-regulated gene expression [31, 32].
In terms of vascular function, CCN1 not only functions as
an inhibitory regulator of SMC muscle contractility through
inhibiting actomyosin interactions but also regulates TNF-α
induced vascular endothelial cell apoptosis [33]. The

PDLIM7 gene product is involved in actin filament-
associated complex assembly, which is essential for the trans-
mission of ret/ptc2 mitogenic signaling. In addition, its
expression is positively correlated to typical smooth muscle
cell markers in atherosclerosis plaques, and PDLIM7 silenc-
ing in vitro led to downregulation of smooth muscle cell
(SMC) markers, disruption of actin cytoskeleton, decreased
cell spreading, and increased proliferation [34]. The data
from Thomsen et al. suggested that in patients with ischemic
heart disease, increased plasmaMGP levels are indicative of a
progressing calcification process [35]. Moreover, protease-
activated receptor 2 (PAR2) in microvascular endothelial
cells is indispensable for vascular stability, and its deficiency
attenuates atherosclerosis [36, 37]. The abovementioned
genes mainly play a role in energy supply and metabolism,
cell proliferation and apoptosis, and vessel function and
development, and they have been reportedly associated with
blood and oxygen supply and cardiac remodeling in patients
with HF.

On the other hand, a Venn diagram allowed identifying
106 genes negatively coexpressed with NPPB. Coq8p and
human COQ8A are related to CoQ biosynthesis, and acute
inhibition of Coq8p is sufficient to cause CoQ deficiency
and respiratory dysfunction [38]. NDUFS2 and NDUFA9
encode compound I subunits in the mitochondrial mem-
brane respiratory chain, while SDHC encodes compound II
subunits. Also, DECR1 encodes an enzyme, referred to as
NADPH, which provides H+ ions for NAD+ and then con-
verts to NADH to participate in the respiratory chain. In
addition to the respiratory chain, the TCA cycle also features
several genes that are mainly active in its processes [39].
PDHB encodes a pyruvate dehydrogenase compound, which
catalyzes the conversion of pyruvate into acetyl-CoA and
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Figure 4: KEGG pathways of NPPB coexpression genes in postischemic heart failure patients: (a) in postischemic patients with T2DM and
(b) in postischemic patients without T2DM. (c) Based on the intersectional coexpression genes of the two types of patients.
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Figure 5: Continued.
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carbon dioxide for the TCA cycle. Citrate synthase, which is
encoded by CS, catalyzes citric acid synthesis from oxaloace-
tic acid and acetyl-CoA; furthermore, citric acid synthesis by
oxaloacetic acid and acetyl-CoA is catalyzed by cisaconitum,

which is encoded by ACO2. ALAS1 encodes mitochondrial
enzymes that catalyze rate-limiting steps in the heme (iron
protoporphyrin) biosynthesis pathway. In the context of cell
proliferation and vascular function, Yan reported that in
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Figure 5: Protein-protein interaction (PPI) network of intersectional NPPB coexpression genes. (a) PPI network based on the intersectional
NPPB coexpression genes of two types of patients. The red ball represents positive coexpression, while the green ball represents negative
coexpression. The thickness of the line represents the strength of the correlation. (b) Module identified with a cutoff criterion of MCODE
score > 5. (c) Biological process and KEGG pathways enriched in the module. (d) Top 10 hub genes. The color depth represents the
ranking of hub genes. The sequence of colors is red-orange-yellow from high ranking to low ranking.
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senescent vascular SMCs, PDE1A and PDE1C mRNA levels
are significantly upregulated, and cellular senescent makers
were reduced when PDE1 was inhibited [40]. Data from
Begum et al. suggest that therapies specifically aimed at inhi-
biting the PDE3A isoform may lead to the amelioration of
excessive vascular SMC growth and decrease the atheroscle-
rosis process [41]. Thus, the abovementioned genes are
mainly involved in the regulation of the tricarboxylic acid
cycle and respiratory transport chain in terms of energy sup-
ply and maintain the normal function of vascular SMC.
Finally, CACNB2, KCNAB2, and TIMM22 encode subunits
that participate in dysfunctional voltage-gated channels that
may be associated with arrhythmia events rather than aggra-
vated heart failure [42, 43]. Thus, these are factors that are
associated with the development of heart failure.

In addition, Table 1 shows us the shared pathway that
occurs in both postischemic HF with or without T2DM.
Most of the pathways are related to metabolism, such as the
following: the citrate cycle (TCA cycle); butanoate, carbon,
pyruvate, and 2-oxocarboxylic acid metabolism; and valine,
leucine, isoleucine, and fatty acid degradation. Figure 5
shows that it is similar to the pathways of the intersectional
coexpression genes and the genes of the module that are
enriched within the PPI network. Furthermore, the HIF-1
signaling pathway is a hot topic that researchers focus on.
In M1 macrophages, HIF-1α activates the expression of the

iNOS gene, increasing nitric oxide synthesis, which expands
the blood vessels. As such, in hypoxia macrophages, the
HIF-1α-pyruvate dehydrogenase kinase (PDK1) axis can
induce active glycolysis [44]. In addition, an investigation
from Chen et al. [45] suggests that HIF-1α and FoxO3a show
synergistic effects of cardiomyocyte apoptosis under hypoxia,
as well as elevated glucose levels. Another pathway, the TGF-
β signaling pathway, is also a popular hot topic. TGF-β is a
multifunctional cytokine, which can regulate the macrophage
phenotype, promote Treg cell activation, and reduce adhesion
molecule synthesis by endothelial cells that lend a powerful
anti-inflammatory effect [46]. Data from the study by Kim
et al. show us that the TGF-β signaling pathway plays an
important role in the regulation of cardiac fibrosis [47].
Lastly, as a classical pathway, the calcium signaling pathway
was also found in both the DHF and nDHF patient groups.
Ca2+ participates in excitation-contraction coupling, regulat-
ing myocardial contraction and diastole. In addition, it also
takes part in the regulation of the cardiomyocyte action
potential, which plays an essential role in managing heart
rhythm [48, 49]. Thus, regulation disorders of the calcium
signaling pathway will lead to heart rate disorders, myocar-
dial contraction, and adrenal dysfunction. The abovemen-
tioned pathways affect patients with postischemic heart
failure in terms of energy supply, metabolism, inflammation,
and myocardial fibrosis.

Compared to HF patients without T2DM, the NPPB
coexpression genes were enriched in several other pathways,
such as arrhythmogenic right ventricular cardiomyopathy
(ARVC), dilated cardiomyopathy, hypertrophic cardiomy-
opathy (HCM), cardiac muscle contraction, alcoholism, and
the PI3K-Akt signaling pathway. The former three are differ-
ent types of cardiomyopathy, and they mainly affect the mor-
phology and function of ventricular muscle cells, resulting in
the deterioration of cardiac function [50]. Alcohol abuse may
double the risk of chronic HF compared to those who never
had alcohol abuse [51], and the BNP level may increase
markedly [34]. In context to the PI3K-Akt signaling pathway,
it has been revealed to be involved in the expression level of
BNP and in the cardioprotection afforded by BNP infusion
[52, 53]. Thus, these pathways and the genes they enriched
would affect the level of BNP and the development of HF.
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Figure 6: Top 10 hub genes of the PPI network. (a) Top 10 hub genes of the PPI network based on the NPPB coexpression genes in the DHF
group. (b) Top 10 hub genes of the PPI network based on the NPPB coexpression genes in the nDHF group. The sequence of colors is red-
orange-yellow from high ranking degree to low ranking degree.

Table 2: Verification of the hub genes.

Hub gene
Cor P Cor P Cor P
GSE5406 GSE26887 DHF GSE26887 nDHF

DECR1 -0.48 <0.01 -0.83 0.02 -0.74 <0.01
BGN 0.51 <0.01 0.87 0.01 0.59 0.04

TIMP1 0.44 <0.01 0.89 <0.01 0.76 <0.01
VCAN 0.50 <0.01 0.81 0.03 0.61 0.04

CTCF 0.50 <0.01 0.95 <0.01 0.79 <0.01
CS -0.35 <0.01 -0.84 0.02 -0.60 0.04

ACO2 -0.34 <0.01 -0.86 0.01 -0.62 0.03

SERPINE1 0.38 <0.01 0.89 <0.01 0.68 0.01

SDHC -0.21 0.03 -0.92 <0.01 -0.64 0.03

CCL2 0.08 0.39 0.85 0.02 0.69 0.01

Cor: Pearson correlation coefficient.
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Although we use the microarray dataset to help us iden-
tify the NPPB coexpression genes and pathways they
enriched in postischemic HF patients, either in patients with
T2DM or without T2DM, the occurrence and development
of HF is complex, and a variety of aspects should be taken
in consideration in the management of HF. We hope our
findings could give a hand to a deeper understanding of the
role and function of the NPPB gene in HF patients and pro-
vide aspects for the research and management of HF in the
future.

5. Conclusions

The NPPB coexpression genes were used to identify the
potential molecular mechanisms of the NPPB gene in DHF
and nDHF patients in this study. Our findings may help elu-
cidate the roles of NPPB and its coexpression genes in postis-
chemic heart failure and serve as a clinical reference for
future HF management. However, further research is
required to validate the role of these coexpression genes
and pathways.
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