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Abstract

Burying beetles Nicrophorus orbicollis exhibit facultative biparental care of young. To reproduce, a

male–female burying beetle pair bury and prepare a small vertebrate carcass as food for its altricial

young. During a breeding bout, male and female behavior changes synchronously at appropriate

times and is coordinated to provide effective care for offspring. Although the ecological and

evolutionary factors that shape this remarkable reproductive plasticity are well characterized, the

neuromodulation of parental behavior is poorly understood. Juvenile hormone levels rise dramat-

ically at the time beetle parents accept and feed larvae, remain highly elevated during the stages of

most active care and fall abruptly when care is terminated. However, hormonal fluctuations alone

cannot account for this elaborate control of reproduction. The biogenic amines octopamine (OA),

dopamine (DA), and serotonin (5-HT) mediate a diversity of insect reproductive and social behav-

iors. In this study, we measured whole brain monoamine levels in individual male and female bury-

ing beetles and compared OA, DA, and 5-HT profiles between breeding (parental) and nonbreed-

ing, unmated beetles. Remarkably, after 24 h of care, when parental feeding rates begin to peak,

DA brain levels increase in breeding beetles when compared to nonbreeding controls. In contrast,

brain OA and 5-HT levels did not change significantly. These results provide the first evidence for a

potential role of DA in the modulation of burying beetle parental behavior.
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Extended biparental care is a reproductive strategy that is rarely ex-

hibited by insects or by most vertebrate species. Among vertebrates,

biparental care is ubiquitous in birds but unusual in mammals, with

primates and carnivores, for example, serving as notable exceptions

(Clutton-Brock 1991). In insects, utilization of rich and ephemeral

reproductive resources like dung or carrion is thought to have pro-

moted selection for unique behavioral and physiological adaptations

leading to subsociality and biparental behavior (Tallamy and Wood

1986). Given the complex underpinnings of caregiving, the study of

parental care can provide critical insights into the interplay among

ecological, social, and neuroendocrine factors in the regulation of

behavior. The pervasive roles of hormones in the control of repro-

ductive social behavior have been explored extensively in vertebrates

(Ketterson and Nolan 1992; Buntin 1996; Adkins-Regan 2005). By

comparison, many aspects of reproductive behavior and physiology,

including the hormonal basis of parental care, remain poorly under-

stood in insects (Trumbo 2002; Riddiford 2012). Remarkably, the

neuroendocrine system of insects bears fundamental similarities to

the hypothalamo–hypophyseal axis of vertebrates (Scharrer 1987;

Hartenstein 2006; Wirmer et al. 2012), further opening a unique av-

enue for comparative studies of the physiology of reproduction.

The burying beetle, Nicrophorus orbicollis, provides an experi-

mentally accessible model for studies of insect parental care (Trumbo

1996, 2012). The natural history of burying beetles is well described

(Pukowski 1933) and the ecological and evolutionary processes that

have contributed to molding their intricate reproductive behaviors are
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well understood (Trumbo 1996, 2012; Eggert and M€uller 1997; Scott

1998). During reproduction, a male–female beetle pair will cooperate

in burying and preparing a small vertebrate carcass as food for its al-

tricial larvae. Upon discovery, the carcass is quickly concealed under-

ground, fur or feathers removed and the carrion mass rolled into a

ball. Within 48h following carcass discovery, the female lays eggs in

the soil nearby and 3–4 days later larvae hatch and make their way to

the carrion ball. Larvae beg and are fed, typically by both parents,

regurgitated predigested food. In N. orbicollis, the offspring are en-

tirely dependent on parental regurgitations for survival soon after

hatching (Trumbo 1992). During a breeding bout, male and female

behavior has to change at appropriate times, from passive to aggres-

sive responses to conspecific intruders, and from infanticidal to paren-

tal, a few hours before larvae hatch and arrive on the carcass (M€uller

and Eggert 1990; Scott 1990; Oldekop et al. 2007). Male and female

burying beetles also need to coordinate their reproductive tasks during

larval care, the most demanding stage of the reproductive cycle

(Fetherston et al. 1990). Parental activities center on provisioning and

protecting the larvae, maintaining the brood chamber, as well as pro-

cessing and treating the carcass with antimicrobial secretions to delay

its decomposition (Fetherston et al. 1990; Robertson 1993; Scott

1998; Arce et al. 2012).

While many of the costs and benefits associated with reproduct-

ive cooperation and conflict have been thoroughly explored, both in

the field and in the laboratory (Scott 1998), we have still an incom-

plete understanding of the physiological factors, neural circuits, or

molecular pathways involved in promoting the highly plastic repro-

ductive and parental behaviors of burying beetles. In previous work,

we found that in N. orbicollis, hemolymph titers of juvenile hor-

mone (JH) rise dramatically at the onset of parental behavior, are

very high during the most active stages of larval care when rates of

parental feedings peak, and decline rapidly before care is terminated

(Panaitof et al. 2004). Importantly, in both males and females, JH

levels are responsive to social cues, such as the presence or absence

of a mate and brood age or size (Panaitof et al. 2004; Scott and

Panaitof 2004). Despite the remarkable correlation between changes

in circulating JH levels and the well-timed behavioral shifts that

male and female burying beetles undergo during reproduction, the

precise neurophysiological mechanisms responsible for the initiation

and maintenance of care remain elusive. Direct treatment with flu-

vastatin, a robust inhibitor of JH biosynthesis (Debernard et al.

1994), while significantly lowering JH levels (Panaitof and Scott

2006), does not seem to interfere with either the acceptance of lar-

vae or initiation of parental feedings (Panaitof 2006). Thus, it is un-

clear whether JH has a direct or an indirect role in the transition to

parental behavior and initiation of care. This raises the likely

possibility that JH may act in conjunction with other unidentified

neuromodulatory pathways. Lending support to this idea, several

studies in the eusocial Hymenoptera have shown that JH interacts

with the biogenic amines octopamine (OA) and dopamine (DA) in

the regulation of reproductive maturation, behavioral development,

and age-related task specialization in honey bee workers (Schulz

et al. 2002a, 2002b; Harano et al. 2008; Sasaki et al. 2012a).

Moreover, treatment with the JH analog, methoprene, causes eleva-

tion of OA and DA levels in the honey bee brain (Schulz et al.

2002a, 2002b; Harano et al. 2008; Sasaki et al. 2012a).

Based on their wide involvement in a variety of invertebrate re-

productive and social behaviors (Roeder 1999, 2005), combined

with evidence that JH alters monoaminergic function (Harano et al.

2008; Sasaki et al. 2012a), we hypothesized that the biogenic amines

OA, an analog of norepinephrine in vertebrates (Roeder 2005), DA

and serotonin (5-hydroxytryptamine; 5-HT), represent the most

likely candidates for contributing to the neuromodulatory control of

parental behavior in the burying beetles. Since the discovery of their

synthesis and release by the central nervous system of insects, the di-

verse functions of biogenic amines and their receptor subtypes have

received considerable interest (Roeder 1999, 2005; Farooqui 2012),

with functional studies revealing that the invertebrate octopaminer-

gic system shares fundamental properties with the adrenergic system

of vertebrates.

Variation in OA levels has been implicated in the modulation of

behavioral state in a number of insects. In the highly eusocial honey

bees Apis mellifera, rising OA levels are linked to behavioral

maturation and age-related division of labor, illustrated by the

transition from nursing (brood care) to foraging activities (Wagener-

Hulme et al. 1999; Schulz and Robinson 2001; Schulz et al. 2002a,

2002b). Brain OA levels of foragers are higher than those of nurses

(Wagener-Hulme et al. 1999; Schulz et al. 2002a, 2002b) and OA

treatment results in precocious expression of foraging behavior in

honey bee workers (Schulz and Robinson, 2001; Schulz et al. 2002a,

2002b). Octopamine also facilitates nestmate recognition (Robinson

et al. 1999) and has been similarly implicated in the discrimination

of foraging-related stimuli and olfactory learning (Hammer and

Menzel 1998; Barron et al. 2002; Scheiner et al. 2002). Recent

studies of the octopaminergic system in the burying beetle,

Nicrophorus vespilloides, show differential gene expression of

several OA receptor subtypes across reproductive and social con-

texts thus linking OA signaling to behavioral flexibility during

breeding (Cunningham et al. 2014).

Biogenic amines have also been implicated in the modulation of

aggression in a number of invertebrate models (Kravitz and Huber

2003; Stevenson and Schildberger 2013; Alekseyenko and Kravitz

2014; Bubak et al. 2014a). The roles of OA, the invertebrate “fight

or flight” neurotransmitter, and 5-HT have been extensively

explored, especially in the social context-dependent initiation and

escalation of fighting behavior and establishment of dominance. In

crustaceans, 5-HT was repeatedly linked to aggression motivation,

presumably by altering the behavioral threshold for retreat (Huber

et al. 1997; Kravitz 1988, 2000). In territorial nonsocial insects like

the cricket, Gryllus bimaculatus, OA acts to restore fighting readi-

ness following defeat (Hofmann and Stevenson 2000) and 5-HT has

been functionally linked to the modulation of fighting behavior and

expression of behavioral features associated with dominant social

status (Dyakonova and Krushinsky 2013). The genetic tractability

of the fruit fly, Drosophila melanogaster, has further enabled re-

markable dissection of neural circuits and neuromodulatory path-

ways involving both the serotonergic and dopaminergic system in

the initiation and ability to escalate aggressive behavior (Zwarts

et al. 2012; Alekseyenko et al. 2013; Alekseyenko et al. 2014).

Novel model systems of invertebrate aggression, such as the stalk-

eyed fly, Teleopsis dalmanni, have also provided important

additional insights into the role of 5-HT in mediating conflict escal-

ation, contest behavioral outcome and establishment of a winner–

loser relationship (Bubak et al. 2014a, 2014b).

Given the robust links established between OA, 5-HT, and DA

and the modulation of behavioral state, we sought to similarly

explore whether the levels of the three monoamines change signifi-

cantly as a result of the transition from nonparental to parental state

in the burying beetles. Burying beetles, in addition to exhibiting

behavioral changes toward newly hatched and developing larvae,

including acceptance (decrease in aggression) and provisioning of

larvae, also show changes in aggression toward adult conspecifics as
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a means of protecting the offspring (M€uller and Eggert 1990; Scott

1990; Robertson 1993). Thus, it seems likely that changes in central

monoaminergic function associated with changes in aggression and/

or motivation to perform parental tasks would be involved in modu-

lating the response of burying beetles to social cues from competi-

tors or intruders, mates, and young during breeding.

In the current study, we test a potential role for central mono-

amines in modulating burying beetle parental behavior by measur-

ing whole brain levels of OA, 5-HT, and DA in male and female

burying beetles prebreeding and during the breeding cycle, 24 h after

the initiation of care. We predicted that the behavioral transitions

associated with the acceptance and feeding of larvae for 24 h would

be accompanied by significant changes in the brain levels of OA,

5-HT, and DA in breeding animals but not in nonbreeding controls.

We interpret these findings in the context of exploring a neuromo-

dulatory mechanism that may mediate the behavioral shifts associ-

ated with the onset of care and organization of parental activities in

the burying beetles during breeding.

Materials and Methods

Animals and breeding experiments
Experimental animals were laboratory-reared offspring of wild-

caught beetles trapped in Buffalo County, NE, in May–June 2014.

Beetles were housed in plastic boxes lined with damp paper towels,

with up to 10 same-sex individuals, and maintained at 20 �C on a

14L:10D cycle. They were fed a diet of beef or chicken liver ad lib-

itum. All animals were previously unmated, sexually mature, rang-

ing in age from 21 to 30 days at the time of the experiments.

To initiate breeding, at “lights-off” each male and female was ran-

domly assigned to a breeding pair (N¼12 pairs) and provided with

a 20–25 g previously frozen mouse carcass (RodentPro.com,

Inglefield, IN) in a box (19�14�10 cm3) three-fourth filled with

peat moss. Each box was monitored for the presence of eggs and the

time of oviposition was recorded for each beetle pair. Eggs were

monitored daily until larvae hatched (typically 3–4 days later). The

timing of larvae arrival on the carcass was recorded for each pair.

The behavior of each beetle pair was then monitored until the first

parental feeding of larvae was observed. We chose to evaluate cen-

tral monoamine levels following 24 hours of care, given that paren-

tal feeding activities are highest at this stage (Fetherston et al. 1994).

Twenty-four hours following the initiation of parental feedings,

each beetle pair and brood chamber were briefly observed to ensure

that larvae had been fed and developed to second instar stage.

Brain dissection and HPLC analysis
Twenty-four hours after the onset of parental care, the male and fe-

male of each pair were sacrificed and the brains were dissected in

ice-cold insect saline (137 mM NaCl, 2.7 mM KCl, 10 mM

Na2HPO4, 1.8 mM KH2PO4, pH¼7.4) and transferred to an acet-

ate buffer (pH¼5.0; 60mL) containing the internal standard a-me-

thyl DA (1 x 10-7 M). Individual male and female brains of

nonbreeding (control) beetles from the same colony were similarly

obtained in the same experimental session. The brains were lightly

disrupted by sonication, frozen, then thawed, and centrifuged

(17,000� g, 4 �C). The monoamines were separated using a

NOVAPAK C18 column (Waters Associates, Inc.) and detected

using an LC 4 potentiostat and a glassy carbon electrode

(Bioanalytical Systems) set at 0.5 nA/V with an applied potential of

þ0.997 V versus an Ag/AgCl reference electrode (Bubak et al.

2013). The pellet was solubilized in 0.4 M NaOH and analyzed for

protein using the Bradford method (Bradford 1976). Monoamine

concentrations were determined using a CSW32 data program

(DataApex, Prague, Czech Republic) set in internal standard mode

using peak height values relative to standards. The resulting concen-

trations were divided by mg protein in the sample yielding pg amine/

mg protein and corrected for injection versus preparation volume.

Data analysis
Data were log-transformed for statistical analysis and means and

standard errors back transformed for graphical representation. To

test for differences in monoamine levels between nonbreeding (con-

trol) and breeding (parental) burying beetles, a linear mixed model

(SYSTAT 13, San Jose, CA) was used, with breeding status (2 levels)

and beetle sex (2 levels) as fixed effects and sampling session as ran-

dom effect, and applying a critical alpha level of 0.05. Post hoc pair-

wise comparisons were performed in R version 3.2.1 (R Core Team

2015) using the lsmeans function and the Tukey method for P value

adjustment.

Results

Whole brain levels of each monoamine measured in male and female

burying beetles in either nonbreeding status or during the breeding

cycle, after 24 h of parental care, are shown in Figure 1A (OA), b (5-

HT), and c (DA). OA levels (mean 6 SE; pg/lg protein) measured in

the brains of breeding animals (48.5 6 1.0) after 24 h of care were

not significantly different from levels obtained from nonbreeding

pairs (41.7 6 1.1; Figure 1A). Levels of 5-HT were also similar in

breeding and nonbreeding beetles (25.6 6 1.0 and 23.0 6 1.0 pg/mg

protein, respectively; Figure 1B). However, dopamine levels

increased from 14.9 6 1.0 pg/mg protein in nonbreeding beetles to

18.1 6 1.0 pg/mg protein in breeding pairs (F1,43¼4.74 , P¼0.03;

Figure 1C). There was no statistically significant effect (P>0.05) of

beetle sex on DA levels. Similarly, there was no statistically signifi-

cant effect of either breeding status or beetle sex, as well no signifi-

cant interaction of factors (P>0.05) for either OA or 5-HT levels.

Central OA levels (pg/mg protein; Figure 2A) measured in both

breeding males (46.7 6 1.1) and breeding females (50.2 6 1.1) were

comparable to those of nonbreeding males (43.5 6 1.1) and females

(39.9 6 1.1). Brain 5-HT levels (pg/mg protein; Figure 2B) also

showed little change between breeding animals (23.9 6 1.1 for males

and 27.4 6 1.1 for females) and nonbreeding animals (24.2 6 1.1 for

males and 21.8 6 1.1 for females). Post hoc pairwise comparisons

similarly revealed no statistically significant differences (P>0.05)

among brain DA levels between male and female burying beetles in

either nonbreeding or breeding status (Figure 2C). Brain DA levels

(mean 6 SE; pg/lg protein) of breeding males (17.1 6 1.1) and fe-

males (19.2 6 1.1) were similar to those of nonbreeding males

(15.6 6 1.1) and females (14.2 6 1.1). Of note, we have nevertheless

identified a trend toward higher DA levels in breeding (parental) fe-

males compared to nonbreeding (control) females (P¼0.09).

Discussion

In the facultatively biparental burying beetles, N. orbicollis, repro-

ductive behavior depends on a complex neuroendocrine control that

appears to have enabled a vertebrate-like plasticity in the modula-

tion of the onset, intensity and termination of care (Panaitof et al.

2004; Scott and Panaitof 2004). Because this elaborate pattern of
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care depends on coordinated changes in the reproductive behavior

and physiology of male and female beetle parents, a thorough inves-

tigation of the neuromodulatory and endocrine factors involved is

critical for discerning the precise neural and physiological mechan-

isms enabling such flexible reproductive behaviors. Despite the

well-established hormonal correlates of parental behavior, it is not

clear how changes in reproductive hormones like JH may be respon-

sible, directly or indirectly, for the organization of reproductive

events or for the changes in behavioral state associated with the

onset of parental care during a breeding bout. Here, we have begun

to explore a potential role for the biogenic amines in the neuromo-

dulation of biparental behavior in the burying beetles.

A

B

C

Figure 1. Levels (pg/lg protein) of octopamine (OA), serotonin (5-HT), and

dopamine (DA) measured in the brains of burying beetles in either nonbreed-

ing status (N¼24) or after 24 h of parental care (N¼24). Bars represent

mean 6 SE of OA (A), 5-HT (B), and DA (C) brain levels. A linear mixed model

was used to test for differences in brain monoamine levels. Of the three

monoamines, only DA showed a significant increase in the brains of parental

beetles compared to nonbreeding controls, as denoted by the * (P¼0.03).

A

B

C

Figure 2. Levels (pg/lg protein) of octopamine (OA), serotonin (5-HT), and

dopamine (DA) measured in the brains of male and female burying beetles in

either nonbreeding status or after 24 h of parental care (N¼12/beetle sex).

Bars represent mean 6 SE of OA (A), 5-HT (B), and DA (C) brain levels.

Post hoc pairwise comparisons identified a trend toward higher DA levels in

breeding (parental) females compared to nonbreeding (control) females

(P¼0.09).
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The significant elevation of DA, but not OA or 5-HT levels, in

the brains of parental beetles, compared to unmated controls, is

intriguing, especially in the context of exploring a neural mechanism

for the transition from the nonbreeding to breeding (parental) be-

havioral state. During a reproductive bout, the initiation of care, in

particular, appears to be a finely tuned behavior: parents will accept

and feed larvae that arrive on the carcass when their own are ex-

pected to hatch but will cannibalize larvae that hatch either too early

or too late (M€uller and Eggert 1990; Oldekop et al. 2007). The

neurophysiological mechanism underlying this striking change in re-

sponsiveness to larvae is not yet understood but it seems likely that

it may involve neuromodulation of a behavioral response threshold

and subsequent decrease in aggression towards newly hatched

offspring.

Our findings thus seem to suggest that DA, but not OA or 5-HT,

may be potentially implicated in the onset of care and/or modulation

of parental activities in breeding burying beetles. A related question

is whether an increase in DA levels may serve to drive the behavioral

switch to the parental state, presumably by altering a behavior acti-

vation threshold necessary for the initiation of care, or could con-

ceivably arise in response to stimuli from young, facilitating the

modulation of parental care activities. Intriguingly, the trend for

higher brain DA in parental (breeding) females compared to non-

breeding females, and the lack of a similar trend in breeding males,

may similarly reflect a role for DA in mediating the fine adjustments

in the intensity of parental care activities between the sexes, and

would be in accord with established behavioral sex differences,

given that N. orbicollis females spend significantly more time provi-

sioning larvae compared to males (Fetherston et al. 1990). The ab-

sence of a significant change in either OA or 5-HT brain levels in

parental beetles is surprising, given that OA has been implicated in

altering the threshold for task-related behavioral transitions (Schulz

et al. 2002a, 2002b), while 5-HT linked to the modulation of social

context-dependent aggression in a number of insects (Stevenson and

Schildberger 2013; Alekseyenko and Kravitz 2014; Bubak et al.

2014a).

A potential role for DA in mediating the transition between con-

flicting behavioral states, such as the switch from nonparental to

parental condition, appears warranted, especially in light of emerg-

ing evidence from several recent studies in other social insects. In the

highly eusocial honey bees, DA has been implicated in task-related

behavioral specialization, with higher brain DA levels in foragers

compared to nurse bees (Taylor et al. 1992). Dopamine levels are

also elevated in queens but not reproductively suppressed workers

(Sasaki et al. 2012b), and experimentally increased DA is associated

with ovarian development (Harris and Woodring 1995; Dombroski

et al. 2003) and transition to reproductive status in honey bee work-

ers in queenless colonies (Matsuyama et al. 2015). Interestingly, re-

cent studies in the fruit fly, D. melanogaster, have implicated DA in

motivated behavior and reward signaling processes underscoring

learning and appetitive memory formation (Burke et al. 2012;

Wadell 2013), while in crickets, DA is necessary to restore aggres-

sion and the motivation to fight following defeat in a social contest

(Rillich and Stevenson 2014). Taken together, these findings provide

some interesting parallels to the well-established role of DA in re-

ward-based, motivated behavior in mammals (Bromberg-Martin

et al. 2010). Mammalian neural circuits involved in behavioral acti-

vation, as well as regulation of task engagement and effort-related

processes, similarly rely on DA, implicating the monoamine in both

appetitive and aversive motivational processes (Salamone et al.

2015).

To our knowledge, this is the first study exploring the link be-

tween central monoamine levels and breeding status in a biparental

insect and our findings seem to indicate that DA may be especially

important in orchestrating the behavioral transitions associated with

the initiation of care and/or altering a behavioral threshold respon-

sible for the performance of the specialized tasks that it entails. To

better understand the role of DA in burying beetle reproductive be-

havior, we have further set out to explore a potential functional link

between JH and DA during breeding, given that both molecules

show significant increases associated with the initiation of care.

Similarly, to begin to probe the intracellular effects of the three

monoamines, we plan to identify and characterize several OA, DA,

and 5-HT receptor subtypes in N. orbicollis. Related studies will use

in vivo pharmacological treatments to alter brain monoamine func-

tion, either by directly manipulating DA levels via dietary supple-

mentation or inhibition of biosynthesis or by administering specific

monoamine receptor antagonists or agonists, followed by assays to

uncover any behavioral changes associated with the initiation of

care, intensity of parental effort, and duration of care.
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