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a b s t r a c t

COVID-19 is a deadly viral infection that has brought a significant threat to human lives. Automatic
diagnosis of COVID-19 from medical imaging enables precise medication, helps to control community
outbreak, and reinforces coronavirus testing methods in place. While there exist several challenges in
manually inferring traces of this viral infection from X-ray, Convolutional Neural Network (CNN) can
mine data patterns that capture subtle distinctions between infected and normal X-rays. To enable
automated learning of such latent features, a custom CNN architecture has been proposed in this
research. It learns unique convolutional filter patterns for each kind of pneumonia. This is achieved
by restricting certain filters in a convolutional layer to maximally respond only to a particular class
of pneumonia/COVID-19. The CNN architecture integrates different convolution types to aid better
context for learning robust features and strengthen gradient flow between layers. The proposed work
also visualizes regions of saliency on the X-ray that have had the most influence on CNN’s prediction
outcome. To the best of our knowledge, this is the first attempt in deep learning to learn custom filters
within a single convolutional layer for identifying specific pneumonia classes. Experimental results
demonstrate that the proposed work has significant potential in augmenting current testing methods
for COVID-19. It achieves an F1-score of 97.20% and an accuracy of 99.80% on the COVID-19 X-ray set.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The novel SARS-CoV-2 (COVID-19) virus comes from the coro-
avirus family. The coronavirus cause ailments ranging from the
ommon cold, fever to severe difficulty in breathing, and res-
iratory illness. COVID-19 is a novel coronavirus that was first
eported in Wuhan, China, in December 2019 and is now affecting
he countries across the world. The coronavirus outbreak was
fficially declared as a pandemic by WHO on Mar 11, 2020.
The COVID-19 coronavirus has left a devastating effect on the

eople’s livelihood and the healthcare sector worldwide. Accord-
ng to the latest reports (as of July 2020), the US is the most
ffected country with 3.48M confirmed cases, and the global
eath toll has surpassed 578K [1]. More importantly, over 7.37M
ave recovered from the infection. Lockdown of the state has
een imposed in most countries to prevent the virus from spread-
ng among the population. COVID-19 affected patients can be
oth symptomatic and asymptomatic [2]. While it is important to
est people showing symptoms of the infection, it is also equally
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necessary to test people in contact with the affected person, even
though they may not show symptoms in the initial stages.

COVID-19 is a droplet infection and spreads from human to
human by the means of cough, sneeze, or any other form of
physical contact through which the virus can enter the host
body [3]. The COVID-19 virus affects people regardless of any
age group but the most susceptible targets are the older fraction
of people and patients with respiratory illness, cancer, diabetes,
and cardiovascular diseases. The symptoms of the disease include
dry cough, fever, body pain, and exhaustion. The symptoms are
usually mild and commonly start to develop only around 5–6
days after acquiring the virus. The most serious manifestation of
the symptom is breathing difficulty and high fever. To date, no
antiviral drugs are clinically proven to fight COVID-19, though
possible vaccines, plasma-therapy, and specific drugs (hydroxy-
chloroquine) treatment are being investigated and administered
on trial subjects [4]. Recovery from the virus is highly dependent
on the immunity of the affected host [5]. WHO advisories for the
prevention of the virus include social distancing and following
personal hygiene [6].

Currently, for the diagnosis of COVID-19, WHO recommends
Real-time PCR (Polymerase Chain Reaction) testing that detects
the presence of antigen from the respiratory samples [7]. From
a clinical study on a trial group of 64 patients, the RT-PCR test
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s shown to have a sensitivity of 91% in a confidence interval
f 81%–96% [8]. The results are generally obtained within a few
ours to 2 days, which is a critical phase as per treatment pro-
ocols. A new line of rapid diagnostic tests (RPT) is being used
o detect the presence of viral proteins expressed by COVID-
9 from respiratory samples. These tests have shown sensitivity
anging from 34% to 80% and give results in 10–30 min [9]. But
he results highly depend on the concentration of the antigen
n the sample, time from the onset, and several other factors.
erological testing techniques detect antibodies in the blood of
ffected people, formed in response to fighting the virus. But since
or the majority of people, the anti-bodies develop only 2 weeks
fter contracting the virus, these tests cannot be used for early
iagnosis.
Medical imaging can serve as an effective screening aid for

neumonia detection. It can be combined with Artificial Intelli-
ence to investigate the nature of pneumonia. Chest X-ray has
lready been shown to be a fundamental indicator of pneu-
onia and severe lung infection [10]. It is also the first-line

maging modality used for studying the complications in patients
uspected with COVID-19 [8]. Airspace opacities are the most
ommon find in the chest X-rays that suggest pneumonia. Since
OVID-19 can lead to pneumonia and manifests in the lungs,
edical imaging (chest X-rays and CT scans) can be mined for
atterns that can provide such distinguishable factors for the
dentification of the virus. Deep learning technology can enable
rawing a clear distinction of the non-tangible elements in the
-ray that can expose the infection. The proposed work is an
ffort made towards addressing the extent to which deep Con-
olutional Neural Network (CNN) can learn that pattern from the
adiological data.

Being a contagious disease, early detection of the virus can
ot only help to save the affected but also to avoid community
pread. Treatment in the early stages is also shown to reduce the
ortality rate. Chest X-rays are inexpensive and can be readily
btained in a period of 15 to 20 min. If sufficient evidence of
he virus can be spotted on the X-ray, then the sample can
e classified immediately. The presence of the infection can be
ddressed in a more informed way by automating the final step
o save time and add value to the decision process.

In this work, we propose a channel-shuffled dual-branched
NN architecture for accurately detecting COVID-19 from chest
-rays. To effectively learn salient features that capture class-
iscriminatory information towards the final layers of the CNN, a
ovel distinctive filter learning paradigm has also been proposed.
he network design is mainly composed of two tightly coupled
unctional blocks that are bound by feature channel shuffling
nd dual residual connectivity spanning across the blocks. The
roposed distinctive filter learning approach constrains a subset
f convolutional filters to uniquely learn X-ray patterns that
haracterize a particular class. It learns dedicated filter-sets for
OVID-19/pneumonia by exploiting the filters’ gradient response
owards that target class.

The proposed work effectively addresses the following re-
earch challenges in COVID-19 detection.

• Transfer learning and custom CNN models still follow the
conventional loss optimization, which can just fit any data
distribution. Any additional value that can be derived from
these models should come from enhancing the base learning
paradigm to capture more latent patterns.

• While most of the existing research in COVID-19 detection
explores standard CNN architectures and transfer learning
methods, customized architectural design specific to data

and task tends to generalize well to real-world samples.

2

• The literature on COVID-19/pneumonia detection does not
provide any additional insights into the CNN, in terms of the
filter properties and response to a target class. Examining
these patterns can provide the much needed human-level
understanding for interpretation of the virus from X-rays.

The main contributions of the proposed work are three-fold.

• The proposed learning paradigm is an algorithm that exclu-
sively learns distinctive convolutional filters for every target
label. It is done by restricting certain filters to maximally
respond only to a particular class of pneumonia/COVID-19.

• The proposed CNN architecture integrates different convo-
lutional types along residual links to aid better context for
learning robust features. The architectural design regulates
information flow by aggregating variably sized receptive
fields and sustaining steady gradient flow between layers.

• The proposed work provides visualizations of the top-k fil-
ters that are learned to identify specific target classes. Also,
the salient regions on the X-ray that influence CNN class
prediction are presented to aid better context for infection
localization.

The rest of the manuscript is organized as follows. In Section 2,
related works in pneumonia and COVID-19 detection are re-
viewed. Section 3 describes the proposed CNN architectures and
its various components in detail. Section 4 provides a comprehen-
sive analysis of the results of model training and validation. The
manuscript concludes with a summary of the key findings of the
work.

2. Related works

Diagnosis of COVID-19 from Chest X-rays is associated with
the symptoms of pneumonia. Thus, it should be possible to dis-
tinguish between the manifestations exhibited by COVID-19 from
other pneumonia on the chest X-ray modality. The traces of
COVID-19 on chest X-ray needs to be uniquely identified against
patterns observed in other forms of pneumonia. A wide array
of research works uncovers the discriminatory information that
best expresses pneumonia from normal samples on chest X-rays.
The methods employed in the research of pneumonia/COVID-19
classification from chest X-rays fall into these categories: Machine
learning (ML) methods [11–13], statistical approaches [14], CNN
architectures [15–22], transfer learning [23–34], complex CNN
models [35–42] and adversarial networks [43].

2.1. Pneumonia detection methods

Machine learning-based approaches define feature extraction
techniques that can effectively exploit features of interest from
the chest X-rays. These features are typically classified on a
ML algorithm. Chandra et al. propose a three-step solution for
automatic detection of pneumonia [11]. Regions of the X-rays
enclosing the lungs are extracted and quantified using first-order
statistical features like mean, kurtosis, etc. These feature en-
codings are distinguished using logistic regression, MLP, ran-
dom forests to obtain classification labels. Ambita et al. proposed
an approach for pneumonia detection from chest X-rays using
adaptive regression kernel descriptors and Support Vector Ma-
chine (SVM) [12]. Santos et al. proposed a methodology that
exploits texture-based statistical features from the Gray Level
Co-occurrence Matrix (GLCM) for classifying chest X-rays with
Neural Networks [13].

Statistical techniques model the distribution of a random vari-
able as a feature to be used for classification. Khatri et al. used the

Earth Mover’s Distance (EMD), to measure the difference between
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ntensity spread for pneumonia affected and non-pneumonia X-
ays [14]. Based on the variation in EMD values, thresholds are
dentified to categorize X-rays as having pneumonia/not.

CNN based approaches efficiently learn the underlying latent
eature representations, that can discriminate between pneumo-
ia affected and normal samples. Sharma et al. proposed a custom
NN for pneumonia classification [15]. The performance of the
rained network was studied under different settings to validate
he inclusion of dropout layers and data augmentation. Wu et al.
roposed a CNN based approach for deep feature extraction from
enoised X-rays to detect pneumonia [16]. Adaptive median fil-
ering is used for denoising, and a random forest classifier is
it over the extracted CNN features. Fathurahman et al. used
he Histogram of Oriented Gradient (HOG) and GCLM features
xtracted from the chest X-ray to train a one-dimensional con-
olutional network [17]. Nakrani et al. introduced a 19-layer
ustom CNN to identify pneumonia from chest X-rays [18]. The
pproach presented in [19] employs MLP and CNN for classifying
hest X-rays. It compares the performance of MLP and CNN with
our convolutional layers for pneumonia detection. Stephen et al.
eveloped a feed-forward CNN model with few convolutional
ayers and a fully connected layer for classifying pneumonia [20].
hakraborty et al. used a 17-layer CNN with 3 convolutional
ayers and 5 dense layers for viral/bacterial pneumonia identifi-
ation from chest X-rays [21]. Li et al. proposed a custom CNN
or pneumonia detection, which is experimented under a range
f convolutional layers [22].
Transfer learning is a technique that reuses existing weights

rom a model, pre-trained on a larger database. By replacing
nd retraining only the last few layers of the pre-trained model,
he modified CNN derives all of the architectural advantages
rom the base CNN. The work by Rahman et al. used four ex-
sting deep architectures: AlexNet, ResNet18, DenseNet201, and
queezeNet, to detect bacterial and viral pneumonia from chest
-rays [23]. Chouhan et al. applied transfer learning on five deep
eural architectures to form an ensemble classifier for the task of
neumonia classification [24]. In the work presented by Chhikara
t al. Google’s InceptionV3 model was utilized for deep transfer
earning by adding on dropout, average pooling, and fully con-
ected layers at the end of the network [25]. Chen et al. proposed
o apply transfer learning on deep architectures like Inception
esNet, NASNet, etc [26]. In [27], 11 ImageNet pre-trained models
ike AlexNet, SqueezeNet, GoogLenet, were retrained on the chest
-ray dataset using transfer learning. Narayanan et al. proposed
two-level CNN for pneumonia classification [28]. In the first

tage, samples are broadly classified as having pneumonia or
ot, of which the pneumonia samples are further categorized to
iral/bacterial in the second stage. Bhandary et al. utilized deep
eatures from the modified AlexNet, Harlick features, and Hu mo-
ents to render an ensemble feature-set for Deep Learning-based
lassification [29].
Advanced CNNmodels precisely learn specific aspects of pneu-

onia, that distinctly capture the infection. For instance, Mittal
t al. Proposed a method that combines multi-layered capsules
rom the CapsuleNet architecture with convolutions to form an
nsemble network for pneumonia detection [35]. Archarya et al.
roposed a deep Siamese network to compare the symmetry
etween the left and the right lung segments [36]. Sarkar et al.
mployed residual CNN with separable convolutions for pneumo-
ia detection from X-rays [37]. Jaiswal et al. proposed to identify
otential pneumonia from X-rays using a Mask-RCNN [38]. Re-
ions of interest were drawn around the predicted bounding
oxes and the lung opacity was quantified within these regions
o generate pixel-wise infection segmentation.

GAN is an adversarial pair of networks that optimize a shared
bjective in min–max fashion. Bhagat et al. presented an ap-
roach to augment chest X-ray data using GAN [43]. The aug-
ented dataset with new samples from the GAN is classified on
variant of the AlexNet to result in samples’ class predictions.
3

2.2. COVID-19 detection methods

Since research in COVID-19 detection from radiographs has
just begun to gain traction, the diversity of methods that explore
Machine learning and Deep learning for identifying COVID-19
are limited. This section covers key findings from the recent
COVID-19 works.

Transfer learning has been the most popular area of study for
detecting COVID-19. These works probe the levels of model fitting
that can be achieved by customizing standard deep architectures,
for the task of COVID-19 detection. Farooq and Hafeez presented a
fine-tuning of the ResNet50 by altering the training settings [30].
In this transfer learning approach, the ResNet was trained with
X-ray images of different sizes and under different learning rates
for the network head & backbone. Apostolopoulos and Mpesiana
tested five standard architectures under different hyperparame-
ter settings for COVID-19 detection from chest X-rays [31]. Five
standard CNN architectures that include, VGG19, InceptionNet,
MobileNetV2, XceptionNet, Inception ResNetV2 have been exper-
imented for the X-ray classification task under different hyper-
parameter (number of untrainable layers, choice of the top layer
neural network classifier, etc.) settings. Apostolopoulos et al. pro-
posed a transfer learning approach that uses off-the-shelf features
from the standard MobileNetV2 for deep classification of chest X-
rays into target classes consisting of COVID-19, pneumonia and 5
other pulmonary diseases [32]. The MobileNetV2 was also trained
from scratch on these classes. Khan et al. had used transfer learn-
ing on Xception net CNN for COVID-19 classification from chest
X-rays [33]. The approach modified the base Xception model by
adding a dropout layer and a fully connected layer at the end of
the network with a residual connection. Mangal et al. proposed to
use CheXNet CNN for COVID-19 detection [34]. The work applies
transfer learning on CheXNet by utilizing DenseNet121 as the
backbone network.

Researches in COVID-19 identification have also employed
complex CNNs to learn mappings that can capture specific as-
pects unique to COVID-19. Ozturk et al. proposed a modified
form of the DarkNet-19 model that is used in object detection
systems (like YOLO) [39]. The custom DarkCovidNet CNN com-
prised of 17 convolutional layers stacked sequentially along the
cross-section of the CNN. Saiz et al. proposed to utilize the single-
shot multi-detector (SSD) CNN. It generates objectness scores for
patches sampled from different parts of the X-ray (having larger
IoU with ground truth object) and classifies them to one of the
normal or COVID-19 classes [40]. Pereira et al. attempted a multi-
class classification for pneumonia using texture-based feature
descriptors and deep CNN features [41]. The early and late fusion
techniques were employed to group feature sets for training and
combine prediction results from different feature sets. Wang and
Wong proposed a custom CNN architecture built with projection
and expansion convolutional layers [42]. The network design
pattern was architecturally enhanced with depth-wise convolu-
tions, different kernel sizes, and selective long-range connectivity
across the layers. The model was reported to perform better than
standard VGG-16 and ResNet-50 on the same dataset.

3. Proposed work

The proposed work consists of two CNN architectures: (1)
Channel-Shuffled Dual-Branched (CSDB) CNN (2) CSDB CNN aug-
mented with Distinctive Filter Learning (DFL) paradigm. The mo-
tivation behind the CSDB CNN is to present a network design
that benefits from (1) dual residual connectivity across blocks, (2)
coupled network paths, (3) channel-shuffling and (4) correlation
of variably sized receptive fields. The DFL module is a network
learning strategy that learns unique class-identifying filters in a
single convolutional layer. The idea behind DFL is to quantify a
measure of the filters’ response to a target pneumonia class and
introduce this factor into the network loss optimization.
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.1. Channel-shuffled dual-branched CNN

The architecture of the proposed system is presented in Fig. 1.
he CNN operates on input dimensions of 256 ×256. Along with
NN, the feature depth increases by a factor of 2, i.e., starting from
2, 64, 128, 256, 512 to 1024 channels in the penultimate layer.
he lung regions segmented from the base chest X-ray is used
or model training and prediction. This ensures that only the data
rom the masked lung regions guide the learning algorithm and
revent unwarranted interferences from other regions from being
orrelated by the model. The augmented lung segments samples
re propagated across the various convolutional layers to wrap
ith a final softmax activated feature map in four classes. To
eep the network size low with as few parameters as possible,
e employ three other types of convolutions that can save the
ost of additional computation: (1) depth-wise separable convo-
ution, (2) grouped convolution, (3) shuffled grouped convolution.
he advantages derived from these individual convolutions are
ulti-fold: (1) they reduce the number of learnable parameters,
inimize computation costs, but still provide optimal perfor-
ance (2) they can be easily parallelized over multiple GPUs.

3) they can provide much better contextual information and are
hown to strengthen gradient flow between adjacent layers. (4)
y using them as residual links to the main branch, their capabil-
ties are enhanced, as information flow is aided by aggregation of
ulti-scale features.
The network architecture presented in Fig. 1 is mainly com-

osed of two CSDB blocks stacked in succession. The convolu-
ional function on the residual branches in the second block is
witched, resulting in Reversed CSDB. In a broad view, the spatial
onvolutional layers progressively extract mainline features along
he cross-section of the network, while residual connections from
uxiliary convolutional layers are utilized to raise more context
or feature learning. The dual residual links across the CSDB and
eversed CSDB complement each other by providing multiple
etwork paths for information flow.
The initial two convolutional layers with kernel size 7 ×7 and

5 ×5 extract preliminary low-level features from the chest X-
ray. Large-sized kernels in the first few CNN layers incorporate
maximal spatial information to successive layers, as the receptive
fields grow along with the CNN. The low-level X-ray features are
passed onto the first CSDB block.

At the inception of the first CSDB block, the network forks into
mainline and sideline paths. The side output branch (csdb_aux1)
is a result of grouped convolution with four groups and average
pooling. Using grouped convolution for building feature map
outputs with multiple kernels leaves a regularization effect. It
is also shown to learn filters that highly correlate with those in
the adjacent layers. Thereby it binds and develops robust links
for every filter group with surrounding layers. The csdb_aux1
connection jumps over the two mainstream Convolutional layers
(csdb_conv1, csdb_conv2) and the auxiliary features fuse at the
main branch. This fused feature map is spatially filtered by a
convolutional layer. The output from this layer is acted upon by
the channel shuffle layer and then by grouped convolution, both
of which together make up the shuffled convolution. Shuffled
convolution is shown to strengthen gradient flow between ad-
jacent layers. Especially in the context of CSDB, it forms strong
bindings between features propagated out of this block and the
ensuing RCSDB block. Besides the mainline features, additional
side-attention features are obtained from the csdb_aux2 branch.
The csdb_aux2 branch extends from the output of the csdb_conv1
layer and is a result of depth-wise separable convolution followed
by average pooling. The depth-wise separable convolutions on the
residual link enable the network to observe more contextual in-
formation at a much lower computation cost. It is highly efficient,
4

as the operations are dense. The features computed at csdb_aux2
serve as implicit prior attention cues for guided feature extraction
at the RCSDB block.

The RCSDB block is inherently the same as the CSDB block,
except for a few architectural changes. The convolutional lay-
ers on the dual branches are reversed, concerning preceding
CSDB as shown in Fig. 1. The motivation for functionally re-
versed residual branches comes from the fact that RCSDB input
is the result of shuffled convolution that employs filter groups.
Since convolution with grouped filters explores only subsets of
modalities, the resulting maps need to be aggregated over all
channels. Depth-wise separable and spatial convolutions in the
rcsdb_aux1 and rcsdb_conv1 branches achieve exactly this. Also,
the rcsdb_aux2 grouped convolutional branch learns specialized
filter groups for distinct sets of feature channels in the input
map. This strategy effectively complements the learning at depth-
wise separable convolution (in csdb_aux2 branch) that draws
correlations over all the feature channels, offering dense pixel
connectivity. Overall, the dual residual connections spanning the
two blocks function as coupled modules that yield multiple net-
work paths for information flow. That is, the input features can
trace any of these paths: csdb_conv1-> rcsdb_conv1, csdb_conv1-
> rscdb_conv2, csdb_conv2-> rcsdb_conv2. In all these possible
paths, the modules aggregate & disseminate contextual feature
information over multiple channels and provide regularization
capabilities (with dropout layers).

The RCSDB features are processed and consolidated through
a series of convolutions. The stream ends at a final classification
layer that maps these large sets of features to class-wise prob-
abilities. On the whole, the proposed CNN utilizes only 15.6M
parameters for accurately mapping the decision space.

The network parameters are learned by optimizing the log-
likelihood loss LCE of the predicted class probabilities ŷcls with
target class ycls, given by Eq. (1).

LCE(y, ŷ) = −
1
N

N∑
i=1

[y(i)
cls = 1]log

⎛⎝ eŷ
(i)
cls∑

j e
ŷ(i)j

⎞⎠ (1)

where ′i′ denotes the sample in the batch and j = {‘healthy’,
‘COVID-19’, ‘bacterial pneumonia’, ‘viral pneumonia’} indicates
the four classes modeled by the CNN.

3.2. CSDB CNN augmented with distinctive filters learning (DFL)
paradigm

To learn filters that can accurately observe discriminating
characteristics for specific classes, the formulation of a novel
secondary loss function is proposed. The proposed loss strategy
is applied to the CSDB CNN as shown in Fig. 2.

The proposed approach utilizes the weighted gradients of
filters for the target class to identify the set of filters that re-
spond maximally to a particular class. Such filters (that capture
differentiating factors for a particular class) can be determined
for every output class. The additional loss function proposed, will
aim to minimize the distance between the maximally activated
filters within the same class and maximize the dissimilarity of
filters between different classes. This technique is applied to the
penultimate layer of CNN so that the shared features learned until
then can be distinctively associated with respective classes.

Let cls denote the target class. For a spatial convolutional layer
L yielding activated feature map fm(L), let W (L) denote learnable
weights/filters of L with dimensions [out_channels × in_channels
× filter_size × filter_size]. The gradient of the feature map at layer
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Fig. 1. Schematic diagram of the proposed Channel Shuffled Dual-Branched CNN.
Fig. 2. Architectural sketch of the proposed CSDB CNN with Distinctive Filter Learning (DFL).
a

s

, fm(L), for a particular class ycls is a mode-3 tensor given by
q. (2).

(L)
c =

⎡⎢⎢⎢⎢⎣
∂ycls

∂ fm(L)
11c

· · ·
∂ycls

∂ fm(L)
1wc

...
. . .

...
∂ycls

∂ fm(L)
h1c

· · ·
∂ycls

∂ fm(L)
hwc

⎤⎥⎥⎥⎥⎦ (2)

where G(L)
c are the gradient matrices for channel c = 1 to

ut_channels, i.e., the gradients are computed for every feature
channel in the output feature map.
5

A spatial softmax activation is applied along the depth axis,
over every h × w pixel on the gradient map G(L)

c to obtain sgfm(L)

s shown in Eq. (3).

gfm(L)
ijc =

eG
(L)
ijc∑out_channels

c=1 eG
(L)
ijc

(3)

sgfm(L) is a weighted distribution of the layer L’s feature map
gradients for the output class. Indirectly sgfm(L) is a manifestation
of the relative importance of features obtained at a layer that
responds the most to a target class. The significance of the output
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eatures from a convolutional layer can be quantified by encoding
t this way.

Let V (.) denote the vectorizer function that unfolds the el-
ements of a tensor into a flat vector. Let V (W (L)) indicate the
ectorized form of the mode-4 weights tensor W (L). Similarly, let

V (fm(L)) denote the linear vector of the feature map fm(L). Let m
and n be the total number of elements in the vectors V (W (L)) and
V (fm(L)). Then, the gradient of the activated feature map V (fm(L))
for layer weights V (W (L)) can be encoded into a Jacobian matrix
J (L), as given by Eq. (4).

J (L) =

⎡⎢⎢⎢⎢⎢⎣
∂V (fm(L)

1 )

∂V (W (L)
1 )

· · ·
∂V (fm(L)

1 )

∂V (W (L)
m )

...
. . .

...

∂V (fm(L)
n )

∂V (W (L)
1 )

· · ·
∂V (fm(L)

n )

∂V (W (L)
m )

⎤⎥⎥⎥⎥⎥⎦ (4)

The vector–Jacobian product between the Jacobian matrix J (L) in
Eq. (4) and the vectorized form of sgfm(L), i.e., V (sgfm(L)) in Eq. (3)
is shown in Eq. (5). This resultant gW (L) are the gradients of filters
W (L) for ycls, weighted by the maximally activated output at that
layer’s feature map, i.e. sgfm(L).

V
(
gW (L))

= J (L)
T

· V
(
sgfm(L))

=

⎡⎢⎢⎢⎢⎣
∂ycls

∂V (W (L)
1 )

...
∂ycls

∂V (W (L)
m )

⎤⎥⎥⎥⎥⎦ (5)

The values in V (gW (L)) in the vectorized form can be wrapped
back to the original dimensions of W (L), that is [out_channels
in_channels × filter_size × filter_size]. From the formulation,

gW (L) holds these gradient weights in the base dimensions. A
global average pooling of window size (filter_size, filter_size) is
applied over the last two dimensions of gW (L) to render a matrix
of gradient values, agW (C). Each cell in this matrix of shape
(out_channels × in_channels) corresponds to a filter learned by
layer C . The values in V (agW (L)) represent a single weighted
gradient value for a filter for the target class ycls and is a measure
of the contribution of the filter towards that class.

To enable comparison of the filters at a layer that maximally
respond to samples from different output classes, an encoding
vector is constructed from V (agW (L)) to represent that informa-
tion. The resultant V (agW (L)) is normalized between 0 to 1 and
a boolean vector b(L) is framed such that values more than 90th
percentile are set to 1 while the rest are 0s. The Eq. (6) gives the
construction of b from V (agW (L)).

b(L)
i =

{
1, V (agW (L))i ≥ 90th percentile

0, otherwise
(6)

This representational encoding of the set of filters that respond
the most to a target class, b(L)

i , can be obtained by a single
backward gradient step. The computed gradients can be com-
pletely reused for updating the gradients against the loss function
defined in Eq. (1). The proposed secondary loss LF function for
updating the gradients of layer C and preceding layers is given
in Eq. (9). This function maximizes the dice similarity coefficient
Dicesim between the encodings b of samples x and y from the
same class ycls Eq. (7) and minimizes the dice score Dicedis−sim
between samples x and z of different classes Eq. (8). The dice
distance was employed so that the intersecting filters (between
samples in the same/different classes) is effectively capturing the
overall maximal filters. The dice distance is an accurate measure
of distortedness between two boolean representations, especially
6

here, as the minor case (filter gradient values ≥ 90th percentile)
is only 10% of all filters.

Dicesim(b
(L)
i , b(L)

j ) =

2
⏐⏐⏐b(L)

i ∩ b(L)
j

⏐⏐⏐⏐⏐⏐b(L)
i

⏐⏐⏐ +

⏐⏐⏐b(L)
j

⏐⏐⏐ (7)

Dicedis−sim

(
b(L)
i , b(L)

j

)
= 1 − Dicesim(b

(L)
i , b(L)

j ) (8)

LF
(
y, ŷ; b(L))

=
1(N
2

) (N2)∑
i,j

[y(i)
cls = y(j)

cls]Dicedis−sim(b
(L)
i , b(L)

j )

+[y(i)
cls ̸= y(j)

cls]Dicesim(b
(L)
i , b(L)

j )

(9)

t can be observed from Eq. (9) that the loss formulation has in-
luded a L factor (in b(L)), which is a particular convolutional layer
n CNN. It is essential to choose L, as it will determine the model’s
earning curve to a large extent. For the proposed architecture,
= 9, 10, i.e., the two penultimate layers from the last. Learning
istinct filters that can be associated with individual classes can
nly be achieved in the final few layers. This is because, after the
omputation of intricate and complicated features in the mid-
ayers, CNN tries to learn discriminatory features only towards
he end. Until the final layers, most of the features are shared
n ways that can efficiently represent all possible latent modes
n chest X-rays. The last layer is not chosen, as the immediate
oftmax cross-entropy function updates those weights. Also, by
earning the penultimate filters this way, makes it very easy for
he last layer to discern differences in samples from different
lasses.
To show an example of the proposed filter loss, the filter en-

oding b(10) for the 10th spatial convolutional layer (penultimate
ayer) is derived from the layer weights of dimensions 1024 ×512
3 ×3. b(10) is an encoding in 1024 ×512 = 524288 filters, where
ach value is a boolean representing a maximal response or not.
A similar effect (of learning filters for particular classes) can

lso be achieved by spawning explicit sub-networks for each
lass, that branch off the shared backbone. But the proposed
echnique not only learns unique class identifying filters, but also
ccomplishes these key points of saliency: (1) it has converted a
ingle convolutional layer as a dual purpose learner, i.e. learning
o extract representational features, learning them in a distin-
uishable way by tuning the filters. (2) it has performed class
iscrimination with the least number of parameters (hardly 10%
ilters for each class) that capture most significant neuronal spikes
eading to a target class classification. (3) during predictions,
lassical CNN approaches correlate neuronal patterns from all
he channels in the feature map to arrive at the target class.
ut the proposed technique learns a few robust spatial filters
hat only observe certain channel slices of the feature map, and
s still able to provide discerning factors for multiple classes.
4) the proposed approach can be easily introduced into any
NN architecture. It offers performance enhancements over the
lassical CNN paradigm by boosting class discriminability with
edicated filter-sets for each target class.

. Results and discussions

This section presents a comprehensive view of the dataset,
xperimentation, model training, and validation. A performance
omparison of the proposed approach with the existing works has
een presented in the final sub-section.

.1. Data acquisition

The dataset was prepared from the frontal view of chest X-
ays. The X-rays for different classes of pneumonia were acquired
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ata collection from different sources. Provided are the count of patients studied and samples curated in each category of pneumonia.
S.No Source Details Category Number of

patients
Sample count

1 Joseph Cohen Dataset
[44]

Open-source data
maintained by the
University of Montreal

COVID-19 227 356

2 Radiopaedia [45] An open database compiled
by radiologists and
clinicians

COVID-19 35 61

3 AG Chung Dataset
[46]

University of Waterloo,
Canada

COVID-19 31 35

4 ActualMed Dataset
[47]

University of Waterloo,
Canada

COVID-19 51 58

5 SIRM [48] Italian Society of Medical
and Interventional
Radiology

COVID-19 48 48

6 RSNA Challenge [49] Public data provided by the
National Institutes of Health
Clinical Center

Normal 8851 8851

7
Paul Mooney dataset [50]

Guangzhou Women and
Children’s Medical Centre,
Guangzhou

Normal 584 1583

Bacterial Pneumonia 1437 2780

Viral Pneumonia 1216 1493
Table 2
Performance of the CSDB CNN on each validation fold.
Folds Precision Recall F1-score Accuracy Specificity AUC

Fold1 90.46 93.53 91.73 93.94 97.78 95.66
Fold2 88.90 91.97 90.03 92.47 97.22 94.60
Fold3 89.34 92.69 90.65 93.09 97.52 95.10
Fold4 89.58 94.63 91.87 94.07 97.88 96.25
Fold5 88.60 94.06 91.07 93.55 97.66 95.86
Overall Average 89.38 93.38 91.07 93.42 97.61 95.49

from multiple sources. The details of the data sources are pre-
sented in Table 1. These sources collectively yielded a set of 558
COVID-19 Chest X-rays.

4.2. Lung region segmentation

From chest X-ray samples, the lungs regions were segmented
y applying a pre-trained algorithm [51]. These lung segments are
ubjected to augmentation and fed as input to the CNN.

.3. Data augmentation

COVID-19 chest X-ray databases are continually sourced from
ommunity contributions that are not sufficient for training com-
lex models like CNN. This work adopts a lossless augmentation
echnique that can multiply the sample count as well as preserve
he inherent property of the infection in the samples.

To enable model fitting on a sufficiently large number of sam-
les, the lung segments in the base dataset were augmented by
pplying four random affine transformations: horizontal flipping,
otation, translation, shearing. The affine transformation func-
ions for rotation, translation, shear, horizontal flip are parame-
erized as follows: θ is the angle of counter-clockwise rotation
bout the origin; ∆x and ∆y are the translations along x and
directions; hx and hy are the horizontal and vertical shear

actors. For generating diverse samples, the transformations are
andomly seeded with parameter values in the specified range: ‘θ ′

s between −10◦ to 10◦; ∆x and ∆y are within 0.1 of the height
and width w of the image respectively; hx and hy are in the

ange of −tan(∅) to tan(∅) units of h and w for the shear angle
in the range [−5◦, 5◦]; flipping is performed randomly with a

robability of 0.5. The augmentation was online, i.e., performed
n batches sampled during training. The four transformations
ere applied in succession to render the augmented samples.
7

4.4. Experimental setup

The proposed network was trained on two 12 GB NVIDIA Tesla
K80 GPUs on Google Cloud VM. The proposed learning paradigm
was implemented in PyTorch. The data parallelism module built
into the Torch framework was exploited to generate gradients
for multiple data batches simultaneously on different GPUs. The
system specifications are Ubuntu 18.04, 2vCPUs, and 13 GB RAM.
The model was trained with Adam optimizer, with a learning rate
of 0.002. The data was trained in batches of 512 images with a
roughly equal number of samples under every class in a training
batch, with over 24 steps per epoch. As the dataset sample
counts were skewed towards certain classes, the augmentation
trick and weighted-class batch sampling compensate for the data
imbalance. The stratified data sampling approach was employed
to result in an equal number of samples from each class in every
training batch. The proposed CNN was trained for 75 epochs, and
it converged well.

4.5. Hyperparameter tuning

Hyperparameter tuning was performed using Grid search on
the RayTune framework. The experiment was set up with three
hyperparameters in the model: (1) dropout rate in the dropout
layer (2) multiplicative factor of learning rate decay (3) gradient
update optimization algorithms. Optimal tuning was attained by
searching for the parameter values in the specified range: dropout
factor is between 5% to 20% in steps of 5%; exponential decay
rate is either of discrete values 0.01 or 0.02; gradient optimizers
is one of ADAM or SGD. It was found that dropout probabilities
of 5% and 10% resonated well with the grouped and separable
convolutional branches respectively. The decay parameter yielded
optimal network convergence at a value of 0.01 and the ADAM
optimizer gave better results over SGD.

4.6. Model training and validation

The proposed models were trained on the augmented chest X-
ray lung region data and evaluated on a set of hold-out real X-ray
samples. To prove model convergence on a limited test dataset,
the proposed CNN is evaluated on k-fold cross-validation (k = 5
folds). Of all the collected samples in Table 1, the distribution of
samples into training-validation sets under each fold across target
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Table 3
Observations of the cross-validation process (learning curves) recorded by the CSDB CNN with the DFL model. The rows present the
evolution of prediction accuracy with epochs, degeneration of model loss, ROC curve respectively.
classes is split in the ratio of 4:1. The models were evaluated on

various ML classification metrics, that include accuracy, precision,
8

recall, specificity, area under ROC (AUC), and F1-score. The exper-
imental results of the proposed CSDB CNN model are tabulated in
Table 2.
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ccuracy, Loss values for the proposed DFL embedded CSDB CNN observed on
he training and validation data across 5 folds. Also, the Macro averaged Area
nder ROC (AUC) and AUC for the COVID-19 class are shown for each fold.
Fold Accuracy Loss Area under ROC (%)

Training Validation Training Validation COVID-19 Macro-average

Fold1 99.70 98.23 0.0667 0.167 98.51 97.75
Fold2 99.88 96.79 0.0512 0.237 97.65 97.27
Fold3 99.34 97.61 0.082 0.179 98.26 98.16
Fold4 99.50 98.33 0.088 0.159 98.77 99.09
Fold5 99.81 98.72 0.0710 0.127 98.75 97.75

The proposed CSDB CNN attained an average accuracy of
3.42% in classifying the four target classes. Particularly for the
OVID-19 class, the model achieved precision, recall, F1-score,
ccuracy values of 95.93%, 92.50%, 94.10%, 99.57% respectively.
NN has shown good results on all the metrics with values of
ver 90%. A modest recall score of 93.38% asserts the reliability
f the model’s predictions on unseen data. Besides, the macro
UC of 95.49% suggests a minimal classification error rate and
s indicative of the model’s class distinguishability.

While the CSDB model qualifies well as a ML classifier, AI-
ssisted diagnosis and prognosis in medicine demand accurate
etection and localization of the infection for clinical analysis. To
nable precise detection of the infection traces on the chest X-
ay modality, the DFL strategy has been proposed for the CSDB
NN. The DFL algorithm learns distinct spatial filters that are
ffine towards particular classes of COVID-19 or pneumonia. The
esults of model training and validation for the DFL-enhanced
SDB CNN are presented in Tables 3 and 4. Of the curves in
able 3, the degeneration of the loss values, and the predictive
ccuracy over epochs were recorded during training. The Receiver
perating characteristic (ROC) curve was sketched post-training
n the respective validation sets. Table 4 gives fold-wise quan-
itative values of accuracy, the loss for training, and validation.
t also lists the area under ROC for COVID-19 class and macro-
verage across all target classes under each validation fold. Fig. 3
rovides the confusion matrices obtained on the validation sets
n the 5 folds.

From Table 3, it is clear that the model had converged well
n all the 5 folds and displays an average accuracy of over 97%
n the validation sets. The ROC curve measures the extent of
eparability of classes by drawing a trade-off between the pos-
tive class (true positive rate) and negative class (false positive
ate). In a multi-class setting, ROC can be plotted for each target
lass by considering the non-class samples to be the negative
lass (one vs rest strategy). The macro average ROC curve rep-
esents all four classes and is obtained by averaging ROC values
rom each target class. The fold-wise macro average ROCs in Ta-
le 4 demonstrate a minimal overlap in the predictions amongst
lasses (lesser false positives and false negatives). The area un-
er the ROC curve (AUC) quantifies the classifier’s ability to
orrectly distinguish between classes. The proposed approach
as learned precise decision boundaries for the target COVID-19,
hich is evident from the 5-fold AUC values for the COVID-
9 class. The proposed classifier’s performance was evaluated
omprehensively under various ML classification metrics. Table 5
resents these evaluation metrics with values aggregated from
he 5 folds.

From Table 5, it can be observed that the proposed model per-
orms excellently in detecting the COVID-19 samples as testified
y the precision, recall, and F1-scores of over 95%. A high recall
alue is usually the desired outcome in medical applications as it
an pose a bigger risk if a real infected patient is not detected. For
he three pneumonia classes, the recall scores are sufficiently high

o capture any possibility of the predicted sample being infected.

9

Table 5
Proposed DFL augmented CSDB CNN performance on the validation set for
the four target classes (values are averaged across 5 folds). Also, the macro-
averaged scores for each metric (computed from all classes per validation fold)
are aggregated over all 5 folds.
Classes Precision Recall F1-score Accuracy Specificity AUC

COVID-19 98.36 96.07 97.20 99.80 99.94 98.01
Normal 99.54 97.89 98.71 98.25 99.03 98.46
Bacterial Pneumonia 95.43 98.74 97.05 98.91 98.94 98.84
Viral Pneumonia 92.03 97.46 94.66 98.92 99.08 98.27
Macro scores 96.34 97.54 96.90 97.94 99.25 98.39

On the other hand, the model has shown a higher precision in
identifying normal (pneumonia-free) samples, which indicates
that the model seldom emits fake ‘normal’ alerts. It classifies a
sample to be normal only when there is very little evidence for
the sample to express any pneumonia. The specificity values for
COVID-19 and viral pneumonia is high, signifying the classifier’s
precision in identifying samples outside the target class. The accu-
racy is measured in a one vs rest fashion, by deemed the samples
outside a given class to be a negative sample. Considering the
F1-score as an overall projection of the classifier’s performance
given the trade-offs between recall and precision, the model has
displayed good results for all classes.

4.7. Ablation study

To prove the effectiveness of the proposed architectures i.e.
CSDB CNN and the DFL module, the methods were evaluated
with reference to a baseline CNN architecture that comprises of
7 feedforward convolutional layers. Several experiments carried
out as a part of ablation studies are presented in Table 6. These
experimental studies investigate the individual performance en-
hancements offered by the CSDB and the DFL components over
conventional CNN layers.

From the results presented in Table 6, the network perfor-
mance gains from the two contributions can be assessed as fol-
lows:

4.7.1. Effectiveness of the CSDB CNN architecture
To validate the efficacy of the CSDB block, it is compared

against a baseline CNN with seven sequentially stacked convolu-
tional layers. X-ray features are propagation through the baseline
model in a simple feedforward fashion and classified. This base
model is around 80% accurate on a randomized test set. By ac-
counting for 80% accuracy as the baseline for comparison of CNN
works on the COVID-19 X-ray data, the CSDB CNN improves this
score by a factor of 16.83%, purely from the architectural design
perspective. The CSDB block also improves the F1-scores for all
classes (esp. COVID-19) by many folds, over the baseline scores.

4.7.2. Effectiveness of the DFL module
The DFL module was tested under multiple different experi-

mental settings. When applied to the penultimate convolutional
layer in the baseline CNN, the DFL strategy boosted native CNN
performance by 6.14%. It is to be noted that DFL loss can be set
to optimize single or multiple Convolutional layers in the CNN.
While DFL can be set on any convolutional layer in the CNN, it
yields the best results when tried on the final few layers. The
last layer is not chosen, as the immediate cross-entropy function
updates those weights. Since CNN learn shared high-level fea-
tures until the last few layers, the final layers ideally learn class
distinguishing features that work well with DFL. The number of
final layers to which DFL can be applied without affecting CNN’s
feature mining has to be determined empirically. In the case
of CSDB CNN, the DFL applied to the last (n−2)th and (n−1)th
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Fig. 3. Fold-wise Confusion Matrix for the proposed DFL-enabled CSDB CNN. The values were recorded on the validation set under each fold.
Table 6
Classification performance of the CSDB CNN and DFL over a baseline CNN with 7 convolutional layers connected in a feedforward manner. Class-wise F1-scores and
AUC values are reported for the ablation experiments. It is assumed that ‘n’ denotes the number of convolutional layers on CNN.
Experiments F1-score AUC Accuracy

COVID-19 Normal Bacterial
Pneumonia

Viral
Pneumonia

Macro
average

COVID-19 Normal Bacterial
Pneumonia

Viral
Pneumonia

Macro AUC

Baseline 7-layer
feedforward CNN

73.60 84.48 69.26 64.78 73.56 90.29 84.49 84.75 83.62 85.78 79.96

Baseline CNN with
DFL at n-1 conv
layer

81.78 89.90 76.02 72.89 80.14 94.51 88.16 88.45 88.24 89.84 84.87

CSDB CNN 94.26 95.62 90.15 83.18 76.85 95.21 94.88 95.60 94.78 87.81 93.42
CSDB CNN with
DFL at n-2, n-1
conv layers

96.86 98.28 95.50 94.74 96.34 98.16 97.99 97.93 99.10 98.23 97.35

CSDB CNN with
DFL at n-1 conv
layer

97.20 98.71 97.05 94.66 96.90 98.01 98.46 98.84 98.27 98.39 97.94
convolutional layer gave almost the same results as DFL applied
to just the (n−1)th layer. For this CNN, the performance saturates
hen DFL is set to the utmost one convolutional layer from the

ast. For other very deep networks, DFL applied to multiple final
ayers can provide optimal performance. From the observations,
t is evident that DFL has improved the CSDB model by 4.84% to
ttain the state of the art performance for COVID-19 detection
rom chest X-ray. It has also boosted the macro F1-score by 6.40%.
he DFL has augmented the capabilities of the CSDB CNN by
dding more discriminatory power for learning patterns unique
o pneumonia classes.
10
4.8. Comparison with standard CNNs

Table 7 presents a comparison of the proposed work with
standard CNN architectures. Extensive experiments were per-
formed to validate the enhancements from DFL over standard
architectures. Five CNN architectures listed in Table 7 were re-
implemented and trained on the COVID-19 X-ray data. Further,
performance improvements from DFL were studied by integrating
it with the penultimate layer for each CNN. For the architectures
that had utilized fully connected layers for classification, those
layers were compensated with 1 x 1 convolutions. DFL was shown
to improve the performance over all the backbone architectures.
The DFL had brought about large leaps inaccuracy, F1 value for
some models (Squeezenet, DenseNet161, VGG16), and relatively
smaller gains in other cases (ResNeXt32, ResNet50).



R. Karthik, R. Menaka and Hariharan M. Applied Soft Computing Journal 99 (2021) 106744

T
Q
a

c
o
a
f
a
f
w
w
a
h
t
t
T
o
s
d
a
a
w
t
o

4

t
w
p
o
g

t
I
h
t
o
t
o

d
m
t
i
t
1
p
l
d

able 7
uantitative performance validation results of multiple standard CNN architectures on the COVID-19 X-ray dataset. The enhancements from DFL are evaluated by
pplying it to the penultimate Convolutional layer for each CNN.
Methods Number of parameters Macro average precision Macro average recall Macro average F1-score Accuracy AUC

SqueezeNet 728K 67.33 76.91 70.26 74.92 84.00
SqueezeNet + DFL 72.15 81.10 75.16 79.34 86.85

VGG16 134M 73.06 84.17 77.13 81.40 88.79
VGG16 + DFL 77.49 84.86 80.11 85.20 89.77

ResNet50 23M 85.50 91.68 88.03 90.93 94.25
ResNet50 + DFL 91.49 95.15 93.15 94.79 96.62

ResNeXt 32 × 4d 23M 86.91 92.87 89.46 92.24 95.07
ResNeXt 32 × 4d + DFL 91.69 95.35 93.34 94.96 96.76

DenseNet161 26M 88.96 93.64 90.98 93.25 95.62
DenseNet161 + DFL 95.11 97.04 96.03 97.15 97.99

CSDB CNN 15M 82.97 89.28 85.37 88.42 92.57
CSDB CNN + DFL 96.34 97.54 96.90 97.94 98.39
Of all the compared CNNs, DenseNet161 results were the
losest to the CSDB model, but it had utilized a far bigger number
f parameters in contrast. This large performance margin can be
ttributed to the dense connectivity pattern and strengthened
low of gradients in DenseNets. With DFL, DenseNet results were
dvanced by a factor of 4.18%. The Squeezenet model had under
itted the X-ray data (failed to converge on the training set),
hich led to a sub-optimal performance on the test set. But
ith DFL enabled, the model’s class separability was enhanced
nd resulted in 5.9% better scores. VGG16 on the other hand
ad overfitted the X-ray data and gave rise to 85% accuracy on
he validation set. DFL had positively impacted the model fitting
o an extent and improved VGG16 validation results by 4.67%.
he ResNet and ResNeXt models yielded equivalent F1-scores
f 88% and 89.5%. The ResNeXt model utilized 32 convolutional
kip connection paths between blocks with an internal channel
imension of 4 in each path. By integrating DFL onto the model
rchitecture, ResNeXt produced marginally better F1 than DFL en-
bled ResNet. The DFL boosted F1-scores for ResNeXt and ResNet
as enhanced by 4.34% and 5.82% respectively. On the whole,
he proposed CSDB CNN augmented with DFL achieved the best
verall performance under reduced parameters.

.9. Visual interpretation of the trained model features

Table 8 presents three gradient-based visual representations
hat show chest X-ray regions weighed by their propensity to-
ards the target classes: (1) class saliency maps (2) guided back-
ropagation (3) Grad-CAM [52]. These techniques capture regions
f saliency, as pixel response to class outcome is quantified by its
radient.
The saliency map is formed by calculating the gradient of the

arget class probability ycls for spatial pixels Iij on the input image
. It can be observed that the COVID-19 X-ray sample in Table 8
as registered the most impact in the central region of the lung. In
he normal sample case, CNN had attended to almost all regions
f the X-ray to look for regions that can pose defects. In the other
wo pneumonia cases, the regions are spread out in different parts
f the lungs.
In the guided backpropagation approach, neurons that pro-

uce no effects or negative effects against a target class are
asked out. It is achieved by refining the feature flow during

he forward pass (ReLU activated feature maps) and gradient flow
n the backward pass (clipping gradients to the positive range),
hereby resulting in lesser noisy gradients. For the specific COVID-
9 sample in Table 8, guided backpropagation has suggested
recise infection hotspots, explicitly pointing to top areas in the
ungs. For the normal X-ray, most of the gradients had zeroed out

uring the backpropagation, so it did not trace any identifiable

11
region on the input X-ray. For viral and bacterial pneumonia,
regions around the center and corner of the lungs are marked to
have produced a positive gradient response towards the target
class.

The gradient class-activation map (Grad-CAM) is a channel-
wise weighted averaging of feature map gradients at a convolu-
tional layer. The channel weights are determined by average pool-
ing spatial gradient values at that channel. The representational
Grad-CAM maps in Table 8 were computed at the penultimate
convolutional layer. The COVID-19 map shows an intense band
of activations in regions roughly aligning with the saliency map.
For the normal sample, gradient weighted features are mild and
are uniformly spread in all directions of the X-ray. The bacterial
and viral pneumonia hotspots are shown to occur around the mid
regions and the lower zones in the lungs.

Thus, the visual modes are inter-related to an extent but are
uniquely characterized in their approach towards finding regions
of saliency.

To verify if the proposed methodology has mapped dedicated
filter sets for specific classes, the top responding 10% filters (524 K
out of 524288 filters) in the penultimate layer are identified for
every chest X-ray sample in the validation set. When compared
across samples in the same class, it was observed that intersection
over union (IoU) values of the all the filter sets within the class
was 0.985, 0.971, 0.963 and 0.930 for the COVID-19, normal,
bacterial and viral pneumonia classes respectively. It was also
seen that between classes, the intersection of filters was minimal
for all the classes: 0.017, 0.037, 0.063, 0.036 respectively. Hence it
is evident that the model has converged well in learning unique
filter sets for each class. The top 500 such 3-by-3 filters (sorted
by weighted gradient response) are shown for each class in Fig. 4.
COVID-19 filters appear to be subtly oriented around the tainted
regions of the X-ray. Filters from normal class samples seem to
be neutrally responsive overall X-ray regions. Bacterial and viral
pneumonia filters respond to input templates that seem to vary
widely over different parts of the X-ray.

4.10. Performance analysis

Table 9 presents a performance comparison of the proposed
work with existing works. To draw a valid comparison between
the proposed study and other COVID-19 studies, the related
works should have performed multi-class (COVID-19/pneumonia)
classification on the same/similar chest X-ray dataset with AI
techniques. Only works that have experimented on the same
COVID-19/pneumonia datasets as the current work (listed in
Table 1) are compared. The compared works have performed
classification in three classes (COVID-19, normal, pneumonia) or

four classes (COVID-19, normal, bacterial, viral pneumonia). By
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Table 8
Visualization of the most salient regions on the X-ray using three gradient-based input response weighing methods. Samples on the
top left, top right, bottom left, bottom right correspond to COVID-19, normal, bacterial, and viral pneumonia classes respectively.
The color bars were suitably chosen to best project the sensitivities of these heat maps in the most characteristic way.
Fig. 4. Visualization of the template patterns captured by a distinct set of filters for each class. (For visual purposes, top 500 filters are shown for every target class).
limiting to these classes, the works share more or less the same
level of complexity. The proposed work has yielded the best F1-
score and accuracy for COVID-19 detection as well as overall
pneumonia detection compared to most of the existing works.
This is due to the result of learning patterns to identify class
samples uniquely.
12
It is to be noted that Farooq and Hafeez [30] had reported
100% COVID-19 detection results only on a small test set size of
8 COVID-19 samples and displayed an overall accuracy of 96.23%.
In contrast, the proposed work has validated on 112 samples
robustly under 5-fold cross-validation and has shown better 4-
class accuracy. Though [31] has tested with more samples, the
proposed work has outperformed [31] by a large margin in terms
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able 9
erformance Analysis of the proposed work with current research works that have utilized the same chest X-ray data sources for COVID-19, Pneumonia images as
he current work.
S No Source Methodology Class Number of

COVID-19
Test
samples

Approx.
parameters

Overall
F1-score
(%)

Overall
accuracy (%)

F1-score for
COVID-19
(%)

COVID-19
class
accuracy (%)

1 Ozturk et al. [39] DarkNet-19 based CNN 3 ∼25 1.164M 87.40 87.02 88.00 87.02
2 Mangal et al. [34] CheXNet based CNN 4 30 26M 92.30 87.2 96.77 99.6
3 Khan et al. [33] Transfer learning with

Xception net
4 ∼70 33M 89.8 89.6 95.61 96.6

4 Wang and Wong [42] Customized CNN
architecture

3 100 11.75M 93.13 93.33 94.78 96.67

5 Apostolopoulos and
Mpesiana [31]

Transfer learning with
MobileNetV2

4 222 3.4M 93.80 94.72 90.50 96.80

6 Farooq and Hafeez
[30]

ResNet50 based CNN 4 8 25.6M 96.88 96.23 100.0 100.0

7 Proposed Work Customized CNN with
distinctive filter learning
module

4 112 15.6M 96.90 97.94 97.20 99.80
of F1-score and accuracy. Of all the compared works, the pro-
posed work achieves the best trade-off between network size
(characterized by several learnable parameters) and performance
(in terms of accuracy and F1-score).

5. Conclusion

In this work, a novel CNN architecture and a network learning
aradigm were proposed for classifying COVID-19 from chest X-
ays. CNN uses channel-shuffling and dual residual skip connec-
ions for learning robust features. It also integrates dual branch-
ng with multiple convolutional layers with for raising diverse
ontextual features. The CNN architecture efficiently aggregates
ariably sized receptive fields and sustains stable gradient flow
cross blocks. The proposed distinctive convolutional filter learn-
ng module utilizes the softmax weighing over the first-order
radients of the activated feature map to derive significant fea-
ures. By considering weighted gradients as a measure of filter’s
ffinity towards the predicted class, different sets of filters are
ptimized to learn unique patterns for each pneumonia class.
o alleviate the problem of the smaller available dataset, the
roposed system trains on augmented samples of lung segments.
he presented CSDB and DFL components were subjected to abla-
ion studies under different experimental settings to validate the
ffectiveness of the proposed approaches. The efficiency of the
FL module was also evaluated on five standard CNN backbone
rchitectures. From the results, it is evident that the model has
onverged optimally and has learned differentiating patterns for
ach pneumonia class. As future work, the model can be extended
o work with sub-types of pneumonia, other lung diseases to
earn definitive patterns that can help radiologists.
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