
iScience

Article

ll
OPEN ACCESS
Exploring an accurate machine learning model to
quickly estimate stability of diverse energetic
materials
Qiaolin Gou, Jing

Liu, Haoming Su,

Yanzhi Guo, Jiayi

Chen, Xueyan

Zhao, Xuemei Pu

xmpuscu@scu.edu.cn

Highlights
A representative energetic

dataset is constructed by

real and diverse explosives

The hybrid strategy

couples local bond into

global structure features

Pairwise difference

regression augments

dataset with reducing

systematic errors

A highly accurate XGBoost

prediction model is

obtained to evaluate EM

stability

Gou et al., iScience 27, 109452
April 19, 2024 ª 2024 The
Authors. Published by Elsevier
Inc.

https://doi.org/10.1016/

j.isci.2024.109452

mailto:xmpuscu@scu.edu.cn
https://doi.org/10.1016/j.isci.2024.109452
https://doi.org/10.1016/j.isci.2024.109452
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109452&domain=pdf


OPEN ACCESS

iScience ll
Article

Exploring an accurate machine learning
model to quickly estimate stability
of diverse energetic materials

Qiaolin Gou,1 Jing Liu,1 Haoming Su,1 Yanzhi Guo,1 Jiayi Chen,1 Xueyan Zhao,2 and Xuemei Pu1,3,*
SUMMARY

High energy and low sensitivity have been the focus of developing new energetic materials (EMs). How-
ever, there has been a lack of a quick and accurate method for evaluating the stability of diverse EMs.
Here, we develop a machine learning prediction model with high accuracy for bond dissociation energy
(BDE) of EMs. A reliable and representative BDE dataset of EMs is constructed by collecting 778 exper-
imental energetic compounds and quantum mechanics calculation. To sufficiently characterize the BDE
of EMs, a hybrid feature representation is proposed by coupling the local target bond into the global
structure characteristics. To alleviate the limitation of the low dataset, pairwise difference regression is
utilized as a data augmentationwith the advantage of reducing systematic errors and improving diversity.
Benefiting from these improvements, the XGBoostmodel achieves the best prediction accuracywith R2 of
0.98 and MAE of 8.8 kJ mol�1, significantly outperforming competitive models.

INTRODUCTION

Energetic materials (EMs) are a special group of metastable substances, including explosives, pyrotechnics, and propellants, which can

release large amounts of chemical energy under certain external stimuli and play important roles in military, aerospace, and civilian fields.1,2

Besides the high energy requirement to EMs, stability is also one of the most concerned properties, as it involves safety during the process of

production, storage, and transportation.3 The sensitivity of EMs is used as a measure of their stability, yet its measurement is closely depen-

dent on complex experimental conditions, thus generally exhibiting large uncertainty and low reproducibility,4,5 in turn leading to difficulty in

analyzing and evaluating the stability of EMs. For the energeticmolecules, it was revealed that the sensitivities are strongly correlated with the

dissociation energy of the weakest bond X-NO2 (X = C, N, O),6–8 thus bond dissociation energy (BDE) can act as an alternative indicator to

evaluate the stability of EMs. In general, the energetic molecule is considered as stable if its BDE is higher than 80 kJ mol�1 while BDE is

required to be higher than 120 kJ mol�1 in practical application.9

Although BDEs can be measured experimentally by photoelectron spectroscopy,10 mass spectrometry,11 and other methods, the

experimental measurement is also a complex and time-consuming task. Up to date, the number of BDEs measured by experiments

is only one ten-thousandth of the registered molecules, in which most molecules have heavy atoms below ten,12,13 and their BDEs

mainly involve R-H bonds, rather than the trigger bonds X-NO2 associated with EMs. Fortunately, it has been confirmed that BDEs

calculated by quantum mechanics (QM) methods almost achieve comparable accuracy to experiments,14,15 providing an alternative

way to obtain BDEs. Despite the high accuracy of QM, the high requirement to computational cost limits it to explore a vast unknown

chemical space. Therefore, there remains an urgent need for developing quick and accurate methods to estimate BDEs such that can

quickly evaluate the stability of new EMs, in turn advancing the development of novel EMs with high comprehensive performance. Data-

driven machine learning (ML) stands out, as it can mine the structure-property relationship underlying complex data such that it can

intelligently navigate. MLs have exhibited great success in chemistry, material, and medicine fields, involving property prediction,16 re-

action mechanism,17 and molecule generation,18 etc. As is known, ML is a data-driven technique. Unfortunately, compared to other

fields like images and drugs, EMs have been in a state of data scarcity for a long time due to the long-term experimental and high

risk, which limit the application of ML. However, some exploits also introduced ML to construct prediction models mainly focusing

on high energy properties of EMs like density,19 formation enthalpy,20 detonation velocity,21 and detonation pressure.22 Unfortunately,

the ML-based prediction models for the stability of energetic molecules have been lacked. Wang et al.23 developed some ML models to

predict several EM properties including BDEs, based on 4679 derivatives of a single benzene ring and molecular descriptors, in which

the best performance are R2 of 0.775 for BDEs of C-NO2 bonds and 0.276 for BDES of N-NO2 bonds, thus remaining large space to be
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Figure 1. The workflow of constructing the BDE prediction model of EMs

The workflow mainly involves four modules: (A) EM dataset construction; (B) Construction of hybrid descriptor by combining SEC and CBD. The global structure

descriptor (SEC) consists of SumOver Bonds (SOB), Electrotopological state Fingerprints (E-state), and Custom Descriptor Set (CDS). The local structure feature

(CBD) is Chemical bond descriptor; (C) Prediction model determination; (D) Pairwise difference regression (PADRE) data augmentation.
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improved. In addition, the dataset that only involved benzene derivatives would limit the extrapolation ability of the model to diverse

EMs in practical applications.

Despite the absence of ML-based BDE prediction models for EMs, there are several works that developed machine learning models for

BDEs of non-energetic systems.24–26 These works exhibited high accuracy in predicting BDE for the non-energetic systems, largely benefiting

from the large size data available. However, these models from non-energetic systems perform poorly when applied to predict the BDEs of

EMs (see Results section for more details). The reason should be attributed to the absence of energetic molecules in these datasets and their

feature representation without focusing on the structure characteristics of energetic molecules, thus resulting in high accuracy on small

organic molecules but low accuracy in predicting EMs. Overall, there is still an unmet need to develop a general prediction model with

high accuracy for BDEs of diverse EMs such that can provide a fast and reliable prediction tool for facilitating the design of new EMs with

high performance.

Inspired by the urgent need, we developed an accurate machine learning model for BDEs of the trigger bond of EMs based on three

key factors of machine learning (data, feature, and model), as illustrated by Figure 1. As accepted, data is the first key component for the

performance of ML models due to the data-driven nature of ML. Our main objective is to develop an ML-based BDE model with

high accuracy for diverse energetic molecules associated with explosives, pyrotechnics, and propellants. The energetic molecules are

significantly different from common organic molecules in structures, for example, energetic skeleton and energetic substituents with

more -NO2 and high N contents, as shown in Figure 1. Theoretically, the model trained on common organic molecules hardly learns suf-

ficient energetic structure characteristics, which would lead to poor performance in predicting the BDE of EMs. Unfortunately, the BDE

dataset for real energetic molecules has been lacking. To address this limitation, we construct a new dataset of energetic molecules by

collecting 778 synthesized explosives containing C, H, O, and N elements from over 400 literature and calculate their BDEs by QM method

(vide Figure 1A). Consequently, a reliable and diverse EM dataset with BDE labels is constructed. Despite constructing a new EM dataset

with 778 samples, its size is still limited. For the small size dataset, the feature representation of samples is particularly important for the

performance of ML. In order to sufficiently capture the structural features associated with BDE of EMs, we propose a hybrid descriptor

strategy. This strategy couples the local feature of the target bond with the global structure features reflecting the inherent energy char-

acteristics of the sample, based on the nature of BDE and the energetic characteristics of the sample, as illustrated by Figure 1B. With the

hybrid feature representation, we compared six machine learning models (vide Figure 1C) to determine an appropriate model architecture

such that can sufficiently learn the relationship between the structure and the property. After that, we further introduce a novel data

augmentation strategy inferred from pairwise difference regression (PADRE) to increase the data size and diversity such that enhances

the model’s robustness, as illustrated by Figure 1D. The PADRE-based augmentation strategy generates new samples by introducing dif-

ferences between pairs of feature vectors and labels, which can help to reduce systematic errors such that are beneficial to improve pre-

diction accuracy.
2 iScience 27, 109452, April 19, 2024



Figure 2. Statistical analyses of the EM dataset constructed

(A) The distribution of BDE and molecular weight. The 778 energetic compounds are classified into six categories following Mathieu’s work,27 which are

highlighted by different colors. Unst denotes a generic category including unstable explosophores like azides, difluoroamines, diazo phenols, tetrazoles, and

triazole compounds. O-NO2, N-NO2, and C-NO2 represent categories containing O-NO2 group, N-NO2 group, and aliphatic C-NO2 groups, respectively.

5mAr denotes a category containing five-membered aromatics rings. NACs denotes all remaining compounds only containing a single kind of explosophore

like nitro groups bonded to carbon atoms in aromatic 6-membered ring. The statistical distribution of (B) atom number, and (C) mass percent of nitrogen for

the 778 energetic molecules. (D) Chemical structures of representative molecules from the six categories of the dataset.
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RESULTS

As illustrated by Figure 1, our computation frameworkmainly includes four modules: (1) a real and diverse EMdataset construction; (2) feature

representation based on a hybrid strategy; (3) Comparison of different machine learning algorithms to determine the BDE prediction model;

(4) PADRE-based data augmentation to further improve the ML performance. Finally, we also compare our model with several competitive

BDE models in order to evaluate the advantage of our model in predicting diverse EMs.

Construction of a representative and diverse energetic dataset

Data scarcity is a primary challenge for the application of ML in EMs. Besides the data size, the data representativeness and quality are crucial

for theMLmodel’s performance. Thus, we hope to construct a reliable and representative energetic molecule dataset. To this end, wemanu-

ally collected 778 synthesizedCHON-containing energeticmolecules from427 published literature.With the new and real energeticmolecule

dataset, we optimized their structures and calculated their weakest bond dissociation energies at the level of B3LYP/6-31G** (see Method

details section for calculation details). The 778 energetic molecules, including their SMILES, calculated BDEs, the atom numbering of the

trigger bond, and related 427 references are listed in ‘‘Data S1’’.

To evaluate the representativeness of the dataset, we performed statistical analyses on the distribution of bond dissociation energies,

the molecular weight, the total number of atoms, the number of C, H, O, and N atoms, and the mass percent of nitrogen. As shown in

Figure 2, the molecular weights range from 61.04 g mol�1 to 998.48 g mol�1 and the number of total atoms in these molecules ranges from

7 to 87, and the mass percent of nitrogen in each molecule is in the range of 4.17%–72.73%. The counts of C, H, O, and N atoms in each

molecule are presented in Figure 3. The distribution of BDE values of 778 samples ranges from 50 kJ mol�1 to 550 kJ mol�1. Additionally,

we analyzed the trigger bond types and their counts. The 778 EMs involve ten types of trigger bonds, including C-NO2, N-NO2, O-NO2,

C-N3, C-NH2, N-NH2, C-OH, N-OH, C-C, and C-N. Table 1 shows their counts. 593 energetic molecules contain the trigger bond of C–NO2

type and their BDEs range from 69.2 kJ mol�1 to 436.6 kJ mol�1. BDEs of 82 molecules containing the N–NO2 type are in the range of

58.9 kJ mol�1 to 194.3 kJ mol�1. BDEs of 25 molecules with the trigger bond type of O–NO2 change from 120.9 kJ mol�1 to 140.6 kJ mol�1.

In addition, following Mathieu’s works,28,29 we classified the molecules based on different nitro types of the trigger bonds to probe
iScience 27, 109452, April 19, 2024 3



Figure 3. The statistics data of the EM dataset

The statistics numbers of (A) C atoms, (B) H atoms, (C) O atoms, and (D) N atoms contained in the molecules.
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whether there is a certain relationship between the BDE values and the nitro types. Figure S1 further shows the chemical structures of

representative molecules with different nitro types and their BDE values. It can be seen that BDEs of the different molecules with the

same nitro type show great differences. These observations indicate that BDE is not only associated with the trigger bond type but

also heavily dependent on the global chemical environment around the trigger bond. As is known, the structures of energetic molecules

are diverse and complicated. Assigning a fixed BDE to each nitro type, as done in Mathieu’s work, fails to account for the role of the bond

environment on the impact sensitivity. It is also why we introduce the ML method to mine the complex relationship between BDEs and the

molecular structures.

Additionally, as reflected by Figure 2, the 778 energetic molecules include diverse categories involving different energetic substituents

and rings,27,30 also including classic explosives like TNT, TATB, TNB, RDX and CL-20, rather than only containing -NO2 group compounds

derived from computational combination or collected from Cambridge Structural Database (CSD),23,31 These statistical results indicate

the diversity of EMs for either the structures or the BDE values, thus being representative.
Hybrid feature representation based on the local chemical bond and the global molecule characteristics

As outlined above, the feature representation is a crucial factor for machine learning, especially for the small size dataset. For low data avail-

able, the hand-crafted features based on chemical intuition and domain knowledge are generally considered as the best choice. As is known,

energetic molecules are generally composed of energetic rings and energetic substituents, thus significantly different from common organic

molecules in structures. Energetic rings refer to high-nitrogen heterocycles, mainly including heterocyclic five and six-membered rings

like triazole, tetrazole, furazan, pyrazole, oxazole, triazine, and tetrazine. These skeletons can increase the nitrogen content such

that can improve the energy content, density, oxygen balance, and detonation performance of EMs.32,33 Energetic substituents mainly

include –NO2, –NH2, –ONO2, –N3, –NHNO2, and –C(NO2)3, which are covalently or ionically attached to the energetic rings, where O atoms

can oxidize C, N, andH atoms to generate CO/CO2, NO/NO2, andOH/H2O to release chemical energy stored in the explosive.34 As revealed

above, the global chemical environment has a great impact on BDE, besides the trigger bond. The chemical environment involves the global

molecular structure, including the energetic skeleton and energetic substituents. Consequently, sufficient feature representation for BDEs of

EMs should reflect this structure information. Thus, we propose a hybrid feature strategy by coupling the local feature of the trigger bond into

the global molecule representation, as illustrated in Figure 4.
Table 1. The counts of trigger bond types of 778 energetic molecules

Bond Type C-NO2 N-NO2 O-NO2 C-N3 C-NH2 N-NH2 C-OH N-OH C-C C-N

Counts 593 82 25 26 7 9 1 1 16 18

4 iScience 27, 109452, April 19, 2024



Figure 4. Illustration of the hybrid feature representation

The global descriptor (SEC) consists of Sum Over Bonds (SOB), Electrotopological state Fingerprints (E-state), and Custom Descriptor Set (CDS), which reflect

features involving the bonds, atoms, and energetic groups. Chemical bond descriptor (CBD) focuses on the local features involving the target bond and its

environment.
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To well reflect the global structure features associated with the energetic characteristics, we adopted a fusing descriptor (labeled as SEC)

by combining sum over bond (SOB), electrotopological state fingerprint (E-state), and customdescriptor set (CDS), as shown in Figure 4. SOB

characterizes different bond types. E-state encodes information about each atom, and CDS contains features of energetic groups. Their com-

bination can characterize the global structure information of energetic molecules from different structural views, thus being found to perform

well in predicting some properties of EMs like heat of formation, heat of explosion, detonation velocity, and detonation pressure.35,36 Herein,

we compared the SEC fusing descriptor with the three single type descriptors (SOB, E-state, CDS) and three paired combination descriptors

(SOB + E-state, SOB + CDS, and E-state + CDS).

To evaluate their performance on the BDE of EMs, we selected the XGBoost algorithm coupled with different descriptors to predict BDEs

of the EMdataset. The reason to use the XGBoost algorithm is due to its built-in regularization and various available hyperparameters that can

avoid overfitting and improve its performance. In addition, it was reported that the tree-based ensemblemodel exhibits good performance in

processing small size data with high-dimensional.37 As shown in Table 2, the SEC descriptor coupled with the XGBoost algorithm shows

higher R2 than the descriptors from the three single types and three paired combinations, showing its advantage in characterizing the global

molecule structure. However, the independent test set only exhibits an R2 of 0.78 for the SEC descriptor, not achieving the expected perfor-

mance like some other energetic properties reported. The result implies that the SEC descriptor is limited in characterizing the structure

feature associated with BDE, which should be attributed to the absence of information reinforcing the trigger bond.
Table 2. Comparison of prediction performance between different descriptors combined with XGBoost algorithm

Descriptors

Traina Testa

R2 MAE RMSE R2 MAE RMSE

SECb 0.93 G 0.02 15.0 G 2.1 22.4 G 3.2 0.78 G 0.07 25.0 G 2.6 42.1 G 5.7

CBD 0.93 G 0.01 9.1 G 1.2 20.7 G 1.9 0.87 G 0.04 15.6 G 1.3 30.3 G 5.3

SEC + CBD 0.98G0.007 7.2G0.9 13.1G1.5 0.92G0.03 14.7G1.2 24.3G4.0

SOB 0.90 G 0.02 18.2 G 1.8 26.8 G 2.4 0.65 G 0.05 31.2 G 2.4 48.6 G 4.6

E-state 0.83 G 0.03 22.2 G 2.5 34.6 G 3.4 0.67 G 0.07 29.8 G 2.8 47.7 G 5.3

CDS 0.89 G 0.03 19.4 G 3.2 27.2 G 4.2 0.64 G 0.08 31.2 G 3.7 49.0 G 5.8

SOB + E-state 0.90 G 0.04 17.7 G 3.1 26.4 G 4.8 0.67 G 0.07 28.8 G 3.0 46.9 G 6.1

SOB + CDS 0.93 G 0.01 15.5 G 1.4 22.3 G 2.0 0.69 G 0.08 28.0 G 3.1 45.7 G 6.0

E-state + CDS 0.92 G 0.02 16.3 G 1.8 24.4 G 2.8 0.73 G 0.08 25.3 G 3.3 42.2 G 6.6

CMs vec 0.84 G 0.09 24.2 G 7.9 32.5 G 9.9 0.32 G 0.06 51.6 G 3.3 69.9 G 4.3

CMs eigs 0.90 G 0.05 19.3 G 4.5 26.1 G 5.7 0.43 G 0.07 46.4 G 3.3 64.0 G 4.7

BOB 0.96 G 0.01 11.1 G 1.2 15.9 G 1.8 0.69 G 0.07 29.1 G 3.2 45.1 G 5.4

Summed BOB 0.90 G 0.05 19.3 G 4.3 26.7 G 5.8 0.55 G 0.07 38.1 G 2.9 54.6 G 4.2

ACSF 0.32 G 0.56 69.7 G 13.9 92.7 G 17.6 �0.03 G 0.12 74.5 G 4.3 102.8 G 17.2

aMAEs and RMSEs are reported in kJ$mol�1.
bSEC is a combination of SOB, E-state, and CDS descriptors.

iScience 27, 109452, April 19, 2024 5



Figure 5. Examples of chemical bond descriptors

(A) Numbering of all atoms in the molecule. The gray, blue, red, and white spheres represent C, N, O, and H atoms, respectively, and then labeling each atom

according to its element and number of connected atoms, and classifying the sphere based on the distance between the atom and the target bond, which are

shown by different colors.

(B) Constructing the point descriptors and pair descriptors.
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To address the limitation of SEC, we introduced a chemical bond descriptor scheme proposed by Qu et al.38 to simultaneously focus on

the trigger bond in EMs. The chemical bond descriptor (CBD) schemeencodes a bond based on atom types and atom type pairs counts in the

target bond and its neighborhood by a sphere split, which can characterize the bond and its local environment. Specifically, after determining

the target bond (the red ‘cross’ in Figure 5A), we number all atoms in the molecule (the white digit on the sphere in Figure 5A). Then, we label

each atom according to its element type and the number of connected atoms. For example, atom 5 in Figure 5A denotes the carbon element

connecting to atoms 4, 6, and 7, so it is defined as C3. There are ten atom types in the molecule: C2, C3, C4, H1, N1, N2, N3, N4, O1, and O2.

After defining the atom types, different spheres are classified in terms of the distance between the atom and the target bond. Atoms 5 and 7

constituting the target bond belong to sphere 0, and atoms 4, 6, 8, and 11 directly connecting to the atoms of the target bond belong to

sphere 1, and so on. In the chemical bond descriptor, only up to 4 spheres (from 0 to 3) environment are taken into account for each molecule

to achieve a balance between the descriptor length and themodel accuracy. After defining the atom type and sphere, three types of descrip-

tors are calculated: point descriptors, pair descriptors, and fragment point descriptors (SeeMethoddetails section formore details). Figure 5B

shows examples of point descriptors and pair descriptors calculated. Finally, the feature with 98-dimension is obtained for each sample.

We also tested XGBoost only coupled with the chemical bond descriptor (CBD) to predict BDE, as shown in Table 2. It can be seen that the

independent test set achieves an R2 of 0.87, showcasing the role of CBD in characterizing the structure feature associated with BDE. However,

the chemical bond descriptor mainly focuses on the structural features of the local environment of the broken bond, which is limited in re-

flecting the global structure of the compound and its energetic characteristics. Thus, we combine CBD and SEC to comprehensively charac-

terize the structural features associated with BDE of the energetic molecules. As expected, the R2 value is improved to be 0.92 by the hybrid

feature (SEC+CBD) on the independent test set (vide Table 2), significantly higher than those from individual SEC and CBD, confirming the

effectiveness of the hybrid descriptor in characterizing the structural feature for BDE of EMs.

To more sufficiently evaluate the advantage of the new hybrid descriptor proposed by us, we also compared it with some classic molecular

descriptors, such as the Coulomb matrices (including CMs vec and CMs eigs), Bag of Bonds (including BOB and Summed BOB), and atom-

centered symmetry function (ACSF). These descriptors are widely used and have achieved good predictive performance in the field of materials

science and chemistry.39,40 The Coulombmatrix characterizes the atomic energies, interatomic distance, and nuclear charges. The bag of bonds

reflects a collective energy expression based on different types of bonds. The atom-centered symmetry function characterizes molecular struc-

ture based on the local environment near each atom. More introductions about these descriptors can be seen in Method details section. The

comparison results are also listed in Table 2. It can be seen that the performance of the five descriptors is significantly different. BOB exhibits

better performance than the Coulomb matrix and ACSF. It may be due to the reason that the Coulomb matrix and ACSF do not involve the

bond representation while BOB involves different bond types of the molecule, thus including more correlated information with BDEs. In partic-

ular, the ACSF descriptor exhibits the worst performance (R2test = -0.03), which is also attributed to its BDE-independent high dimensionality

representation and the small size of our energetic dataset. Summed BOB (R2test = 0.55) presents lower performance than traditional BOB

(R2test = 0.69), which should be due to the loss in the structure information of different bonds resulted from the summation operation. The results

further indicate that the feature representation should sufficiently consider the nature of the target property and the data size, rather than simply

adopt existing descriptors.

Comparison of different ML algorithms

To determine an appropriate machine learning to capture the causality between the structure and BDE, we tested several ML algorithms.

Given the limited sample size that is suitable for traditional MLs, we preferred to consider XGBoost and five other traditional MLs, such as

LASSO, KRR, SVR, GPR, and RF, which exhibited good performance in learning some structure-property relationships for the small size
6 iScience 27, 109452, April 19, 2024



Table 3. Comparison of prediction performance between six regression algorithms coupled with the hybrid descriptor (SEC+CBD)

Models

Traina Testa

R2 MAE RMSE R2 MAE RMSE

LASSO 0.89 G 0.01 16.1 G 1.0 27.5 G 1.8 0.87 G 0.05 18.1 G 1.7 30.1 G 5.7

KRR 0.95 G 0.03 11.4 G 2.0 19.1 G 5.1 0.89 G 0.03 17.8 G 1.2 30.0 G 3.9

SVR 0.88 G 0.01 16.1 G 1.2 29.5 G 1.6 0.85 G 0.06 18.3 G 2.4 32.1 G 6.9

GPR 0.96 G 0.03 9.7 G 4.3 16.1 G 7.2 0.87 G 0.03 18.5 G 1.2 30.7 G 3.5

RF 0.99 G 0.001 5.7 G 0.2 9.8 G 0.5 0.92 G 0.02 15.6 G 1.4 25.6 G 3.1

XGBoost 0.98 G 0.007 7.2 G 0.9 13.1 G 1.5 0.92 G 0.03 14.7 G 1.2 24.3 G 4.0

aMAEs and RMSEs are reported in kJ$mol�1.
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datasets.41–43 Table 3 depicts the performance of the six models coupled with the hybrid descriptor (SEC+CBD) for the training and test sets.

It can be seen that the two ensemblemodels RF andXGBoost exhibit the highest R2 value of 0.92. RF adopts the Bagging algorithm, which can

improve the model performance by integrating models trained on different subsets of the same dataset, thus being widely used in classifi-

cation and regression problems. XGBoost is a Boosting algorithm which adds a regularization term to the loss function based on Gradient

Boosting Decision Trees (GBDT) to avoid overfitting, thus can enhance the generalization ability of the model and effectively handling sparse

or missing data. Our result further supports that the ensemble learning algorithms like RF and XGBoost, which combine several weak learners

into a strong learner, perform better than the single learner-based ML models like LASSO, KRR, SVR, and GPR. However, compared to RF,

XGBoost presents lowerMAE and RMSE as well as remarkably quick speed, which can accelerate the training process by up to over 20 times at

the same accuracy. Thus, it is determined that XGBoost is more appropriate to serve as the regression model for mining the relationship be-

tween the structure and BDEs of EMs than RF.
Further improvement in the predictive performance by PADRE-based data augmentation

Despite of good performance obtained by XGBoost coupledwith the hybrid descriptor (SEC+CBD), the dataset of 778 unique energetic sam-

ples is still a small data size while machine learning is a data-driven technique. To alleviate the limitation of the small size dataset, data

augmentation strategies have been introduced in the ML application, which can generate new samples from available data via different

ways, for example, SMILES enumeration,30 oversampling,44 and molecular graph augmentation.45 Here, we introduced the pairwise differ-

ence regression (PADRE) paradigm proposed by Tynes et al.46 as a data augmentation way. PADRE is a machine learning meta-algorithm

that utilizes chemical intuition by taking advantage of differences between chemical conditions rather than their absolute values to generate

more reliable results. The core concept of PADRE is to use the features from two samples simultaneously and predict the difference between

their regression targets. Tynes’s results showed that PADRE can reliably improve the model performance of the RF algorithm across five

regression tasks on four metal-ligand complex datasets. Theoretically, the differences generated by comparing two samples can be consid-

ered as a new sample with the advantage of reducing systematic errors resulted from any single sample measurement, thus we can use it as a

novel data augmentation strategy. As illustrated by Figure 6, for the training set, we paired two samples in the training set and calculated the

difference in one-dimensional descriptors between the two samples. Then, we concatenated the difference descriptor with the original

descriptor. The input is the concatenated descriptor and the output is the difference of the label. As a result, the training set can be

augmented from n to n2 (here, 622 to 6222). For the test set (156 samples), we paired each sample in the training set with the unknown sample

m in the test set. Then, we calculated the pairwise feature of each known sample pairedwith unknown sample m. The trainedmodel was used to

generate n difference predictions. The set of difference predictions was then converted by the addition of known label of the training set such

that obtain n predictions, which can be regarded as a distribution. The mean value of the distribution is the prediction value for the unknown

sample m.

With the data augmentation, the 148-dimension features are increased to three times (444-dimension features), and the number of training

sets increases from the original 622 to 622,2 which is equivalent to the number of all possible combinations between samples. The increase in

the sample number in the training size is much more than the increase in the descriptor dimension, thus alleviating the problem of data scar-

city to some extent and reducing the risk of overfitting. Figure 7 shows a comparison in the predictive performance betweenwith the augmen-

tation and without one for XGBoost. Although the predictive performance on the training set is not improved, the model’s performance on

the independent test set is remarkably improved. The R2 value of the test set is boosted by the data augmentation from 0.92 to 0.98, and

MAE and RMSE are significantly reduced to 8.8 kJ mol�1 and 12.9 kJ mol�1, showcasing the advantage of the data augmentation strategy.

In addition, we probe the impact of the PADRE augmentation on the performance of other ML algorithms under study. For RF, the PADRE

augmentation also greatly improves the prediction performance, in which R2
test increases from 0.92 to 0.97, similar to XGBoost. The result

further confirms the effectiveness of PADRE-based data augmentation in improving theML prediction performance for the small size dataset.

However, RF is much slower than XGBoost at the similar accuracy. Thus, XGBoost is still a better choice for the large dataset. While for other

machine learning algorithms like LASSO, KRR, SVR, and GPR, they are failed to give results at our computer resource after using PADRE.
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Figure 6. Illustration of PADRE-based data augmentation

(A) Process of model training. A pairwise training set is constructed and the model ðbf Þ is trained on it to predict the label differences ðyi� yjÞ by the pairwise

feature s ðxi ; xjÞ.
(B) Process of pairing an unknown feature vector ðxmÞ with all the feature vectors ðxiÞ in the training set and giving a set of difference predictions ð dym � yi Þ by
using the model ðbf Þ.
(C) Process of predicting cym for the unknown data ðxmÞ. The set of difference predictions ð dym � yi Þ is then added to the known labels ðyiÞ to form a distribution.

The mean of this distribution ðmÞ is the target property of the sample m.
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Practically, some previous works47,48 already indicated that KRR, GPR, and SVM are not suitable for the modeling of big datasets. Upon the

PADRE augmentation, the number of samples increases from 622 to 6222 for our training set.

Comparison with other competitive models

To more sufficiently verify the advantages of our model in predicting BDEs of EMs, we further make a comparison with several BDEML works

reported. Wen et al.26 proposed a chemically inspired graph neural network model (BonDNet) and mapped the difference between the mo-

lecular graph representations of reactants and products to predict BEDs of three different datasets (PubChem, Zinc, and BDNCM), which

achieved high accuracy, in particular for PubChem with MAE of 1.97 kJ mol�1. However, our limited data (778 real explosives) is not suitable

for deep learning training. In addition, the data size used for BonDNet is very large (290644 BDEs of 249374 CHON-containing molecules),

where the PADRE augmentation strategy is not suitable. Consequently, we cannot directly use our dataset or data augmentation to train the

deep learning model used in Wen’s work. However, the work provided an optimized model trained on PubChem. Thus, we used the opti-

mized BonDNet model to predict our energetic data, which achieves poor performance on our independent test set with R2, MAE, and

RMSE of 0.35, 142.87 kJ mol�1 and 186.08 kJmol�1 respectively. Table S1 representatively shows the comparison result for ten energetic mol-

ecules with different sizes of our independent test set. It can be seen that our model achieves much better performance than BonDNet in

predicting BDEs of the 10 energetic molecules. In particular, with increasing the sizes of energetic molecules, the prediction errors of

BonDNet are sharply increased. As is known, the compounds from the PubChem database are all small molecules composed of C, H, O,

and N atoms, and contain only ten or fewer heavy atoms while most energetic molecules have more than ten heavy atoms and unique en-

ergetic structures. Thus, BonDNet is not suitable for predicting BDE of EMs, despite its high accuracy on the common organic compounds.

Practically, Similar losses of accuracy from general organic compounds to energetic ones were previously observed in the prediction of for-

mation enthalpies of EMs.49 It is also the main reason why we hope to exploit a BDE prediction model with high accuracy for the diverse

EM field.

Nakajima et al.24 used different types of molecular fingerprints and fivemachine learningmethods to predict the BDE values of 716 hyper-

valent iodine compounds (HVIs). The Elastic Net (EN)model shows the highest accuracy with R2 = 0.96 andMAE= 6.60 kJmol�1. Although the

work did not provide the optimizedmodel, it gave a brief description regarding themain parameters of the Elastic Net model construction. In

terms of these parameters, we constructed an Elastic Net architecture and calculated fingerprints used in Nakajima’s work, includingMorgan,

RDK,MACCS, andAvalon fingerprint for the 778 energetic molecules. Grid searchwas used to determine optimal hyper-parameters of Elastic

Net in our dataset in order to compare as far as possible. Figure 8 shows the prediction accuracy of EN combined with the four types of mo-

lecular fingerprints for the independent test set. It can be seen that our hybrid descriptor coupled with XGBoost and the PADRE augmenta-

tion is significantly superior to the EN model coupled with different molecular fingerprints.

Of course, the objectives of the twoML works above did not focus on the energetic systems. The comparison with them indicates that the

MLmodel inferred from the non-energetic dataset is indeed not suitable for the EM field. To the best of our knowledge, there are only twoML
8 iScience 27, 109452, April 19, 2024



Figure 7. Ablation results of PADRE-based data augmentation

A comparison of themodel performance with and without the PADRE augmentation for the training set and the independent test set. Color mapping reflects the

Euclidean distance between each sample and the diagonal, which indicates the deviation of the predicted value from its calculated value. The top row displays

the results for the training sets while the bottom row shows the results for the independent test sets.
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works involving BDEs of EMs. In studying energetic nitrobenzene compounds with MLs, Wang et al.23 also constructed a BDE prediction

model, which used 40 substituents from Cambridge Structural Database to mono- and di-substitute benzene ring to create 4679 derivatives

of a single benzene ring as a dataset. The feature descriptors used in their work included elementary percentage, oxygen balance, substituent

kind and number, and type of two adjacent substituents. Their best models achieved 0.775 of R2 for BDE of C-NO2 (MLP) and 0.276 of R2 for

BDE of N-NO2 (LASSO). Unfortunately, the work did not provide their ML models. Based on the main parameters of their model described in

Wang’s work, we constructed LASSO andMLP models for our N-NO2 and C-NO2 BDEs, respectively. Also, we conducted grid hyper-param-

eters optimization based on our dataset. Table 4 shows the comparison results. It is clear that our XGBoost model coupled with the hybrid

descriptor and the PADRE data augmentation is significantly superior to the BDE strategy fromWang et al., indicating that the strategy pro-

posed by us is more suitable for predicting BDEs of diverse EMs.

In addition, our previous work regarding the high-throughput design of EMs also involved a BDE ML-based model.31 In the work, 2000

nitro compounds were selected from the Cambridge Structural Database (CSD) as a representative of EMs, and a graph neural network
Figure 8. The prediction accuracy of EN combined with different fingerprints

A comparison of the prediction performance between our model and the Elastic Net model coupled with different fingerprints for the independent test set of

EMs. The red, blue, and gray points represent the R2, MAE, and RMSE, respectively. The dashed lines denote our model’s results.
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Table 4. Comparison of the predictive performance of our model with two competitive models for BDE of energetic materials

Modelsa

Train Test

R2 MAE RMSE R2 MAE RMSE

C-NO2 Ours 0.99 10.32 7.98 0.96 8.40 12.78

MLP 0.76 24.26 32.26 0.65 28.67 38.96

N-NO2 Ours 0.98 5.32 4.08 0.76 9.54 13.07

LASSO 0.80 9.97 12.66 0.48 17.78 22.21

aMLP and LASSO models are derived from ref.23; MAEs and RMSEs are reported in kJ$mol�1.
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coupled with themolecular graph and the global feature was used to construct the BDE predictionmodel. The highest R2 in the 10-fold cross-

validation can achieve 0.928. However, given the fact that the real explosives contain diverse energetic skeletons and energetic substituents,

rather than only involving -NO2 groups, themodel proposed in our previous work possibly has a risk with high uncertainty when being applied

in the diverse EMs. Practically, we calculated the Murcko scaffold50 similarity and compound similarity between the 2000 nitro compounds31

and our 778 real energetic compounds, as shown in Figure S2. For the scaffold similarity comparison, 81.3% of scaffolds in the 2000 nitro com-

pounds present similarity lower than 0.1 with the respect to the 778 energetic compounds. For the compound similarity, approximate 90% of

the 2000 nitro compounds exhibit low similarity (<0.2) to the 778 energetic compounds. The comparisons indicate that the 2000 nitro com-

pounds used in the previous work31 indeed cannot represent the real energetic molecules. Not unexpectedly, when we apply the optimized

BDE model from ref.31 to predict the independent test set of the real 778 EMs, it exhibits significantly dropped performance with MAE of

34.42 kJ mol�1 and RMSE of 56.36 kJ mol�1 for the diverse EMs. The result confirms the necessity of further improving the BDE prediction

model of EMs.
DISCUSSION

In thework, we developed an accurate BDEpredictionmodel for diverse EMsmainly by improving the dataset and the feature representation.

First, a representative and reliable EM dataset (real 778 energetic molecules) was constructed by extensive literature searching and high-pre-

cision DFT calculation, which can provide a reliable data resource for related studies on EMs. To more sufficiently characterize the structure

features associated with BDEs of EMs, a hybrid feature representation was proposed by coupling the local feature of the target bond into the

global structure representation involving the energetic feature. With the hybrid feature, we tested six ML models to determine the appro-

priate BDE model for EMs, in which XGBoost exhibits the best performance. In order to alleviate the limitation of the small sample size

EMdata and further improve themodel’s robustness to unseen samples, we further utilized the pairwise difference regression (PADRE), which

has the advantage of reducing systematic errors from single sample measurement, to remarkably augment the data size and diversity. These

technical advantages boost our model to achieve R2 of 0.98 andMAE of 8.8 kJ mol�1 for the independent test set, significantly outperforming

other competitive models for EMs. Overall, our observations further highlight the importance of the dataset, which should be closely asso-

ciated with the target field. Furthermore, the feature representation and the model selection should be based on the chemical nature of the

target property and the characteristics of the dataset (size, representativeness, and quality). Thus, this work not only provides an accurate BDE

prediction tool for quickly evaluating the stability of diverse EMs, but also offers methodological guidelines (including feature representation

and data augmentation) for the application of MLs in the EM field and other low data regimes.
Limitations of the study

Our model achieves high accuracy in predicting BDE of the real explosives under study, benefiting from the hybrid feature proposed and the

novel PADRE-based data augmentation strategy. Despite the diversity and the representativeness of the 778 real explosives collected, the

number of the explosives collected is still small size due to the experimental difficulty in synthesizing the energetic compounds, which limits

the sufficient validation of the model prediction ability to more unseen samples, as ML is a data-driven technique. In the future, besides

continuously collecting explosives newly reported, we will also adopt some computation ways to generate new energetic molecules, for

example, combination chemistry based on energetic backbones and energetic substituent or deep learning-based molecule generation,

which should be beneficial to further improving the robustness of our model.
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Data and code availability
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key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Calculation of bond dissociation energy

The 778 energetic molecules collected were first optimized at the level of B3LYP/ 6–31G**. Then, the NBO analysis was utilized to find the

trigger bonds with the smallest values of the Wiberg bond index for each molecule. The bond dissociation energy of the trigger bond at

298 K and 1 atm corresponds to the enthalpy change between the molecule and the two free radicals generated by homolysis,6 as reflected

by Equations 1 and 2.

A � BðgÞ = A$ðgÞ+B$ðgÞ (Equation 1)
BDE298ðA � BÞ = H298ðA$Þ+H298ðB$Þ � H298ðA � BÞ (Equation 2)

where H298ðA$Þ、 H298ðB$Þ and H298ðA � BÞ refer to the enthalpy at 298 K of the free radicals A$, B$ and molecule A � B, respectively. The

calculations of H298ðA$Þ, H298ðB$Þ and H298ðA � BÞ were performed at the level of B3LYP/ 6-31G**.

All of the quantum chemical calculations were carried out using the Gaussian 09 program.51 The vibration frequencies were computed at

the same level of theory to confirm that the optimized structures are the minimumon the potential energy surface. TheWiberg bond index of

each bond was calculated using Multiwfn software.52
Feature descriptors

Feature extraction is one of the most critical steps in constructing ML models, especially for the small size dataset. The following descriptors

were involved and compared in the work.
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(1) Sum Over Bonds (SOB)

The SOB descriptor includes information about the occurrence of each bond type in a molecule, which is generated by counting the num-

ber of each bond type presented in eachmolecule after enumerating all of the bond types in the dataset.54 In our energetic materials dataset,

there are totally 22 different bond types, including N=N, N=O, C:N, C:O, C:C, C-O, C-N, C-H, C-C, C/C, N:O, N:N, C/O, C/N, N/N, O-O,

C=O, C=N, H-N, N-N, N-O, and C=C. In this representation, ’-’ denotes single bond, ’=’ denotes double bond, ’/’ stands for directional

bond, and ’:’ represents the aromatic bond. The count of each bond type is recorded as the molecule’s SOB descriptor.

(2) Electrotopological state Fingerprints (E-state)

The Electrotopological State (E-State) fingerprint is an atomic-level molecular descriptor proposed by Hall and Kier in 1995,55 which de-

scribes the intrinsic electronic state of each atom and the perturbations from other atoms. The E-State indices are the sum of the electroto-

pological indices with the same structural characteristics in the molecular structure. Specifically, the E-state indices of each non-hydrogen

atom belonging to the same atom type are summed to obtain the E-state indices of each atom type in the molecule such that reflect the

impact of a specific type of atomic structure on the property of matter.

Although the E-state fingerprint defines 79 atom types, only 13 are involved in our dataset. The 13 atom types cover diverse structural

environments of C, N, and O atoms in 778 energetic molecules, including hC � , = C<, aCa � , aaCa, hN, >NH � ½+ 1�, = N � , aNa,

>N � , � N �, = O, � O � , aOa: (� for single bonds, = for double bonds, h for triple bonds, a for aromatic bonds, � for two double

bonds or two resonance single/double bonds as in nitro group, and �> for three single bonds) Therefore, the atom types defined not only

involve its atomic information, but also reflect the perturbation from the adjacent atoms. More calculation details can be found in ref.55

(3) Custom Descriptor Set (CDS)

High energy density of EMs mainly comes from the energetic groups involving elements like N and O.56 Given this structural feature,

the custom descriptor involves the types of N and O and the elementary composition. Here, the N and O elements are further categorized

in terms of how they are incorporated into a molecule. Our dataset involves 7 types of N element and 3 types of O element: C–NO2, N–NO2,

O–N=O, O–NO2, C–N=N, C=N–O, C–NH2, N–O–C, N=O, and C=O. Additionally, this descriptor set includes the number of N, C, and H

atoms in the molecule, the C/N ratio, and oxygen balance, resulting in 15-dimension features.

(4) Chemical Bond Descriptor (CBD)

The chemical bond descriptor proposed byQu et al.38 can well characterize the target bond and its environment. It can be easily obtained,

as it does not rely on quantum chemistry calculations and optimized 3D geometry. The entire process of generating the chemical bond de-

scriptors included defining the atom types and spheres, calculating point descriptors, pair descriptors, and fragment descriptors. The atom

type of each atom is defined according to its element and the number of connected atoms. Based on the distance between the atom and one

atom of the target bond, the atoms can be classified into different spheres, where the distance is the number of covalent bonds on the short-

est possible path. Then three kinds of descriptors are computed at different spheres. The point descriptors are counts of specific atom types in

specific sphere. For each sphere, the point descriptor is an array of size M, which is the number of atom types. The pair descriptors represent

the counts of atom pairs of specific atom types in specific sphere at specific distance. For each pair, one atom of the pair belongs to the spe-

cific sphere and the other atom is in the same or in a lower sphere. The distance is also defined as the number of covalent bonds between the

two atoms of the pair on the shortest possible path. The fragment point descriptors describe individual fragments after the target bond is

broken, which have two values (each for one fragment) in order to offer the information on the distribution of special functional structures

like aromatic systems, or conjugated p systems by restricting the atoms involved in the calculation of the descriptors.

(5) Coulomb matrices (CM)

The Coulomb matrix57 is a mathematical representation method used to describe molecular structures, which encodes structures based

on theCoulombic interactions between each pair of atoms in themolecule. The CoulombmatrixMij for a givenmolecule can be calculated by

Equation 3. The diagonal elements of theCoulombmatrix correspond to a polynomial fit of the potential energies to the nuclear charge, while

the nondiagonal elements correspond to the Coulomb repulsion between different pairs of atoms in the molecule. The Coulomb matrix is

invariant to the translation and rotation of the molecule, while it is not invariant under randompermutations of atomic indices. To address this

issue, the eigenvalues of the Coulombmatrix (CMs eigs) can be used because this representation is invariant with respect to permutations of

the rows and columns of the Coulombmatrix. In this approach, the Coulomb matrix is replaced by the eigenvectors of its eigenvalues. How-

ever, using eigenvalues means a substantial reduction of the dimensionality and concomitant loss of structural information. Given this fact,

here we compared the CMs eigs with the original CMs. Due to its symmetry, the original CMs are converted to a vector (called ‘‘CMs vec’’) by

taking the elements from the diagonal and upper triangular part of the matrix in order to avoid redundancy.

Mij =

8>><
>>:

0:5Z2:4
i i = j;

ZiZj��Ri � Rj

�� isj
(Equation 3)

where the Z and R are the nuclear charge and Cartesian coordinate respectively.
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(6) Bag of bonds (BOB)

The BOB54 was primarily used to capture information about different bonds in a molecule, which is a distinctive variant of the

Coulomb matrix and describes collective interactions between many atoms or bonds. In the BoB, the molecular Hamiltonian is first

mapped to a vector composed of bags, where each bag represents a particular bond type. Then the Coulomb matrix entries are

sorted into bags, and the BoB vector is obtained by concatenating these bags and adding zeros to allow for dealing with other

molecules with larger bags. This representation achieves naturally invariant under molecular rotations and translations by fixing

the sorting step. Summed bag of bonds (Summed BOB) is a much more efficient representation than BOB, which is the summing

of each bag vector. Compared with the BOB, Summed BOB reduces the dimensionality and makes it more suitable for machine

learning, but it may cause to some extent loss in the structural information. Therefore, we compared the BOB with the Summed

BOB representation.

(7) Atom-centered Symmetry Functions (ACSF)

The ACSF58 provides the local representations of each atomic environment based on both radial and angular symmetry functions. By the

definition, the number of ACSFs is irrespective of the molecule size, and each ACSF is invariant with respect to the exchange of identical

neighboring atoms, such that it fully satisfies the permutational invariance. In describing a given central atom, ACSF generates environmental

information only up to a cutoff radius, which has the advantage of focusing the information on the chemically meaningful range of interatomic

distances. Compared with the Coulombmatrix, in addition to the description of the relative distance between two atoms, the ACSF also adds

an angular term to describe the position between atoms, which can more accurately describe the chemical structure of the molecule and the

chemical environments of the atoms.

Model training and evaluation

In the work, six traditionalmachine learning algorithmswere considered, which performedwell in someproperty prediction of small size data-

sets, including a least absolute shrinkage and selection operator regressionmodel (LASSO),59 a kernel ridge regressionmodel (KRR),60 a sup-

port vector regressionmodel (SVR),61 a gaussian process regression model (GPR),62 a random forest regressionmodel (RF),63 and an extreme

gradient boosting regression model (XGBoost).64

LASSO is a linear regression algorithm while the other five models are non-linear algorithms. By using L1 regularization, LASSO sets

some weights to zero and achieves feature selection, allowing the regression model to be trained on a finite dataset without severe

overfitting. The KRR algorithm is a kernelized regression with an L2 regularization term, which reduces overfitting by constraining

the weight parameters. It is easier for KRR to obtain coefficients in nonlinear relationships by projecting the feature vectors onto the

solution space. SVR maps the input feature into a high-dimensional space, where the optimal hyperplane minimizes the total deviation

of all sample points. SVR is often used to solve problems with small sample size and high-dimensional data, with strong generalization

ability of the model. GPR is a non-parametric regression model based on Bayesian theory, which combines prior knowledge to make

prediction. It uses the gaussian distribution functions to match the observations and shows excellent adaptability in dealing with com-

plex regression problems. RF and XGBoost are Ensemble Learning algorithms that combine several weak learners into a strong

learner,65 mainly including the Bagging and Boosting algorithm. RF belongs to the Bagging algorithm and XGBoost is a Boosting al-

gorithm. The machine learning models mentioned above are implemented with Python scripts by utilizing the open-source scikit-learn

package.53

Since the data size in the work is limited, traditional K-Fold cross-validation may result in overly optimistic or overly pessimistic model per-

formance in different folds. Therefore, we used shuffle split cross-validation to evaluate ML model performance adequately,66 For each

model, the shuffle split cross-validation was performed by randomly splitting the dataset into a training and independent test set based

on an 8:2 ratio by 20 repeats, rather than one in the traditional K-Fold. For each split (also called as iteration), the model hyper-parameters

were optimized using the grid search method with nested 5-fold cross-validation. After 20 iterations, the averaged evaluation metrics were

used to evaluate the model performance. Mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2)

values were calculated by Equations 4, 5, and 6, respectively.

MAE =
1

N

Xn

i = 1
jyi � by ij (Equation 4)
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i = 1
ðyi � by iÞ2

r
(Equation 5)
R2 = 1 �
Pn

i = 1 ðyi � by iÞ2Pn
i = 1 ðyi � yÞ2 (Equation 6)

Where N is the number of samples, yi is the real value, by i is the predicted value, y is the mean of the real values. The value of R2 ranges from

negative infinity to 1 and 1 indicates a perfect fitting.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Model construction and computations were performed in the Python programming language. The evaluation indicators of themodel include

MAE, RMSE, and R2. Details of all statistical analyses can be found above in the Model training and evaluation subsections of the Method

details section.
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