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A B S T R A C T

Background: and purpose: The investigation of functional plasticity and remodeling of the brain in 
patients with retinal detachment (RD) has gained increasing attention and validation. However, 
the precise alterations in the topological configuration of dynamic functional networks are still 
not fully understood. This study aimed to investigate the topological structure of dynamic brain 
functional networks in RD patients.
Methods: We recruited 32 patients with RD and 33 healthy controls (HCs) to participate in resting- 
state fMRI. Employing the sliding time window analysis and K-means clustering method, we 
sought to identify dynamic functional connectivity (dFC) variability patterns in both groups. The 
investigation into the topological structure of whole-brain functional networks utilized a graph 
theoretical approach. Furthermore, we employed machine learning analysis, selecting altered 
topological properties as classification features to distinguish RD patients from HCs.
Results: All participants exhibited four distinct states of dynamic functional connectivity. 
Compared to the healthy control (HC) group, patients with RD experienced a significant reduction 
in the number of transitions among these four states. Additionally, the dynamic topological 
properties of RD patients demonstrated notable changes in both global and node-specific char
acteristics, with these changes correlating with clinical parameters. The support vector machine 
(SVM) model used for classification achieved an accuracy of 0.938, an area under the curve (AUC) 
of 0.988, and both sensitivity and specificity of 0.937.
Conclusion: The alterations in the topological properties of the brain in RD patients may indicate 
the integration function and information exchange efficiency of the whole brain network were 
reduced. In addition, the topological properties hold considerable promise for distinguishing 
between RD and HCs.

1. Introduction

Retinal detachment (RD) occurs due to the separation of the retinal nerve epithelium and pigment epithelium, which is a prevalent 
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and severe ocular disorder leading to vision loss. Several forms of RD exist, with rhegmatogenous being the most common among them 
[1]. Research suggests that the worldwide yearly occurrence of RD is approximated at 12.17 instances per 100,000 individuals, with 
Europe exhibiting the highest incidence, followed by the Western Pacific region and the Americas among the world’s geographic areas. 
There is evidence pointing towards a rising trend in the incidence of RD over time, potentially resulting in a doubling of the current rate 
within the next two decades [2]. In the initial stages of RD, patients typically manifest symptoms such as acute floaters, flashing lights, 
and visual field defects. As the lesion extends into the macular area, it results in vision loss, potentially progressing to blindness. Some 
patients may experience anxiety, depression, or cognitive impairment, which brings a heavy burden to society and families [3,4].

Various risk factors are linked to the prevalence of RD, encompassing retinal tears, high myopia, previous cataract surgery, and a 
familial history of RD [5]. These risk factors can induce retinal or vitreous degeneration, leading to the accumulation of fluid under the 
neurosensory retina, which is a critical characteristic of RD. Prior research has demonstrated that vision impairment in patients with 
RD primarily results from the depletion of photoreceptor cells [6]. In a clinical context, the photoreceptor cells persist in undergoing 
apoptosis for a duration even after the successful surgical repair of RD [7]. Photoreceptor cells are situated in the retinal neuro
epithelium, which is considered extensions of the central nervous system (CNS). This implies the potential presence of CNS abnor
malities in patients with RD [8]. Presently, there exist three types of in vivo and in vitro models for studying the pathophysiological 
mechanisms of retinal detachment. However, each model possesses both advantages and disadvantages, so the pathogenesis of retinal 
detachment is still unclear [9,10].

At present, the diagnosis of RD predominantly depends on clinical ophthalmological examinations, including optical coherence 
tomography (OCT), ocular B-scan, fundus microscopy, and slit-lamp microscopy. These examinations aid in identifying the type of RD 
and extent of detachment [11]. However, these tests solely examine ocular function and cannot evaluate potential abnormalities in the 
CNS of patients with RD. As a non-invasive imaging method, rs-fMRI has gained growing popularity for studying the intrinsic activity 
of the brain, which provide a new direction for the pathophysiological mechanism of RD [12–14]. Retinal detachment, as a serious eye 
disease, can lead to impaired visual information processing, and this sensory loss or change may trigger adjustment or reorganization 
of the brain in visual processing and related functional networks. Several recent studies have demonstrated that patients with RD 
exhibit abnormal functional connection density [15] and percent amplitude of fluctuation [16] in vision-related brain regions. 
Moreover, Ji et al. found that dALFF, functioning as a local indicator of brain activity, could be valuable in clinical diagnosis [17]. 
Currently, there is a scarcity of fMRI studies on patients of RD both domestically and internationally. Most investigations have pre
dominantly concentrated on the local brain regions or individual indices of RD. Nevertheless, the alterations in global brain functional 
networks among patients with RD remain inadequately understood.

Brain networks can be classified into regular networks, random networks, and “small-world” networks [18]. In regular network, the 
Lp is longer, and Cp is higher. Conversely, random network exhibits a shorter Lp and a lower Cp. Graph theory has become increasingly 
prominent for illustrating the intricate network maps of the human brain, both structurally and functionally [19]. This approach 
reveals how the brain operates as a sophisticated and interconnected network. Graph theory has found application in the investigation 
of Alzheimer’s disease (AD) [20,21], schizophrenia [22] and cervical spondylotic myelopathy (CSM) [23,24]. Liu et al. employed 
graph theory to investigate changes in functional connectivity among primary angle-closure glaucoma (PACG) patients. Their findings 
indicate that PACG patients sustain the stability of brain networks through compensatory effects in both visual and non-visual areas 
[25]. It is of significance to investigate whether RD as an ophthalmic disease has similar topological characteristics to PACG patients. 
Since similar topological characteristics may reveal the similarities in brain function between these two eye diseases, it provides a new 
perspective for understanding the pathogenesis of RD. To enhance the observation of temporal changes in brain functional activity 
among patients with RD, we integrated graph theory analysis with sliding time window analysis. Utilizing the K-means clustering 
method, the outcomes within each sliding time window can be partitioned into distinct states, enhancing the description of the 
working patterns of the human brain throughout the scanning process. Finally, different machine learning models were constructed to 
distinguish between patients with RD and healthy people. Machine learning models are able to learn and recognize disease patterns 
from large amounts of data, thereby improving the accuracy of diagnosis. This is one of the hot spots in current research and has been 
applied to many diseases [26,27].

The aim of this study was to capture the dynamic configurations of brain networks in patients with RD. We hypothesized that (i) 
patients with RD showed a different dynamic connectomic pattern than HCs; (ii) the topological attributes of RD patients showed 
temporal variability; (iii) topology attribute values serve as sensitive biomarkers capable of distinguishing patients with RD from HCs.

2. Materials and methods

2.1. Participants

This study employed an observational case-control design, with sample size calculation based on a two-sample approach to test 
differences between patients with RD and HCs. The power calculation was conducted using the G-Power3.1 software (http://www. 
gpower.hhu.de/).This study comprised 32 RD patients diagnosed by the First Affiliated Hospital of Nanchang University from 
January 2023 to September 2023, along with 33 HCs carefully matched for age, sex, and education level. The selection criteria for 
patients with RD were as follows: (1) idiopathic RD impacting one or both retinal tears, (2) RD involving up to two quadrants, and (3) 
no concurrent eye conditions in either eye. Conversely, patients were excluded if they had (1) recurring RD, (2) RD linked to high 
myopia, (3) RD caused by ocular trauma, (4) RD with severe complications, (5) a history of surgical procedures, (6) cardiovascular 
disease, and (7) mental health disorders or cerebral infarction.

Inclusion criteria for the HC group included the absence of eye diseases and major illnesses (such as cerebral infarction) and 
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uncorrected visual acuity greater than 1.0. All participants underwent magnetic resonance imaging and relevant pertinent eye ex
aminations. The intraocular pressure was measured using an tonometer. The Hamilton Anxiety (HAMA) and Hamilton Depression 
(HAMD) Scales were used to assess whether patients with RD had anxiety and depression. And the Montreal Cognitive (MoCA) Scale 
was used to assess cognitive function in patients with RD. We calculate the score by asking questions on the scale. These scales have 
been validated to provide consistent and reliable assessment criteria, making results more comparable.

2.2. MRI data acquisition

All participants were scanned using a 3.0 T MRI system (Siemens Trio Tim, Erlangen, Germany) equipped with an 8-channel phased 
array head coil, located at the Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University. 
Table 1 details the specific scanning parameters.

2.3. Data pre-processing

Rs-fMRI data processing was conducted using the DPABI toolbox v6.0 [28]. The preprocessing involved several steps: (1) con
version of image formats and exclusion of the initial ten time points; (2) correction for temporal levels and head movements; (3) 
alignment of functional data with T1-weighted structural images; (4) standardizing image dimensions to Montreal Neurological 
Institute (MNI) space and resampling to a 3 × 3 × 3 mm³ voxel size; (5) elimination of linear drift and covariates; (6) global signal 
regression, including white matter and cerebrospinal fluid; and(7) applying a bandpass filter within the 0.01–0.08 Hz frequency range.

2.4. Construction of dynamic functional networks

The dynamic functional connectivity (dFC) matrix for each participant was created using the DynamicBC analysis toolbox [29], 
employing a sliding time window technique. This method involved a 30 TR window length and a 1 TR step size. According to previous 
studies, spontaneous activities can be better captured within 30–60s of window length, and different window lengths within this range 
have little impact on the results [30]. Then we get 201 Windows, each scanned 30 times. The brain’s 90 anatomical regions were 
delineated using the Automatic Anatomical Labeling 90 (AAL) atlas. For each window, we calculated the Pearson correlation coef
ficient across all brain region time series, resulting in a 90x90 matrix per window for each subject. We performed fisher Z trans
formation on all the matrices to bring the data closer to the normal distribution. We then assessed the Z-values to depict temporal 
fluctuations in the correlation coefficient, which effectively represented the variability in dFC.

2.5. Characteristics of dynamic functional networks

K-means clustering was then applied to classify the functional connectivity matrix. This analysis used city block distances to 
measure the similarity between different time windows. The optimal number of clusters was determined using the elbow criterion, a 
widely used method known for its intuitiveness, simplicity, and clarity [31]. The range of variation of k was 2–10, and the optimal 
number of clusters k = 4 .The dFC matrix of all subjects was clustered into four dFC states, which were recurrent instantaneous FC 
patterns across different windows and subjects. A state was considered effective when it contains at least 10 windows. From the FC 
time series, we extracted data to quantify several temporal characteristics: (1) the fraction of time, denoting the percentage of each 
state within the four states, (2) mean dwell time, representing the average time a subject spent in a specific state, and (3) transition 
number, indicating the frequency with which a subject transitioned between states.

We then extracted the variability matrix for all subjects and the brain networks in each state. The two-sample t-test was further used 
to compare differences between groups (with age, gender, and education as covariates; network-based statistics correction with edge p 
\0.001, component p\ 0.05, literation = 1000).

Table 1 
Scan parameters for all sequences.

Parameters 3D-T1 EPI

TR(ms) 1900 2000
TE (ms) 2.26 30
flip angle 9◦ 90◦

FOV(mm²) 256 × 256 200 × 200
matrix 256 × 256 64 × 64
slice thickness(mm) 1 4
number of slices 176 30
voxel size(mm³) 1.0 × 1.0 × 1.0 3.0 × 3.0 × 4.0
interslice gap(mm) 0.5 1.2
number of scans 256 240
duration 3 min and 34 s 8 min and 6 s

TR, repetition time; TE, echo time; FOV: field of View; EPI, echo-planar imaging.
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2.6. Graph theory analysis of dynamic functional networks

The dFC networks, derived from all sliding time windows, underwent an evaluation of their topological characteristics using graph 
theory-based methods [32]. The global properties are as follows: (1) global efficiency, quantifies how efficiently information is 
exchanged across the entire network; (2) local efficiency, refers to the average of the local efficiency of the entire network; (3) small 
world, characterizes networks that exhibit both high clustering and short average path lengths. When calculating small-world prop
erties, the number of randomizations for random networks is 1000. The parameters measured are as follows: (a) characteristic path 
length (Lp): the average shortest path length between any pairs of nodes; (b) clustering coefficient (Cp):the average 
inter-connectedness of a node’s direct neighbors; (c) normalized clustering coefficient(γ): the clustering coefficient compared to 
matched random networks; (d) normalized characteristic path length(λ): the characteristic shortest path length compared to matched 
random networks; (e) small-worldness (σ):the normalized clustering coefficient divided by the normalized characteristic shortest path 
length, which reflect the balance of global efficiency and local efficiency. The nodal properties are as follows: (1) nodal degree cen
trality, measures the number of connections a node has in the network; (2) nodal betweenness centrality, quantifies the extent to which 
a node lies on the shortest paths between other pairs of nodes in the network; (3) nodal local efficiency, refers to the efficiency of 
information transmission on the direct neighbors of a node; (4) nodal clustering coefficient, measures the degree to which its neighbors 
are interconnected. The mathematical equations of all topological properties have been described in previous studies [33]. This 
analysis was conducted with the GRETNA toolkit v2.0.0 [34]. To mitigate the impact of spurious relationships on interregional 
connectivity, we established the network sparsity range from 0.1 to 0.4, using intervals of 0.01 as suggested by prior research [35]. At 
this sparsity, all subjects’ networks have small-world properties (sigma>1.1). We assessed the variability of both global and nodal 
network metrics within each dFC network and sliding time window. When calculating gamma and lambda values, the Watts-Strogatz 
model of small-world networks was used as a benchmark to evaluate whether the topology of the network was significant [18]. In 
addition, we used the null model proposed by Maslov and Sneppen as a control group to better evaluate the characteristics of the 
actually observed network [36]. A two-sample T-test was then applied to determine the temporal fluctuations in these metrics, illu
minating the evolving topological dynamics of the brain networks.

2.7. Statistical analysis

For statistical analysis, we used SPSS software v26.0.2 Continuous variables’ group differences were analyzed using a two-sample t- 
test, whereas categorical variable disparities were examined using the Chi-square test. For the comparison of dynamic topological 
attributes between the two groups, FDR correction was used to reduce the incidence of a class of errors, and q < 0.05 was considered to 
be statistically significant. Subsequently, we explored the relationship between dynamic functional network metrics and clinically 
relevant parameters, as well as scale scores within the RD group.

2.8. Machine learning analysis

To assess the diagnostic potential of dynamic graph theory attributes for RD, we use machine learning to classify them. There were 
many options for the input of the model, and we ultimately chose a support vector machine (SVM) model for classification. SVM is a 
supervised learning model suitable for classification and regression tasks with small sample sizes. SVM performs classification by 
maximizing the margin between classes. Key parameters include the penalty parameter C, the kernel function parameter γ, the type of 
kernel function, and class weights. Adjusting these parameters can optimize model performance, typically achieved through cross- 
validation to select the best parameter combination [37]. The procedural steps include: (1) extracting variation values of all dy
namic brain network graph theory attributes; (2) select the appropriate kernel function and set parameters, train the SVM model, and 
optimize the parameters by leaving a cross-validation; (3) model evaluation and prediction.

3. Results

3.1. Demographics and clinical characteristics

There was no significant difference in age (P = 0.868), sex (P = 0.806) and education level (P = 0.115) between RD patients and 
HCses of RD patients are shown in Table 2.

3.2. Temporal characteristics of dynamic functional networks

Applying the elbow rule determined the optimal cluster number K as 4. In these clusters, we discerned four distinct states in the 
subjects’ resting state MRI scans: status 1(34.06 %), status 2(15.54 %), status 3(32.84 %), and status 4(17.56 %) (Fig. 1). The RD group 
demonstrated fewer transitions between these states compared to the HC group. Furthermore, no notable differences were found in 
frequency and MDT for both groups, as shown in Fig. 2.

2 https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-26.
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Table 2 
Demographic and clinical characteristics of the subjects.

Condition RD(n = 32) HC(n = 33) P-value

Age(years) 53.22 ± 18.57 52.55 ± 13.73 0.868
Gender(male/female) 17/15 17/16 0.806
Education(years) 9(9, 12) 9(8.5, 10.5) 0.115
Disease duration(days) 17.5(7, 30) N/A N/A
IOP (mmHg) 14.08 ± 3.47 N/A N/A
Axial length of eye(mm) 24.44 ± 1.62 N/A N/A
Corneal endothelial cell
count (mm2) 2366.7 ± 472.65 N/A N/A
HAMA 3(1.25, 4.75) N/A N/A
HAMD 3(1, 4) N/A N/A
MoCA 19.94 ± 6.24 N/A N/A

RD, retinal detachment; HC, healthy control; IOP, intraocular pressure; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; 
MoCA, Montreal Cognitive Assessment; N/A, not applicable.

Fig. 1. The state-switching pattern across all subjects and sliding windows; It also shows the transition numbers (a) and MDT(b) among state 1, state 
2, state 3, and state 4, as well as the occurrence frequencies of these states(c).
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3.3. Differences in edge analysis between RD and HC groups

All brain regions were classified into corresponding networks according to the RSN map. There were no significant differences in 
functional brain connectivity between the two groups in the four states. However, compared with HC, the variation values was 
significantly reduced in the RD group. It was mainly manifested in Auditory Network (AN) and Salience Network (SN), AN and Default 
Mode Network (DMN), AN and Visual Network (VN) (Fig. 3).

3.4. Dynamic topological properties of brain networks

We found that compared with HC, RD patients had a small-world attribute, and the variance of Lp (p＜0.001), Cp (p＜0.001), γ(p＜ 
0.001), λ (p = 0.002) andσ(p＜0.001) were significantly reduced, while no difference was found between global efficiency(Eglob) and 
local efficiency(Eloc) (Fig. 4).Moreover, significant variations were observed in node attributes, including measures such as degree 
centrality, nodal efficiency, betweenness centrality, nodal cluster coefficient, predominantly within networks like the auditory (AN), 
salience (SN), precuneus (PN), executive control (ECN), sensorimotor (SMN), default mode (DMN), and visual (VN), detailed in Table 3
and Fig. 5. All data were corrected by the Bonferroni correction, with a significance threshold set at p < 0.05.

3.5. Relationships between network properties and clinical variables

The dynamic graph theory attributes of RD patients were significantly correlated with the disease duration, corneal endothelial cell 
count and MoCA scores. However, no significant correlations were found among the three dynamic time features (NT, Frequency, 
MDT) in patients with RD (Fig. 6).

3.6. Machine learning results

After synthesizing the classification efficiency of all models, we found that SVM model has a better classification effect on small 
samples. The classification accuracy of SVM model is 0.938, the area under the curve (AUC) is 0.988, the sensitivity is 0.937, and the 
specificity is 0.937. The AUC is shown in Fig. 7.

Fig. 2. Differences of temporal properties between the two groups. A significant variance was found in the number of transitions (mean ± SD for RD 
patients: 8.45 ± 3.61; for healthy controls: 10.59 ± 5.06, p＜ 0.05). but not in MDT or state frequency. The RD and HC groups are represented by 
purple and blue, respectively.

Fig. 3. The result of the variability connection matrix. SFGdor, superior frontal gyrus, dorsolateral; SFGmed, superior frontal gyrus, medial; 
ORBsupmed, superior frontal gyrus, medial orbital; MFG, middle frontal gyrus; L, left; R, right.
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4. Discussion

The purpose of this study was to investigate the temporal characteristics of dynamic brain networks and the variability of network 
topological organization in patients with RD. Through clustering analysis and graph theory analysis, we reveal significant differences 
between the two groups and explore the mechanisms by which these differences may be related to RD.

We delineated four distinct states through the clustering of topography network maps derived from subjects across all sliding time 
windows. Commonly, parameters such as NT, MDT, and frequency are employed in dynamic pattern analysis to depict state properties 

Fig. 4. Between-group comparisons of; (a) clustering coefficient (Cp), (b) normalized clustering coefficient (γ), (c) normalized characteristic path 
length (λ), (d) characteristic path length (Lp), (e) small-worldness (σ), (f) global efficiency (Eglob), and (g) local efficiency (Eloc). *Bonferroni p 
< 0.05.

Table 3 
Abnormal topological properties in RD and HCs groups.

Brain networks Brain regions FDR q values

Nodal degree Nodal efficiency Nodal betweenness Nodal cluster coefficient

Auditory network ORBmid.L 0.676 0.96 0.032 0.864
ORBmid.R 0.679 0.402 0.02 0.637

Salience network ORBsup.L 0.006 0.496 0.983 0.519
CUN.R 0.653 0.736 0.02 0.881

Precuneus network MOG.R 0.716 0.049 0.57 0.028
Executive control network HIP.R 0.011 0.278 0.192 0.603

PHG.L 0.979 0.038 0.972 0.017
SPG.L 0.027 0.274 0.348 0.662
SMG.L 0.089 0.06 0.1 0.042

Sensorimotor network SMG.R 0.799 0.26 0.078 0.036
ANG.L 0.481 0.296 0.782 0.049
ANG.R 0.023 0.015 0.131 0.026

Default mode network CAU.L 0.031 0.144 0.721 0.003
Visual network STG.L 0.634 0.111 0.678 0.025

STG.R 0.234 0.056 0.108 0.033
TPOsup.L 0.005 0.001 0.812 0.003
TPOmid.L 0.558 0.162 0.031 0.059
TPOmid.R 0.027 0.101 0.233 0.182
ITG.L 0.059 0.106 0.233 0.047
ITG.R 0.948 0.277 0.969 0.026

Marking regions as abnormal if they showed significant inter-group disparities (FDR q < 0.05). RD, retinal detachment; HCs, healthy controls; 
ORBmid, middle frontal gyrus, orbital part; ORBsup, superior frontal gyrus, orbital part; CUN, cuneus; MOG, middle occipital gyrus; HIP, hippo
campus; PHG, parahippocampal gyrus; SPG, superior parietal gyrus; SMG, supramarginal gyrus; ANG, angular gyrus; CAU, caudate nucleus; STG, 
superior temporal gyrus; TPOsup, temporal pole: superior temporal gyrus; TPOmid, temporal pole: middle temporal gyrus; ITG, inferior temporal 
gyrus; L, left; R, right.
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Fig. 5. Compares degree centrality(a), nodal efficiency(b), betweenness centrality(c), and nodal cluster coefficient(d) between groups. Color bars 
represent t-scores; warm colors indicate areas of increased node variance in RD patients and cooler colors showing the converse.

Fig. 6. Correlation analysis results between variance values of topological attributes of nodes and clinical parameters. HIP, hippocampus; SPG, 
superior parietal gyrus; ITG, inferior temporal gyrus; ANG, angular gyrus; L, left; R, right.
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[38]. These properties capture brain functional activity and have the potential to undergo reconfiguration during illness [39]. In the 
present study, the RD group exhibited a greater NT between the four states compared to the HC group. These differences in NT may 
reflect the spontaneous characteristics of patients with RD. Previous research has demonstrated a correlation between the augmen
tation of NT and a reduction in information flow efficiency within the brain network [40]. RD is known to affect the normal function of 
the retina, resulting in abnormalities in image processing and perception, which is consistent with the pattern of high NT we found. 
These results support the theory of neurological and perceptual dysfunction caused by RD, suggesting that NT may be a valuable 
indicator for assessing RD. In addition, the variation values of RD group was significantly reduced compared with HC group. It is 
mainly manifested in AN and SN, AN and DMN, AN and VN. This finding suggests that AN is the main damaged network, which is 
consistent with previous findings in glaucoma, suggesting that the two may have similar pathogenesis [41].

Small-world networks have been observed in many diseases and are thought to be a favorable balance of local brain specialization 
and global integration, characterized by longer Cp and shorter Lp [42–44]. In this study, the variance of all small-world attributes (Cp, 
Lp, γ, λ, σ) in patients with RD were lower than HCs. These findings indicate that the brains of patients with RD exhibit a tendency to be 
“fragile” and prone to disturbances and damage. Cp may be linked to diminished functional connectivity in specific brain regions due 
to pronounced demyelination, which also observed in optic neuritis [45]. Lp gauges the capacity for information transmission across 
the network and is associated with cognitive function [46]. The parameter γ, serving as a standardized clustering coefficient, assesses 
network dispersion, with lower values indicative of reduced grouping. In patients with RD, optic nerve impairment may result in 
damage to the pertinent brain hemispheres, potentially altering brain function area values and leading to cognitive dysfunction. 
Nevertheless, diminished values of λ and σ signify a reduction in local specialization among RD patients, suggesting a propensity for the 
transformation of the brain functional network towards a random network. This network randomization has also been observed in 
cases of PACG and CSM [23,25]. Furthermore, an investigation centered on patients with drug-naive social anxiety disorder (SAD) 
revealed a reduced λ in SAD, which suggests a transition towards a random configuration in the network topology characteristic of SAD 
patients [47]. Compared with small-world networks, random networks have lower modularity and fault tolerance in information 
processing [48]. The observed randomization in RD patients suggests a less optimal organization of their brain’s functional networks, 
hinting at potential dysfunction in brain network integration for individuals with RD. Various research indicates that dynamic vari
ability in brain networks might boost information integration and augment cognitive process flexibility [49,50]. Nonetheless, RD 
patients exhibited no notable differences in the variance of global and local efficiency. This may be a structural adaptation to 
compensate for the brain integration dysfunction in RD patients and maintain the overall brain information transmission efficiency.

Additionally, RD and HC displayed notable distinctions in the variability of node attributes. For degree centrality, significant 
differences were mainly concentrated in SN, ECN, SMN, DMN and VN. Degree centrality quantifies the number or sum of weights of 
connections directly linked to a node [51]. A study on RD has indicated a close association between the visual function changes in RD 
patients and the functional connections of the DMN [13]. DMN and ECN fulfill roles in cognitive control and emotional regulation. 
Specifically, DMN facilitates internal psychological exploration, while ECN is involved in processing external stimuli and tasks. And SN 
plays a crucial role in detecting conflicts between these two networks and maintaining a balance in the transition between introverted 
and extroverted cognitive states [52,53]. Therefore, we speculated that the decreased variance of degree centrality of DMN, ECN and 
SN might be caused by the decline of cognitive function in patients with RD. Furthermore, earlier research has indicated a close 
relationship between the SMN and the spontaneous brain activity linked to the primary visual cortex [54], and the intimate correlation 
between these two elements holds significant importance in the processing of spatial visual information [55]. This suggest that SMN 

Fig. 7. AUC diagram of SVM model. The red line represents the training set, and the purple dashed line represents the test set.
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and VN have synergistic functions. Owing to the damage to photoreceptor cells in patients with RD, there is a reduction in visual 
information input, leading to compensatory increases in the functional activities of SMN and VN. Interestingly, brain regions with 
significant differences in node efficiency and nodal cluster coefficient were distributed within similar networks. Node efficiency re
flects the effectiveness of information transfer among a node’s immediate neighbors, while the nodal cluster coefficient denotes the 
inter-connectedness of those direct neighbors [51]. It is noteworthy that both the node efficiency and nodal cluster coefficient of PN 
exhibit a reduction. Previous investigations have underscored the significant role of the precuneus in DMN [56]. Wu et al. [57] have 
reported that PN might be implicated in the compensatory mechanism of Type 2 Diabetes Mellitus-Related Cognitive Impairment 
(T2DM-NCI), highlighting the precuneus as a potentially sensitive neuroimaging feature indicative of cognitive impairment. This 
aligns with the previous results, indicating that the dynamic changes of PN may predict cognitive changes in patients with RD. 
Betweenness centrality signifies a node’s impact on directing information flow among other nodes [51]. In this study, we found that 
the variance of betweenness centrality in AN both increased and decreased, indicating that the information flow in the auditory 
network was unstable, or it might be the result of remodeling in the network. Furthermore, betweenness centrality of VN, pivotal in 
visual information processing, exhibited a reduction. The interaction between VN and AN may reveal sensory information integration 
disorders. Shu et al. [58] postulated a plausible hypothesis in their research, suggesting that diminished interhemispheric information 
processing within VN among Primary Angle-Closure Glaucoma (PACG) patients might induce alterations in the capacity of SN to 
receive external stimuli. Therefore, we speculate that the impairment of VN in patients with RD could potentially result in an 
augmentation of the compensatory function of SN. These networks are both independent and interconnected. This indicates that RD is 
not a single network damage disease, but spans multiple networks.

Correlation analysis showed that the small-world attribute and nodal attribute of RD patients were significantly correlated with 
clinical ophthalmology parameters and scale scores. The node efficiency within ECN demonstrated a positive correlation with both 
MoCA scores and corneal endothelial cell counts. Likewise, there was a positive correlation between the nodal cluster coefficient 
within VN and corneal endothelial cell count. Endothelial cells play a crucial role in maintaining the function and transparency of the 
cornea. As individuals age, corneal endothelial cell counts naturally decrease. However, dysfunction in these cells can also contribute 
to a reduction in corneal endothelial cells [59]. This suggests that as disease advances and cognitive function declines in RD patients, 
the information transmission efficiency of nodes in ECN and VN will be affected. Furthermore, the nodal cluster coefficient of SN 
showed a negative correlation with the disease duration. This suggests that the brain network changes may occur in the early stage of 
RD.

In this study, SVM model was used to classify RD patients based on dynamic graph theory attributes. The classification accuracy of 
SVM model is 0.938, the area under the curve is 0.988, the sensitivity is 0.937, and the specificity is 0.937. Therefore, we speculate that 
dynamic graph theory properties can be used as sensitive biomarkers to distinguish patients with RD and HCs. Of course, these results 
need to be verified by large samples and multi-center experiments.

4.1. Limitation

Several limitations exist. Primarily, this cross-sectional study elucidates the dynamic connectivity patterns in the brain networks of 
RD patients, necessitating longitudinal studies to gauge surgical impacts on changes within this dynamic connectome. Additionally, 
the inclusion of all RD patients might obscure distinctions among varying patient types in dynamic brain network results. Moreover, 
this study solely scrutinized disparities in functional brain networks among RD patients, warranting further exploration into the to
pological attributes of structural brain networks. Finally, the count of data set in this study is too less for using a high standard machine 
learning algorithm, and larger data sets will be needed to validate this result in the future.

5. Conclusion

In our research, we employed sliding time window techniques along with graph theory approaches to analyze alterations in the 
dynamic structure of whole-brain functional networks among RD patients. We found that the variance of small-world attribute was 
generally reduced in RD patients, indicating that the integration function of whole brain network and the efficiency of information 
exchange were reduced in RD patients. In addition, there were significant differences in the variance of node attributes in patients with 
RD, mainly concentrated in SN, ECN, SMN, DMN, VN, AN and PN. This provided imaging evidence to explain cognitive impairment in 
patients with RD. This study not only pinpointed irregularities in these networks, but it also enhanced existing knowledge regarding 
resting brain networks in RD patients. In addition, we usedmachine learning models to classify patients with RD and found that dy
namic graph theory attributes might offer sensitive markers to differentiate RD patients from HCs.
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