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Abstract

We analyzed the spike discharge patterns of two types of neurons in the rodent peripheral gustatory system, Na specialists
(NS) and acid generalists (AG) to lingual stimulation with NaCl, acetic acid, and mixtures of the two stimuli. Previous
computational investigations found that both spike rate and spike timing contribute to taste quality coding. These studies
used commonly accepted computational methods, but they do not provide a consistent statistical evaluation of spike trains.
In this paper, we adopted a new computational framework that treated each spike train as an individual data point for
computing summary statistics such as mean and variance in the spike train space. We found that these statistical summaries
properly characterized the firing patterns (e. g. template and variability) and quantified the differences between NS and AG
neurons. The same framework was also used to assess the discrimination performance of NS and AG neurons and to remove
spontaneous background activity or ‘‘noise’’ from the spike train responses. The results indicated that the new metric
system provided the desired decoding performance and noise-removal improved stimulus classification accuracy, especially
of neurons with high spontaneous rates. In summary, this new method naturally conducts statistical analysis and neural
decoding under one consistent framework, and the results demonstrated that individual peripheral-gustatory neurons
generate a unique and reliable firing pattern during sensory stimulation and that this pattern can be reliably decoded.
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Introduction

Peripheral receptors and their communicating nerves are the

information highways linking environmental stimuli with the

brain. Sensory perception, and all subsequent behavior, requires

the central nervous system to properly decode peripheral activity.

In the taste system, cranial nerves (VII, IX and X) connect the oral

cavity and the brainstem, providing the necessary input for the

human perceptual qualities of: salty, sweet, sour, bitter, and

umami. Therefore, taste identification is dependent upon the spike

train information transmitted by the neurons from these three

cranial nerves.

Of the four nerve branches that innervate taste bud receptor

cells in the oral cavity, the chorda tympani (CT) nerve, which

innervates the fungiform taste cells in the anterior tongue, may be

the most critical for encoding salt taste information in mammals.

In rodents, two well-defined neuron types with unique chemical

sensitivities (i.e. salty, sour, etc.) and behavioral roles dominate the

CT nerve responses to salt. The first salt-sensitive type, Na-

specialist (NS) neurons, responds strongly to solutions containing

the sodium cation, but not to non-sodium salt solutions or to the

other basic taste stimuli [1]. Narrowly-tuned NS neurons are

sodium selective because they receive input from taste bud

receptor cells expressing the sodium-selective epithelial sodium

channel (ENaC) [2–7]. In contrast, the second salt-sensitive type,

acid-generalist (AG) neurons, are broadly-tuned responding, as the

name implies, especially well to acids, but also strongly to most

cationic salts like NaCl, KCl, CaCl2, and NH4Cl [8–11]. The

sodium detection mechanism for AG neurons is independent from

ENaC, but otherwise controversial [12–13]. Behaviorally, NS

neurons are required for Na+-K+ discrimination [4] and for the

detection of low-concentration Na+ [14,15]. On the other hand,

behavioral evidence suggests that AG neurons are used to detect

several cations [16,17]. While AG and NS neurons use different

molecular mechanisms, and have different functional roles, their

different coding strategies are just beginning to be elucidated.

As discovered by pioneering taste neurophysiologists [18–22],

peripheral-taste neurons use both spike rate and spike timing to

encode chemical stimuli. Both salt-sensitive neuron types increase

their firing rates to increases in Na+ concentration, but the

temporal dynamics differ. NS neurons respond with a short-

latency, high frequency phasic response followed by a declining

static phase [23,10,11]. In contrast, AG neurons respond more

sluggishly with a longer latency and a slower phasic response

followed by a more sustained static phase [23,10,11]. Although NS

neurons are unresponsive to a broad range of acetic acid

concentrations, acetic acid reduces the firing rate when presented
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together in a mixture with NaCl [10]. In contrast, AG neurons

increase their firing rate to increasing concentrations of both NaCl

and acetic acid; when presented together in a mixture, the

response rate is additive [10].

Computational analyses of spike timing indicate that response

latency plays a significant role in stimulus encoding in the

periphery [24], similar to somatosensory touch coding [25].

Accordingly, taste processing in the downstream nucleus of the

solitary tract (NST) [26–29] and gustatory cortex [30] utilizes

temporal information. It has been proposed that a role of the NST

is to enhance and propagate the temporal differences in peripheral

activity [28] and that forebrain neurons may use this pattern to

identify and evaluate Na+ taste stimuli [31].

However, without completely taking into account the location of

each spike within, the stimulus-evoked spike train, the spike-

template pattern cannot be fully defined. This assumes and

requires that each stimulus generate a consistent and unique spike

template pattern that encodes information about stimulus quality.

Each spike template is defined by a mean spike rate and a mean

temporally arranged spike pattern replete with deviations from the mean

for both values. Spike templates would then be used to assess, for

example, how NS and AG neurons encode information. This

approach opens several possibilities. For example, is the spike

template pattern to NaCl the same or different for NS and AG

neurons? When two stimuli are presented together in a mixture

like NaCl and acetic acid, how does the spike template pattern

change? Does the mixture template reflect the pattern of the

dominant stimulus in the mixture or does it reflect the template

features of both stimuli? Do NS and AG neurons differ in their

spike template patterns to mixtures? These are the kinds of

questions raised in the present study.

Spike timing is a component of stimulus decoding, as variation

in rate appears to mask central taste coding of NaCl [29]. To our

knowledge, a spike template pattern to NaCl has yet to be

described in either peripheral or central gustatory neurons. To

generate an accurate spike-template pattern requires a metric that

considers both the number and temporal distribution of spikes in

the stimulus-evoked spike train and then, based on a number of

stimulus trials, statistically computes the mean spike train and its

associated variance, which characterizes the deviation from the

template. Spike-train metrics, which measure dissimilarity between

spike trains, have been widely used to study neural coding. As

measures of dissimilarities, many of the past spike train distances

have found success in specific scenarios [32–43). The applications

of these methods have mainly focused on the clustering or

classification of spike trains with respect to different stimuli. Their

relevance in deriving statistical summaries (e.g. mean spike train

and spike train variance) remains unclear, as the statistics defined

with these distances may not provide interesting intuition or

tractable computations.

Wu and Srivastava [44] have proposed a novel metric to

measure distance between spike trains. This metric corresponds to

the conventional Euclidean distance in the function space. It is a

proper distance that quantifies dissimilarity between spike trains.

Importantly, it can be used to define basic summary statistics, such

as sample mean and sample variance, for any set of spike trains

providing a consistent framework for spike train analysis. In this

study, we adopted this metric as well as the associated summary

statistics in spike train space to describe neuronal activity. In

particular, we examined typical-firing pattern and spike-train

variability across the time domain. Further, we evaluated the

similarity of these activities to different stimuli and in the process

describe what information these classes transmit. Spontaneous

activity has been reported to inflate neuronal breadth of tuning

and to obscure inhibitory responses [45]. Consequently, sponta-

neous or background rate is treated as noise and is simply

subtracted from the stimulus evoked response [28,29,46], while

making inhibitory response more difficult to analyze [45]. The

new metric was also used to match spontaneous activity with

stimulus-evoked activity to delete noise-related spikes from the

spike train responses to chemical stimulation.

Materials and Methods

Single-cell recording techniques
Geniculate ganglion. Previously recorded neurons were

reanalyzed and the methods used to access, stimulate and record

these rat geniculate ganglion neurons have been previously

reported [10] and approved by the Florida State University

Institutional Animal Care and Use Committee. Briefly, adult male

Sprague-Dawley rats were anesthetized with urethane (1.7 g/kg

body wt), and geniculate ganglion cell bodies were exposed by the

dorsal approach [10,11,46–49].

Solutions were flowed over the tongue at 50 ml/s and 35uC
(OctaFlow; ALA Scientific Instruments, Farmingdale, NY). We

tested each single neuron’s response to 5 s of stimulation with the

following stimuli: 0.1 M NaCl, 0.01 M citric acid (CA), 0.003,

0.01, 0.03, and 0.1 M acetic acid (AA), and each acetic acid mixed

with 0.1 M NaCl. Each stimulus was presented 2–4 times.

Stimulus trials were divided into three regions: a 5-s pre-stimulus

period, a 5-s stimulus application period, and a 5-s post-stimulus

period.

Activity was recorded extracellularly (criteria 3:1 signal-to-noise

ratio) with low-impedance (1.1–1.9 MV) glass-insulated tungsten

microelectrodes. Off-line, single-units were separated with spike

templates based on amplitude and waveform shape (Spike2;

Cambridge Electronic Design, Cambridge UK). Cells were

identified as Na+ specialists (Na-S or NS; N = 13) or acid generalists

(AG; N = 8) based on cluster analysis [Pearson’s product-moment

correlation coefficient (r–1) and the average-linking method

between subjects (Statistica, StatSoft, Tulsa, OK)] of spiking

responses to the standard stimuli [11]. These 21 cells were sorted

in chronological order, with Cells 1, 2, 4, 5, 7, 8, 12, 14, 16, 17, 18,

19, 20 in the NS group, and Cells 3, 6, 9, 10, 11, 13, 15, 21 in the

AG group.

Statistics Methods
In this section, we present the spike train metric and associated

summary statistics such as mean and variance that we used to

analyze the spike train responses of geniculate ganglion neurons to

chemical stimulation. This metric, d2, taken from Wu and

Srivastava [44] corresponds to the classical ‘‘Euclidean distance’’

between two spike trains. This metric is also closely related to the

commonly used

Victor-Purpura [50] and van Rossum metrics [35].

‘‘Euclidean’’ Metric d2. Assume s(t) is a spike train with

spike times 0vt1vt2v � � �vtMvT , where [0, T] denotes the

recording time domain. That is,

s(t)~
XM
i~1

d(t{ti), t[½0,T �

where d(N) is the Dirac delta function. Heuristically, the metric

between two spike trains f and g is computed by composing g with

a time warping function to match f, and the distance is a

Statistical Analysis and Decoding of Neural Spikes
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combination of how closely this warped g matches f and how much

warping was required to achieve this matching.

Let C be the set of all time warping functions, where a time

warping is defined as a continuous, strictly increasing, and

piecewise linear fucntion in the domain [0, T]. For

f (t)~
PM

i~1 d(t{ti) and g(t)~
PN

j~1 d(t{sj), the distance d2 is

defined in the following form:

d2½l�(f ,g)~ min
c[C

X (½f �,½g0c�)zl

ðT

0

(1{
ffiffiffiffiffiffiffi
_cc(t)

p
)2dt

� �1=2

, ð1Þ

where l.0, and X(., .) denotes the cardinality of the Exclusive OR

of two sets. That is,

X (½f �,½g0c�)~MzN{2
X

i

X
j
1fti~c(sj )g,

where 1{.} is the indicator function.

The integration in Eqn. 1 includes two terms. The first term,

X (½f �,½g0c�), is called matching term which measures the

goodness-of-match between f and g in presence of warping. The

second term,
Ð T

0
(1{

ffiffiffiffiffiffiffi
_cc(t)

p
)2dt is called penalty term, which

penalizes the amount of warping. l (.0) is the penalty coefficient,

which controls the degree of penalty on warping. We emphasize

that d2 is a proper metric; i.e. it satisfies positive-definiteness, symmetry,

and triangle-inequality. Indeed, it shares a lot of similarities to the

classical L2 Euclidean norm in functional analysis, and be further

used to define summary statistics such as mean and variance in the

spike trian space.
Matching algorithms for d2. To evaluate d2, we need an

optimal time warping that minimizes the penalized warping

distance. We used the renowened dynamic programming

algorithm to solve for the optimal time wapring, with a finite

grid being the spike times of the two spike trains. For two spike

trains f and g that have m and n spikes respectively, the

computational cost will be O(mn).
Summary Statistics. We use the metric d2 to compute

summary statistics in the spike train space. The challenge lies in

computing the mean of a sample of spike trains. Once the mean

spike train is known, the variance computation follows naturally.
Mean and Variance. We defined the sample mean of a set of

spike trains using the Karcher mean with the d2 metric [44]. Given

a set of spike trains S1, S2, …, SN, their sample mean S* is defined as

follows:

S�~ argmin
S

XN

i~1

d2½l�(Si,S)2 ð2Þ

Given the mean train S*, we computed the sample variance s2 (s
is the standard deviation) in the standard way:

s2~
1

N{1

XN

i~1

d2½l�(Si,S
�)2 ð3Þ

A useful feature of summary statistics in this manner is that we

can partition the domain [0, T] to multiple sub-intervals, and then

compute the mean and variance in each one of them. The result

indicates the trend of the template and variability across the time.

Computational Methods. Computation of mean spike train,

in general, is a challenging problem. When l is sufficiently small,

there is little penalty on time warping. The framework becomes

fully elastic in the time domain and this leads to a more intuitive

distance. An efficient and convergent procedure, Matching-

Minimization (MM) Algorithm, was constructed to compute the

mean in this case [44]. For arbitrary value of l (. 0), we need to

update the number of spikes as well as their locations during the

computation. Another efficient procedure, Matching-Centering-

Pruning (MCP) Algorithm, was recently developed which gener-

alizes MM-algorithm and also result in convergent estimation

[51].

‘‘Background Noise’’ Removal
The goal is to understand taste coding by geniculate ganglion

neurons. However, these neurons are spontaneously active without

stimulation. With stimulation, the spike trains are actually a

mixture of background activity and responses to taste stimuli. In

this study, we viewed spontaneous activity as ‘‘background noise’’.

The amount of noise varied widely among the neurons. Some

neurons exhibited almost no spontaneous activity, while others

were quite active.

To focus on the spike activity during chemical stimulation, we

aimed to develop a ‘‘noise removal’’ procedure. One naive idea is

to compute the average spontaneous firing rate, and then subtract

it from the corresponding number of spikes during stimulation.

However, the key problem with this approach is that it is arbitrary

to assume the information is encoded in the total spike count. The

method will fail if spike timing is an important factor in coding.

Deletion of spikes based solely on the number of spontaneous

spikes may distort the temporal code during stimulation.

We therefore used the d2 metric to compute the mean spike

train during the pre-stimulus period when spontaneous spikes are

the only source of activity. This was done separately for each

neuron because each one has its own spontaneous pattern. The

mean is used as the template for the pre-stimulus time period. For

each neuron, we found the optimal match between the template

during the pre-stimulus period with each spike train observation

during stimulation for all stimuli. We treated any co-incident

spikes as noise and therefore removed them from the observed

train. This matching process is well described in Wu and

Srivastava [44]. Two examples are shown in Figure 6 to illustrate

this noise-removal process. The method can be described in the

following steps:

1) Computed the mean spike train, f, of all spike trains during

the 5-s pre-stimulus period.

2) For each train, g, during the 5-s period of stimulation, we

computed the spike train distance between f and g, and found

the optimal warping c in g.

3) Removed all spikes in g that matched (via c) with spikes in f.

Results

In this section, we applied the spike train metric d2 as well as the

associated summary statistics (mean and variance) to perform

analysis on the recorded geniculate ganglion data. We also used

these tools to decode neural activity and classify the taste stimuli.

We first performed some basic analyses to understand the typical

firing pattern and the associated variability.

Statistical Analysis and Decoding of Neural Spikes
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Data and the Distance Measurement
As stated in the Methods Section, we assessed the responses of

21 geniculate ganglion neurons (13 NS & 8 AG) with respect to 10

different taste stimuli. Figure 1 shows the typical response patterns

from one neuron in each group. The NS neuron (Cell 18; Fig. 1A)

had a low spontaneous rate during the 5-s pre-stimulus period.

This neuron responded significantly to NaCl and mixtures of NaCl

with acetic acid, but very little to acetic acid or citric acid during 5-

s stimulation period. During the 5-s post-stimulus period, the firing

rate subsided gradually approaching the pre-stimulus rate at the

end of the period.

Figure 1B shows the average spike count to the 10 stimuli for

this cell during each 5-s time period. As can be seen, the pre-

stimulus spike count was similar for all 10 stimuli. This NS neuron

responded robustly to NaCl (,20 spikes/sec), while the responses

to acetic acid and citric acid were similar to spontaneous firing

rate. The responses to the NaCl + acetic acid mixtures were lower

than that to NaCl alone, but greater than that to acetic acid alone.

Figure 1C and 1D shows the typical responses of an AG neuron

(Cell 11). In contrast to the NS cell, this AG cell responded well to

all stimuli. The firing rate increased with increasing stimulus

concentration to acetic acid alone as well as to the NaCl + acetic

acid mixture. Moreover, the firing rate to each mixture was higher

than that to either NaCl or acetic acid alone. This additive pattern

for the AG neuron is opposite to the suppressive pattern seen for

the NS neuron.

Next we adopted the ‘‘Euclidean’’ metric d2 (see Methods) to

measure the dissimilarity between two spike trains [44,51], and

allowing comparison of both firing rate and pattern between

different spike trains within a single metric. The appropriateness of

this metric is demonstrated using one example neuron (Cell 5) in

Figure 2. The firing activity of this NS cell is shown as a raster plot

Figure 1. Typical response patterns in each group. A. Raster plot of all spike trains of a Na-Specialist (Cell 18) with respect to 10 different
stimuli. Each trial was divided into three regions: a 5-s pre-stimulus period, a 5-s stimulus application period, and a 5-s post-stimulus period. Dots on
each row denote the spike times. For simplification, we use letters N, A1, A2, A3, A4, NA1, NA2, NA3, NA4, C, to denote the 10 taste stimuli,
respectively. B. Averaged numbers of spikes of each stimulus in the pre-stimulus period (blue bars), stimulus application period (green bars), and
post-stimulus period (red bars), respectively. C and D. Same as A and B except for an Acid Generalist (Cell 11).
doi:10.1371/journal.pone.0065439.g001
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in Figure 2A. The pairwise distances for all 32 spike trains (for 10

stimuli) in pre-stimulus period (first 5-s) were then computed. A

classical multidimensional scaling (MDS) analysis was conducted

using these distances, and a scatterplot with the two most

prominent components is shown in Figure 2B. In this plot, each

spike train is represented as a two-dimensional point, and the

locations of all points characterize their relative distances. As the

distances are computed in the pre-stimulus period (spontaneous

activity), Figure 2B shows that there was no clear separation

among 10 stimuli. That is, all points are closely distributed in one

cluster demonstrating that this NS cell had stable spontaneous rate

for the ,50-min period of the recording. In contrast to the pre-

stimulus case, the points in the MDS plot generated from the

stimulus application period (Fig. 2C) are more dispersed, due to

relatively larger stimulus-dependent distances. In general, the

points separate largely into two main clusters: NaCl and NaCl +
acetic acid mixtures are located in close proximity to each other,

but separate from acetic acid and citric acid which are located

together in another broader cluster. In the post-stimulus period,

the spike activity returned to baseline and the MDS plot forms a

single cluster (Fig. 2D) much like the pre-stimulus plot (Fig. 2B). In

summary, this illustrates the power of metric d2 to separate spike

trains into different clusters based on their responses to chemical

stimuli; similar spike trains have short distances, and dissimilar

ones have large distances.

Estimating Spike Train Templates
We computed the mean spike train or template pattern for each

taste stimulus. Separate means were computed for each of the

three time intervals to characterize the templates before, during,

and after stimulus application. The resulting means are concat-

enated and shown in Figure 3A for NS neurons. During the pre-

stimulus period the mean spike trains were similar for the 10

stimuli indicating stable spontaneous activity. In addition, the

mean spike trains to the four concentrations of acetic acid and the

single concentration of citric acid appeared similar to that during

the pre-stimulus period. In contrast, NS cells responded to NaCl

and the NaCl + acetic acid mixtures with a short latency burst of

activity that was sustained at a progressively slower rate for the 5-s

stimulation period. However, the template pattern to the mixtures

was more tempered in immediate firing rate and had more brief

pauses in spiking during the 5-s stimulation period compared to

the template pattern to NaCl. For example, if a pause is defined as

an inter-spike interval with duration of at least 75ms, we found

that the number of pauses to the NaCl stimulus was 10, but that to

the four mixtures were 12, 12, 16, and 16, respectively. During the

post-stimulus period, the spike discharges to NaCl and the

mixtures subsided gradually. This gradual decline to baseline

level occurred more quickly to the mixtures and increased

progressively with acetic acid concentration. Thus, even though

NS neurons were largely unresponsive to acetic acid, acetic acid,

nevertheless, altered the template pattern to NaCl during the

stimulus and post-stimulus periods.

Figure 3B shows the mean spike trains of AG neurons for the

three periods. Like for NS neurons, the mean spike trains for AG

neurons were similar for the 10 stimuli during the pre-stimulus

period, although at a higher overall baseline rate (compare Fig. 1A

and Fig. 1B). During the stimulus application period, AG neurons

responded to all stimuli, albeit at different rate and temporal

pattern. AG neurons responded to NaCl not with an immediate

burst of activity but with a sustained level throughout the 5-s

stimulus application period. In response to acetic acid, the mean

spike train increased in rate and decreased in latency as

concentration increased. The additive effect of NaCl mixed with

acetic acid was a further increase in spike rate and a decrease in

response latency. During the post-stimulus period, AG neurons

were distinguished by the gradual recovery to baseline that

lengthened in duration as acetic acid concentration increased, but

seem to shorten in duration when NaCl was mixed with acetic

acid. In summary, the mean spike trains distinguished NS from

AG neurons during all three stimulus periods.

Measurement of Spiking Variability across Time Domain
We also computed the spike train standard deviation (STD) in

1-s intervals across the three stimulus periods according to Eqn. 3

(in Materials and Methods). The results of this analysis are shown

in Figure 4A and 4B for NS and AG neurons, respectively.

Overall, the variation was consistently low during the pre-stimulus

period, sharply increased in the first second of the stimulus

application period, and then gradually recovered to baseline in the

post-stimulus period. This is consistent with the mean spike trains

in Figure 3 because higher firing rates often result in larger

distances from the mean (illustrated in Fig. 2C). This is evident

during the pre-stimulus period where the STD of the AG group

was greater than that of the NS group most likely due to the higher

baseline rates of AG neurons (, 4 spikes/s for AG; ,1.5 spikes/s

for NS).

During the stimulus application period, there are several

important features of the response variability in NS neurons to

note. Firstly, although NS neurons were largely unresponsive to

acetic acid in terms of response rate (See Fig. 3A), they were

clearly affected by this stimulus as indicated by a significant

increase in STD during stimulation, which was similar for the four

concentrations of acetic acid. Interestingly, 0.01 M citric acid had

minimal effect on STD while equimolar acetic acid had a large

effect. Furthermore, the response variability was highest to NaCl +
acetic mixture than to NaCl alone even though the response rate

was greater to NaCl alone than the mixture. In contrast to NS

neurons, the STD pattern of AG neurons consistently matched

response rate. The response variability gradually changed along a

concentration or intensity continuum (Fig. 4B) that was greater to

the mixture than to acetic acid alone. Unlike NS neurons, citric

acid increased the STD in AG neurons, although perhaps to a

slightly lesser degree than to equimolar acetic acid. Finally, NS

and AG neurons differed in the time of peak response variability

during stimulation. NS neurons peaked early during the first

second, while AG neurons peaked later during the stimulation

period. The general patterns noted above during the stimulus

application period were carried over to the post-stimulus period

for both NS and AG neurons.

Neural Classification of Taste Stimulus
In this subsection, we used the same metric to assess the

classification accuracy of NS and AG neurons.

Decoding by stimulus and by category
It is important to understand how the peripheral nervous system

uses spiking activity to classify different chemical stimuli for taste.

Consequently, we analyzed the classification accuracy for each of

the 21 neurons relying solely on the spiking activity during the 5-s

period of stimulation.

We first determined whether neurons responded with a unique

spike train to each of the 10 stimuli. Due to the low number of

stimulus repetitions (2–4), we adopted a standard leave-one-out

cross-validation procedure to measure classification accuracy

(Lawhern et al, 2011). The results of our analysis are shown in

Figure 5A for all 21 neurons. The average accuracy for the NS

neurons was only about 20%. Although low, it is still twice as high

Statistical Analysis and Decoding of Neural Spikes
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as a random guess (10%). In contrast, AG neurons had an average

classification accuracy nearly twice that of the NS neurons (37%)

and four-times greater than chance.

The rate and mean spike train analysis depicted in Figures 1–3

showed that NS neurons were more responsive primarily to

qualitative differences in the stimulus set and less sensitive to

intensity differences, while AG neuron were more responsive to

intensity differences. Therefore, we next determined whether

classification accuracy improved by analyzing stimulus categories.

The 10 stimuli were separated into 3 different categories: NaCl

only, 5 acids (4 acetic acid concentrations and 1 citric acid), and 4

NaCl + acetic acid mixtures. The same leave-one-out cross-

validation procedure was used to measure the classification

accuracy for stimulus category (see Fig. 5A). Analyzing by

category significantly improved the classification accuracy to

82% for NS neurons and 60% for AG neurons.

To examine the discrimination performance of geniculate

ganglion neurons, we performed a cluster algorithm of each

neuron’s responses to the 10 stimuli. Figure 5B shows the averaged

clustering or confusion matrix for all NS neurons. Here we first

computed the probability of classifying stimulus i (the rows of the

matrix) to stimulus j (the columns of the matrix) for each NS

neuron [24]. Each (i, j) entry in this matrix then corresponds to the

average of these probabilities. It was found that NS neurons

segregate mostly within quadrants of the matrix. This segregation

reflects the fact that acetic acid trials were classified as one of the

four acetic acid concentrations and NaCl + acetic acid trials were

classified as one of the four mixture concentrations, but acetic acid

was nearly never classified as or confused with NaCl + acetic acid

and vice versa. On some trials, NS neurons confused acetic acid

with citric acid, and NaCl with NaCl + acetic acid. This matrix

illustrates how NS neurons obtained a classification accuracy of

82% for stimulus category. In contrast to this pattern for NS

neurons, the matrix pattern for AG neurons (see Fig. 5C) was quite

different where several taste stimuli can be classified with high

accuracy (large probabilities along the main diagonal). This reflects

Figure 2. Illustration of the d2 metric with one example neuron. A. Raster plot of all 32 spike trains of a Na-Specialist (Cell 5) with respect to
the 10 different stimuli. The data is plotted in the same form as that in Fig. 1A. B. Scatter plot of the first two components in the Multidimensional
Scaling (MDS) during the pre-stimulus period. The trains under each stimulus are denoted by the same symbol (see legend), and the colors on the
symbols are consistent to that in A. C and D. Same as B except for the stimulus application period and post-stimulus period, respectively. These two
plots are in the same scale as that in B for comparison on variability.
doi:10.1371/journal.pone.0065439.g002
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the fact that AG neurons were responsive to differences in stimulus

intensity. The matrix also shows that AG neurons occasionally

confused acetic acid with NaCl + acetic acid. This confusion

primarily accounts for the 60% performance by AG neurons in

classification accuracy for stimulus category.

Decoding on Spike Trains with ‘‘Background Noise’’
Removed

Figure 1 shows that NS and AG neurons have different

spontaneous activity patterns. To enhance our analysis of sensory

coding, we adopted a new procedure that removes background

noise from the response record based on the rate as well as the

temporal pattern of spontaneous activity. Figure 6 shows an

example of how noise removal enhanced the NaCl selectivity of

some NS neurons and the responsiveness of AG neurons to

differences in stimulus concentration.

After removing the noise from all the neurons’ responses, we re-

evaluated classification accuracy separately for NS and AG

neurons first for the 10 stimuli and also by the three stimulus

categories (NaCl, acids, NaCl + acetic acid mixtures). The results

of this analysis are plotted individually for each neuron in

Figure 7A. We found that noise removal improved classification

accuracy only by a small margin. The average classification

accuracy for the stimuli increased from 20% without noise

removal to 25% with noise removal in NS neurons, while that for

AG neurons increased from 36 to 40%. The classification accuracy

for stimulus category, however, remained largely unchanged at

82% for NS neurons and 60% for AG neurons. We also computed

the average confusion matrices for NS and AG neurons after noise

removal, and the result is shown in Figure 7B, C. As can be seen,

there was little change in the matrix profiles. The NS matrix

largely retained its quadrant-like appearance, while the AG matrix

concentrated its activity along the diagonal. In sum, noise removal

had only a modest effect in improving the classification accuracy of

Figure 3. The mean spike train for each neuron group. A. Each row is the mean spike train of all trains in the NS group (for all 13 neurons) for a
specific taste (shown along the y-axis). Short, vertical lines on each row denote the spike times and the colors are consistent to that in Fig. 2. B. Same
as A except for the AG group (for all 8 neurons).
doi:10.1371/journal.pone.0065439.g003

Statistical Analysis and Decoding of Neural Spikes

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e65439



geniculate ganglion responses to chemical stimuli. However, noise

removal was beneficial for some neurons and not others.

Therefore, we determined whether classification accuracy

varied with respect to the number of spikes in the mean spike

trains. For each neuron, we computed the classification accuracy

to the 10 stimuli using the noise-removed data as well as the

accuracy using the original data. It was found that this difference

(former minus latter) is approximately an increasing function with

respect to the number of spikes in the mean spike trains (see Fig. 8).

This was especially clear for NS neurons. This result also shows

that when the spontaneous rate was above the average spontane-

ous rate (median spike count = 20 for AG neurons; 8 for NS

neurons), noise removal improved classification accuracy. In

contrast, when spontaneous rate was low, noise removal had no

effect or degraded the decoding performance.

Discussion

The present findings demonstrated that individual geniculate

ganglion neurons generated a unique and reliable firing pattern

during chemosensory stimulation and that this pattern could be

reliably decoded. Narrowly-tuned Na+-sensitive (NS) neurons were

best at categorical discrimination responding with spike templates

that distinguished NaCl, acids, and NaCl + acid mixtures from

each other. They were relatively poor at distinguishing differences

in acetic acid concentration when presented alone or in a mixture

with NaCl. Conversely, broadly-tuned acid-generalist (AG) neu-

Figure 4. The average standard deviation during the pre-stimulus, stimulus and post-stimulus periods. A. Each colored line is the
standard deviation (STD) of spike trains in every 1-s period (shown in x-axis) in the NS group for a specific taste (shown in the legend). The colors are
consistent to that in Fig. 3. B. Same as A except for the AG group.
doi:10.1371/journal.pone.0065439.g004
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rons were best at discriminating differences in stimulus concen-

tration responding with spike templates that distinguished one

acetic acid concentration from another and one mixture concen-

tration from another. These results support previous evidence that

NS neurons encode stimulus identity while AG neurons encode

something akin to stimulus intensity [52]. Lastly, the templates

provide strong evidence that spontaneous activity, or noise, occurs

within the response epoch and a statistical approach [44] to

removing noise can improve discrimination performance for

neurons with high spontaneous rate.

Our results provided insight into geniculate ganglion coding of

taste information. Given our stimulus set, NS neurons may not

simply transmit information about the presence or absence of

NaCl. Instead, they may transmit information about NaCl + X,

where X is a chemical stimulus such as acetic acid. Indeed, NS

neurons generated unique spike templates for each of the three

stimuli (NaCl, acids, or mixtures of the two; Fig. 3A). Furthermore,

NS neurons never confused NaCl with acetic or citric acid, and

only rarely did they confuse NaCl with NaCl + acetic acid

(Fig. 5A). This seemed to depend on stimulus concentration. NaCl

mixed with weak acetic acid was more often confused with NaCl

than when mixed with strong acetic acid. Thus, the resulting code

may be that of a weak NaCl concentration when NaCl is mixed

with weak acetic acid, and something quite different when mixed

with strong acetic acid. Interestingly, humans do not mistake NaCl

+ acid mixtures for NaCl alone [53], but this may depend on acid

concentration like for NS neurons.

Figure 5. Difference in classification accuracy by cell number and confusion matrix by neuron group. A. Classification result over all 21
neurons. Blue stars and red circle denote the classification accuracy on taste categories (i.e. NaCl, acids, or mixtures) in the NS and AG groups,
respectively. Black squares and magenta diamonds denote the classification accuracy on individual taste stimuli in the two groups, respectively. Each
dashed line denotes the averaged accuracy in the corresponding group where the color matches. B. The average confusion matrix in the NS group.
Each (i, j) entry in this matrix corresponds to the averaged (over all NS neurons) probability that the i-th stimulus is classified to the j-th one. C. The
average confusion matrix in the AG group.
doi:10.1371/journal.pone.0065439.g005
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Despite the seemingly eponymous name, AG neurons do not

transmit identity information about acids. At first glance the

confusion matrices and identity graphs appear to support AG

neurons ability to identify individual tastes (Fig. 7). However, this

could be an artifact of the stimulus battery. AG neurons routinely

misclassified chemical stimuli with similar solute concentrations,

lumping dissimilar chemicals in the same confusion matrix bin (i.e.

high acid is categorized as moderate acid and salt). Instead, AG

neurons increased activity along an ionic-concentration continu-

um and appear to transmit information about stimulus concen-

tration—not stimulus quality. These results agree with previous

behavioral studies where animals that lack the NS pathway

confuse different salts of the same concentration [4]. Thus, the

chorda tympani nerve may use a labeled-line approach with

specific tastes (i.e. sodium) and an across-fiber pattern for

concentration. This is a possible source of confusion in evidence

for ‘‘labeled-line’’ or ‘‘across-fiber’’ taste coding [7,54] and

evidence for more complex taste coding than either coding

strategy [9].

The new statistical metric [44] applied to responses by

geniculate ganglion neurons also proved advantageous in illumi-

nating differences in response variability between NS and AG

neurons (see Figure 4). Perhaps not surprisingly, the differences

observed in variability paralleled those observed in mean spike

trains or templates. Like mean spike trains, NS neurons segregated

mostly into three variability clusters consisting of the NaCl + acid

mixtures, NaCl, and the four acetic acid concentrations during the

stimulus application and post-stimulus periods. The one notable

exception was the unique variability pattern to citric acid, apart

from acetic acid, which increased modestly during the stimulus

application period and returned quickly to baseline during the

post-stimulus period. In contrast to NS neurons, the variability

Figure 6. Raster plot of original spike train data and plot of same data with ‘‘noise’’ removed. A. Left panel: Spike trains of a Na-Specialist
(Cell 12) with respect to the 10 stimuli in the pre-stimulus and stimulus application period. Dots on each row denote the spike times. The mean spike
train in the pre-stimulus period is also shown using vertical lines in the bottom row in the data. Right panel: The ‘‘noise-removed’’ spike trains during
the stimulus application period. B. Same as A except for an Acid Generalist (Cell 15).
doi:10.1371/journal.pone.0065439.g006
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pattern of AG neurons distributed evenly across a stimulus-

concentration continuum with the variability pattern to citric acid

falling in line with the acetic acid-concentration continuum.

These stimulus-elicited changes and group differences in

variability patterns raise intriguing questions. For example, why

does acetic acid change the variability of NS neurons when there is

no discernible change in response rate? NS neurons were clearly

influenced by acetic acid; but is acetic acid a ‘‘stimulus’’ in the

traditional sense for NS neurons? This seems unlikely simply

because variability was unresponsive to changes in acetic acid

concentration. The variability distribution for acetic acid concen-

tration fell within one tight grouping as did the distribution for

NaCl + acetic acid concentration. We suspect that processing

events occurring in the taste buds may underlie changes in

variability, especially in taste receptor cells that express the

epithelial sodium channel (ENaC) and communicate with NS

neurons. By decreasing intracellular pH, acetic acid inhibits the

open probability of the ENaC [54]. By altering the ENaC, acetic

acid can increase response variability when added to sodium-

containing artificial saliva or when mixed with 0.1 M NaCl. This

might suggest that the more acidic citric acid (pH = 2.6) should

have a bigger impact on ENaC and increase variability more than

acetic acid (pH = 3.55–2.82). However, the opposite occurs

because acetic acid is one-third the size of a citric acid, is more

lipophilic, and more easily crosses the plasma membrane to

decrease intracellular pH [55]. Thus, weak acids like acetic and

citric may not be true ‘‘stimuli’’ for NS neurons; however, acidic

solutions can change the background conditions for NS neurons

and alter their responsiveness to NaCl stimulation. In contrast,

weak acids are true stimuli for a separate group of taste bud

receptor cells that express PKD channels on their apical

membrane [56,57] and communicate with AG neurons. It is most

likely through this acid-sensing mechanism that underlies AG

neuron responses to acetic and citric acid along a concentration

continuum.

Figure 7. Classification accuracy and the confusion matrices in NS and AG groups using ‘‘noise-removed’’ spike trains. The plot in A
and two images in B and C are the same as those in Fig. 5 except that the background firing activity has been removed.
doi:10.1371/journal.pone.0065439.g007
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The present results show that the Wu and Srivastava statistical

metric [44] is a valuable tool for computing stimulus-evoked spike

templates, which may used for gaining insight on how peripheral

as well as central neurons encode information about taste quality.

Previous work conducted by many investigators have described

some of the important signaling properties of peripheral neurons,

such as spike rate (e.g. [25]), interspike interval (e.g. [58]), and

response latency (e.g. [24]), but until now there hasn’t been a

statistically sound way to characterize the spike train record in its

entirety [44]. Prior studies using electrical brain stimulation

mimicking the rate and temporal patterns of sweet sucrose and

bitter quinine have obtained mixed success in eliciting specific

taste-mediated behaviors. For example, electrical stimulation of

the nucleus of the solitary tract (NST) with a spike pattern

indicative of quinine stimulation terminated the licking behavior of

thirsty rats drinking water [59,60], and stimulation of the NST in

an area associated with quinine taste processing can elicit the

aversive reaction of gaping [61]. Additionally, when conditioned

to avoid sucrose, some thirsty rats stopped drinking water while

receiving brain stimulation that mimicked the pattern for sucrose

[62]. While the results of these brain stimulation studies did not

always result in the predicted behavioral response, they are

valuable for providing evidence that temporal patterns are

important for stimulus encoding. We suspect that using the spike

templates generated from peripheral geniculate ganglion neurons

may improve the success of brain stimulation in eliciting taste-

mediated behavior, but this is yet to be determined. Regardless,

the ability to generate a mathematically replete mean spike

template for each basic taste stimulus and neuron group may

improve neuroprosthetics [62].

Peripheral nerve responses contain noise that ordinarily does

not degrade the intended encoded signal. For example, NS

neurons were able to encode at least three responses: NaCl, not

NaCl, and NaCl mixed with something of sufficient concentration.

These three responses were evident when no attempt was made to

subtract noise (Fig. 5A), when the spontaneous template was

carefully matched and subtracted from the response template

(Fig 7A) or when the spontaneous rate was simply subtracted from

the response rate [10]. However, NS and AG neurons with

spontaneous rates above the respective group mean rate appear to

transmit ‘noisier’ information. Subtracting the spontaneous

template from the response templates in these neurons increased

the accuracy of the information transfer (Fig. 8). The source of

these ‘extra’ spontaneous spikes is impossible to determine. It is

possible that the higher spontaneous rate is due to intrinsic

properties of the neurons themselves or to uncontrollable changes

in the experimental preparation—anesthesia level, physical

impingement of the neuronal membrane by the recording

electrode, etc.—and is not a component of the natural system.

However, having neurons with the same stimulus-space (i.e. those

that respond to the same stimuli) with different spontaneous

activity levels have been proposed to enrich sensory coding [63].
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