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ABSTRACT The mitochondrial genomes of Saccharomyces cerevisiae strains contain up
to 13 introns. An intronless recombinant genome introduced into the nuclear back-
ground of S. cerevisiae strain W303 gave the S. cerevisiae CW252 strain, which is used to
model mitochondrial respiratory pathologies. The complete sequence of this mitochon-
drial genome was obtained using a hybrid assembling methodology.

The mitochondrial genome of the Saccharomyces cerevisiae CW252 strain (1, 2) was
sequenced using both Illumina short-read and MinION long-read sequencing tech-

nologies. In the first step, reads issued from 2 runs of the Illumina MiSeq platform and
GAIIx system with a quality score greater than 30 were purified by mapping with
TopHat2 (3) on the mitochondrial genome of the S. cerevisiae S288c parent strain; they
were then sampled by Trinity (4) to obtain an estimated coverage of 30�. An assembly
of the genome obtained by Velvet (5) with a k-mer size of 55 produced 34 contigs (N50,
3.7 kb), which were subsequently scaffolded by SSPACE (6) to obtain 10 contigs (N50,
57.5 kb). Some of these scaffolds seemed to be chimeric, since a mapping of the
original paired-end reads on this assembly by BWA (7) displayed only 85% success. A
correction step was then performed by REAPR (8) to break the chimeric scaffolds,
producing a coherent assembly of 38 scaffolds of good quality (N50, 2 kb). Examination
of the mapping of these scaffolds on the S288c mitochondrial genome showed that
many of the gaps between scaffolds contained GC-rich clusters which could hamper
Illumina sequencing (9). In a second step, two-dimensional (2D) base calling of a single
run on a MinION R9.4 flow cell, using Metrichor, produced 29,276 reads with a mean
length of 4 kb and a total length of 120,259 kb. The correction, trimming, and assembly
of these reads by Canu version 1.4 (10) produced 2 contigs, one of 84 kb corresponding
to the mitochondrial genome, and another of 34 kb corresponding to contamination
from the nuclear genome. The mitochondrial contig was first trimmed at both ends to
remove overlapping extremities. To improve the quality of the MinION sequencing, the
assembly was polished using two strategies, (i) the Pilon version 1.21 hybrid method
(11) to directly correct the assembly using the Illumina reads by five iterative correction
steps and (ii) a prior polishing of the sequence by Nanopolish (12), followed by four
correction steps by Pilon. The second method gave the best results, with approximately
2-fold fewer nucleotide variations than the Illumina scaffolds, and the assembly was
retained as a bona fide backbone. To improve the final assembly, the scaffolds issued
from the Illumina assembly were replaced on this backbone, and the resulting mito-
chondrial genome was then annotated. The unique contig sequence was 70,523 bp
long, and no nucleotide variation was shown in several regions spanning 8,500
nucleotides (nt) sequenced by the Sanger method. This genome displays the mosaic
structure of its construction. Particularly, the 3= sequence of the COX3 gene is different
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from that of its S288C parent strain and corresponds to the sequence of the S. cerevisiae
D273-10B strain (13).

Accession number(s). The genome sequence is available in GenBank with acces-
sion number MG916964.
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