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Brain derived exosomes (BDEs) are extracellular nanovesicles that are collectively
released by all cell lineages of the central nervous system and contain cargo from
their original cells. They are emerging as key mediators of communication and waste
management among neurons, glial cells and connective tissue during both physiological
and pathological conditions in the brain. We review the rapidly growing frontier of BDEs
biology in recent years including the involvement of exosomes in neuronal development,
maintenance and communication through their multiple signaling functions. Particularly,
we highlight the important role of exosomes in Alzheimer’s disease (AD), both as a
pathogenic agent and as a disease biomarker. Our understanding of such unique
nanovesicles may offer not only answers about the (patho) physiological course in AD
and associated neurodegenerative diseases but also ideal methods to develop these
vesicles as vehicles for drug delivery or as tools to monitor brain diseases in a non-
invasive manner because crossing the blood brain barrier is an inherent capability of
exosomes. BDEs have potential as biomarkers and as therapeutic tools for AD and
related brain disorders in the near future.

Keywords: brain derived exosomes, Alzheimer’s disease, cell−to−cell communication, biomarker, extracellular
vesicles

Abbreviations: α-SYN, α-synuclein; Aβ, amyloid β-protein; AD, Alzheimer’s disease; ALIX, ALG-2-interacting protein X;
AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; Apo-E, apolipoprotein E; APP, amyloid precursor protein;
ARF6, ADP ribosylation factor 6;BACE1, beta-secretase 1; BBB, blood brain barrier; BDNF, brain derived neurotrophic
factor; BDEs, brain derived exosomes; BIN1, Bridging I Ntegrator 1; cAMP, cyclic adenosine monophosphate; CD, Cluster of
differentiation; CNS, central nervous system; CREB1, cAMP responsive element binding protein 1; CSF, cerebrospinal fluid;
CT, computed tomography; ESCRT, the endosomal sorting complex required for transport; ECG, Electrocardiography; EE,
early endosome; EGFR, epidermal growth factor receptor; EVs, extracellular vesicles; gDNA, genomic DNA; GAP43, growth
associated protein 43; HSP, heat shock protein; IRS1, insulin receptor substrate 1; Iba1, ionized calcium-binding adapter
molecule 1; IGF1, insulin-like growth factor 1; IL-1β, interleukin 1 beta; ILVs, intraluminal vesicles; LE, late endosome;
L1CAM, neuronal L1 cell adhesion molecule; LRP6, LDL receptor related protein; MCI, mild cognitive impairment;
miRNA, micro ribonucleic acid; MMPs, matrix metalloproteinase regulators; MRI, magnetic resonance imaging; mRNA,
messenger ribonucleic acid; MS, multiple sclerosis; MSCs, mesenchymal stromal cells; MVBs, multivesicular bodies; MVEs,
multivesicular endosomes; Neuro-2a, Murine neuroblastoma; nSMase2, neutral sphingomyelinase-2; NSCs, neural stem cells;
NTA, nanoparticle tracking analysis; PD, Parkinson’s disease; PrP, prion protein; p-S396-tau, Tau phosphorylation at serine
396; p-T181-tau, Tau phosphorylation at threonine 181; qPCR real-time quantitative polymerase chain reaction; REST, re1
silencing transcription factor; S1P, sphingosine-1-phosphate; S1PR, S1P receptor; siRNA, small interfering ribonucleic acid;
SMS2, sphingomyelin synthase 2; sMVBs, secretory multivesicular bodies; TGFβ, transforming growth factor beta; TSG101,
tumor susceptibility gene 101 protein.

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 May 2020 | Volume 13 | Article 79

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2020.00079
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2020.00079
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2020.00079&domain=pdf&date_stamp=2020-05-29
https://www.frontiersin.org/articles/10.3389/fnmol.2020.00079/full
http://loop.frontiersin.org/people/237744/overview
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-13-00079 May 29, 2020 Time: 12:53 # 2

Song et al. Brain-Derived Exosomes in AD

INTRODUCTION

Exosomes are small extracellular nano-sized vesicles between
30 and 150 nm in diameter (DeLeo and Ikezu, 2018) that
were first described in the 1980s (Johnstone et al., 1987).
They consist of one type of EVs and are categorized on
the basis of their biogenesis pathways (Pan and Johnstone,
1983). Since then, exosomes have been isolated from nearly
all mammalian cell types, including cells in the CNS such as
neurons, astrocytes, oligodendrocytes, microglia, and Schwann
cells, as well as endothelial cells (Faure et al., 2006; Sharma
et al., 2013). Exosomes released from the nervous system are
collectively called BDEs.

To form MVBs with ILVs, early endosomes undergo inward
budding (Colombo et al., 2014). Then, ILVs are released into
the extracellular environment as exosomes via fusion of MVBs
with the plasma membrane (Heijnen et al., 1999; Mulcahy et al.,
2014). Alternatively, exosomal formation can be regulated by
sphingolipids, ceramides and tetraspanins (Trajkovic et al., 2008;
Stuffers et al., 2009; van Niel et al., 2011). Otherwise, MVBs
can fuse with the lysosomal membrane, resulting in degradation
of ILVs and recycling of their content (Stuffers et al., 2009;
Klumperman and Raposo, 2014). As a result of their origin and
multifarious molecular cargo, including but not limited to gDNA,
mRNA, other non-coding RNAs, lipids and proteins (Yokoi et al.,
2019), the molecular species and relative amounts in exosomes
are highly heterogeneous and complex in composition. Exosomes
can randomly or selectively exhibit great variety depending on
their membranes, cytosolic proteins, and nucleic acids compared
with the cells that release them. Based on the proteomic and
other comprehensive analyses, the heterogeneity of exosomes
is conceptualized on the basis of their size, content (cargo),
functional impact on recipient cells and cell of origin (source)
(Kalluri and LeBleu, 2020). It is becoming increasingly clear
that exosomes have specialized functions and play a key role in
coagulation, intercellular signaling and waste management (van
der Pol et al., 2012; Figure 1).

During the formation process, exosomes are comprised of
enriched endosome-associated components such as flotillins and
annexins (van Niel et al., 2006), ALIX, the ESCRT component,
tumor susceptibility gene 101 protein (TSG101) (Lotvall et al.,
2014) and lipid rafts, including cholesterol, sphingomyelin
and ceramide (DeLeo and Ikezu, 2018). Moreover, membrane
proteins, including tetraspanins such as abundant CD9, CD63,
and CD81, that are considered as markers for exosomes and
play important roles in the biogenesis of endosomes or MVBs
(Lotvall et al., 2014; Kowal et al., 2016). Depending on the cell
type from which they are secreted, exosome vesicles themselves
also hold particular and varied types of markers that contribute to
identifying their origins (Lotvall et al., 2014; Kowal et al., 2016).
For example, neuronal L1 cell adhesion molecule (L1CAM) can
be used as a biomarker for isolating BDEs (Cicognola et al., 2019).

Once the exosomes are secreted, they can be internalized from
the extracellular space by recipient cells through several
mechanisms including phagocytosis, micropinocytosis,
endocytosis, and plasma membrane fusion (McKelvey et al.,
2015; Figure 1). On the other hand, exosomes carrying multiple

cargo with valuable biological information can also be released
into most bodily fluids such as plasma, cerebrospinal fluid,
urine, saliva, amniotic fluid, colostrum, breast milk, synovial
fluid, semen and pleural ascites, not only in normal tissues
(Corrado et al., 2013; McKelvey et al., 2015) but also in aberrant
bodies such as tumors (Camussi et al., 2011; Rak and Guha,
2012). For the above reasons, exosomes play key roles in the
management of normal physiological environments, such
as immune surveillance (Rajendran et al., 2006), stem cell
maintenance (Ratajczak et al., 2006), tissue repair (Gatti et al.,
2011), and blood coagulation (Del et al., 2005), as well as in
the pathological processes associated with several diseases
(Liu et al., 2019), including neurodegenerative diseases such
as AD (Bellingham et al., 2012; Watson et al., 2019) and PD
(Emmanouilidou et al., 2010).

Given the characteristic described above, exosomes and their
constituents represent a novel class of therapeutic targets and
such features also give them advantages as biomarkers to
distinguish healthy and disease states (Emmanouilidou et al.,
2010) and for prognosis prediction and therapy for diseases.
Moreover, recent studies have demonstrated that exosomes may
also be directly considered as potential therapeutic agents. For
instance, mesenchymal stem cell-derived exosomes have been
used in tissue regeneration (Lai et al., 2011; Timmers et al.,
2011) and tumor antigen-pulsed dendritic cell-derived exosomes
have been developed for cancer immune response modulation
(Zitvogel et al., 1998). Remarkably, exosomes have an efficient
capability to cross the BBB (Chen et al., 2016). In particular,
exosomes isolated from CSF are rich in proteins that originate
from the brain such as neuron-specific markers, microglial
markers (CD11b and CD45) and Apo-E (Chiasserini et al., 2014),
making them potential novel drug delivery vehicles for treating
nervous system diseases. Here, we mainly discuss and summarize
the role of BDEs in normal biological processes in the CNS as well
as the aberrant pathological state of AD and focus on explaining
how exosomes can be targeted or directly exploited as biomarkers
or therapeutics in AD.

PHYSIOLOGICAL ROLES OF BDEs IN
THE CNS

Exosomes exert their effects on essential biological processes
throughout the body including the CNS by different mechanisms.
These mechanisms include cell surface receptors activation
through direct binding to lipid ligands and proteins, exosomal
membrane fusion contents with the recipient cell plasma
membrane and effectors delivery. Some of these effectors are
oncogenes, transcription factors, small and large non-coding
regulatory RNAs (such as miRNAs) and mRNAs, as well as
infectious particles such as amyloid-β (Aβ)−derived (Bellingham
et al., 2012) and α-synuclein (Emmanouilidou et al., 2010) into
recipient cells (Camussi et al., 2011; Lee et al., 2012; Figure 1). In
this manner, exosomes participate in the maintenance of normal
physiology (Figure 2).

Particularly, in the CNS, exosomes can be released from
virtually all cell types, including various types of neurons,
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FIGURE 1 | Biogenesis and cell-to-cell communication of extracellular vesicles (EV), especially exosomes. Exosomes are formed by the inward budding of the
multivesicular body (MVB) membrane, which is formed by invagination of the endosomal membrane. Early endosomes go through transition to late endosomes and
are further burdened to form late MVBs containing intraluminal vesicles (ILVs) (Colombo et al., 2014). Cargo sorting into exosomes involves the endosomal sorting
complex required for transport (ESCRT)-dependent mechanism, which are managed by ESCRT proteins (ESCRT-0, I, II, and III) and their accessories (ALIX, TSG101,
and VPS32) (Hurley, 2010; van Niel et al., 2018), and ESCRT-independent mechanism, which are mediated by neutral sphingomyelinase 2 (nSMaseII), tetraspanins,
and the chaperone heat shock proteins (HSP70 and HSC70), can develop ILVs (Malla et al., 2018). ILVs have two fates, either fusing with the lysosome resulting in
the degradation of the ILVs and their contents for recycling as an endolysosomal pathway (Klumperman and Raposo, 2014), or fusing with the plasma membrane
where they are released into the extracellular space as exosomes through a secretory pathway (Heijnen et al., 1999). Microvesicles are formed directly by outward
budding of the plasma membrane, a course which is managed by the ESCRT components and ADP ribosylation factor 6 (ARF6), some small GTPases, lipids, and
Ca2+-dependent enzymatic machineries (Thompson et al., 2016). Apoptotic bodies are the largest of the EVs. They “bleb” off the cell membrane and contain
material from cells undergoing apoptosis, which are typically engulfed by macrophages (Thompson et al., 2016). After release into the extracellular space, exosomes
can be internalized by recipient cells mediated by the interaction of various exosomal surface proteins and cellular receptors via several mechanisms including
phagocytosis, plasma membrane fusion, macropinocytosis and endocytosis (McKelvey et al., 2015). The contents of exosomes can effectively influence cellular
processes through taking part in genetic/protein transfer, transcriptional regulation or post-transcriptional regulation. Alternatively, exosomes can be further fused
with the lysosomes for degradation (Saeedi et al., 2019; You and Ikezu, 2019).

astrocytes, oligodendrocytes, microglia, and Schwann cells, as
well as endothelial cells (Faure et al., 2006; Sharma et al.,
2013). EVs carry and release multiple molecules related to
neuronal function and neurotransmission in the brain, which
is beneficial for the reciprocal communication between neural
cells (e.g., neuron−glia interactions), synaptic plasticity, neuronal
development, and neuroimmune communication (Fruhbeis et al.,
2013a; Rajendran et al., 2014; Iraci et al., 2016; Table 1).

Neuron-Glia Communication via
Exosome Secretion
Neurons and glial cells (a class of cells that mainly includes
microglia, astrocytes, and oligodendrocytes) orchestrate
CNS homeostasis via numerous mechanisms of intercellular
communication. Exosomes might regulate the physiological
condition of the recipient cells and interactions between various
neural cells. For example, upon activation of glutamatergic

synapses, cortical neuron-derived exosomes are selectively
delivered to neurons but not glial cells (Koniusz et al., 2016).
Recent studies using CD63-GFP positive intraluminal vesicles
as exosomal reporter in mice have demonstrated that exosomes
participate in mediating neuron to astroglia communication in
the CNS (Men et al., 2019). Furthermore, miRNAs (especially
miR-124a) in exosomes isolated from neuron-conditioned
medium possess excitatory amino acid transporter 2, a necessary
mediator of glutamate uptake via the internalization of
exosomes into astrocytes (Morel et al., 2013). However,
exosomes also participate in reciprocal oligodendrocyte-neuron
communication and transfer cargo from oligodendrocytes to
neurons (Fruhbeis et al., 2013a). Although exosome-mediated
communication and the manner by which exosomes select their
recipient cells are largely unclear, emerging evidence suggests that
exosomes serve as selectively important conveyers for neuron-
neuron or neuron-glia interaction in the brain by transmitting
genetic information, various bioactive proteins, and lipids.
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FIGURE 2 | Intercellular communication of BDEs in the CNS in (patho) physiological course in AD. Exosomes secreted from oligodendrocytes, microglia, astrocytes
and mesenchymal stem cells includes host cell derived cytosolic proteins, cytokines and transcription factors, Aβ scavenger enzymes, Aβ (Saeedi et al., 2019; You
and Ikezu, 2019) and tau protein (DeLeo and Ikezu, 2018) along with nucleic acids (DNA, mRNA, miRNA and/or lncRNA and/or cirRNA) (Camussi et al., 2011; Lee
et al., 2012; Yokoi et al., 2019). They afford positive as well as negative effect on the neurons depending on the cargo they carry. In the physiological condition,
exosomes benefit to the reciprocal communication between neural cells (e.g., neuron-glia interaction), synaptic plasticity, neuronal development and neuroimmune
communication. In the early stage of AD, the microglia activation by Aβ has neuroprotective effect because it induces phagocytosis and Aβ clearance (Bolmont et al.,
2008; Hickman et al., 2008). The microglia stimulation by astrocyte released ATP induces the secretion of exosomes including P2X7 receptor as a defensive strategy

(Continued)
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FIGURE 2 | Continued
to escape astrocyte signaling (Bolmont et al., 2008; Hickman et al., 2008). In the latter stage of AD, microglia secrete exosomes containing pro-IL1β, active
caspase-1 and soluble toxic Aβ that have detrimental effects on neurons (Bianco et al., 2005; Trotta et al., 2018). Neurodegenerative associated proteins such as Aβ,
Tau, prions (Faure et al., 2006) and α-synuclein (Emmanouilidou et al., 2010) can also be derived from neural derived exosomes, leading to the spread of protein
aggregate seeds and disease progression. In addition, these exosomes could be exported via blood-brain barrier as circulatory EVs, which can be used for
disease-specific biomarkers, even future for therapeutic researches (Thompson et al., 2016).

TABLE 1 | Exosome is a double-edged sword in nervous system.

Condition Function References

Physiological roles Neuron−glia communication Neuron and microglia Fruhbeis et al., 2013b

Neuron and astrocytes Men et al., 2019; Pascua-Maestro et al., 2019

Neuron and oligodendrocytes Kramer-Albers et al., 2007

Pathological roles in AD Synaptic plasticity and neurotransmission Chivet et al., 2012; Koniusz et al., 2016

Enhancement of neuron protection Guitart et al., 2016

Improvement neuronal development Drago et al., 2017

Carry the two hallmarks of AD brains, Aβ, and hyperphosphorylated tau Sardar et al., 2018

The spread of oligomers and neurotoxicity Hamlett et al., 2018

Carry the synaptic proteins Goetzl et al., 2016a

Carry the ceramide and sphingosine-1-phosphate (S1P) Yuyama et al., 2012; Dinkins et al., 2014

Containing tyrosine phosphorylated insulin receptor substrate 1 (IRS1) Kapogiannis et al., 2015

Synaptic Plasticity and
Neurotransmission by the Release of
Exosomes
Maintenance and improvement of synaptic connectivity in
the adult brain are crucial for cognitive function. Neural
synaptic plasticity is mediated not only by neuron-specific
progression but also by glial cells, such as astrocytes and
microglia (Morris et al., 2013). Under resting conditions,
synaptic vesicles are reposited in the cytoplasm of the nerve
terminal. Many synaptic vesicles stick on some specialized
sites at the presynaptic plasma membrane named active zones.
During incoming action potentials, exocytosis of synaptic
vesicles confirm how much transmitter is released from
nerve terminals (Jahn and Fasshauer, 2012). In addition
to typical synaptic neurotransmission, signal transduction of
neurons via the secretion of exosomes can induce a range of
neurobiological functions including synaptic plasticity (Chivet
et al., 2012; Koniusz et al., 2016). During management of
synaptic plasticity, PC12 cell-derived exosomes can stimulate
synaptic pruning through enhancement of the complement
component 3 level in microglial MG6 cells (Bahrini et al.,
2015). For instance, enhanced secretion of cortical neuron-
derived exosomes containing neurotransmitter receptors leads
to increased glutamatergic activity (Lachenal et al., 2011).
Additionally, by managing the number of AMPA receptors for
glutamate transmission, neuronal-derived exosomes might affect
synaptic plasticity (Lachenal et al., 2011).

Enhancement of Neuron Protection and
Neuronal Development Through
Exosomes
Although the understanding of astrocyte-neuron communication
via exosomes remains unclear, evidence supports that it

does occur, and this communication manner is required for
neuronal cell survival (Figure 2; Pascua-Maestro et al., 2019;
Luarte et al., 2020). Neuroprotective signaling is essential
for neuronal growth and survival. PrP is a physiologically
important receptor protein that protects against oxidative stress
in the CNS. Protection of neurons through astrocyte-derived
exosomes is dependent on astrocyte-derived exosomal PrP
transport into neurons (Guitart et al., 2016). In addition,
studies have demonstrated that microglia and oligodendrocyte-
derived exosomes contribute to neuronal energy metabolism
by transferring several enzymes involved in energy metabolism
(Kramer-Albers et al., 2007; Drago et al., 2017). Thus, exosomes
mediate several vital processes involved in normal brain function.
Taken together, these findings suggest that exosome-mediated
cell communication is emerging as a method of mediating
neuron protection.

PATHOLOGICAL ROLES OF BDEs IN AD

Increased secretion of exosomes is generally thought to occur
in response to stress or pathological conditions (Urbanelli
et al., 2013; Saxton and Sabatini, 2017; Gill et al., 2018),
such as hypoxia (King et al., 2012; Ophelders et al., 2016),
alcoholism (Momen-Heravi et al., 2015), cisplatin- (Xiao
et al., 2014), or irradiation-induced DNA damage (Lehmann
et al., 2008), and oxidative stress (Atienzar-Aroca et al.,
2016). Neuron-derived exosomes including particular proteins
associated with neurodegenerative diseases can be secreted
from the affected neurons (Watson et al., 2019). In the
case of AD, there are two hallmarks of AD brains, Aβ and
hyperphosphorylated tau, interact with specific endosomes and
may contribute to exosome biogenesis in AD (Sardar et al., 2018).
Additionally, exosomal proteins, such as flotillin-1 and Alix, were
observed to accumulate around amyloid plaques in AD patients
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(Rajendran et al., 2006). The formation, secretion or uptake
of exosomes plays a dual role in the spread of oligomers and
neurotoxicity (Table 1).

Exosomes Containing Aβ in AD
Amyloid β-protein is a C-terminal cleavage product of the
transmembrane APP produced by β- and γ-secretase (Devi
and Anandatheerthavarada, 2010; Miranda et al., 2018). AD is
characterized by the presence of aggregates of pathologically
misfolded proteins in the brain, including extracellular senile
plaques mainly consisting of Aβ (Brunkhorst et al., 2014).
Numerous reports have described these proteins and their
substrates within exosomes of in vitro AD models and in
exosomes derived from neurons of AD patients (Dinkins et al.,
2014; Yuyama et al., 2015).

Although most AD cases are sporadic, there is a minority
patients from mutations in the genes encoding APP or during
sequential cleavages by β- and γ-secretase enzyme activities
(Chow et al., 2010). In vitro, exosomes isolated from neuronal
cell lines show that inducing AD mutations can increase sAPP
protein β, sAPPα (Xiao et al., 2017; Sinha et al., 2018) and
soluble Aβ1-42 (Eitan et al., 2016a). N2a cells expressing human
APP with the autosomal dominant Swedish mutation contain Aβ

peptides as well as the C-terminal fragments of APP have also
shown increase of production of C-end terminal fragments (a
byproduct of APP after β-secretase processing) (Laulagnier et al.,
2018), β-secretase in released exosomes, and co-localization of
β-secretase enzyme 1 with early exosome markers (Xiao et al.,
2017). Vesicles released by Aβ-treated astrocytes contain the pro-
apoptotic prostate apoptosis response 4 (PAR-4) protein and
these vesicles cause PAR-4 associated apoptosis in naive cultures
(Wang et al., 2012). Experiments involving the medium of neural
cells expressing familial AD presenilin 1 mutations show that
Aβ is associated with exosomes during their excretion process
(Eitan et al., 2016b).

In vivo, rodent exosomes can contain Aβ, BACE1, and
presenilin 1 and 2 (Sharples et al., 2008). Exosomes isolated from
bodily fluids of AD mouse model, including blood, CSF and
urine, display indicative increase in the C-terminal fragments of
APP (Laulagnier et al., 2018; Miranda et al., 2018). Exosomes
isolated from bodily fluids of AD patients exhibit a remarkable
increase soluble Aβ1–42 in Abner et al. (2016); Winston et al.
(2016), Hamlett et al. (2017, 2018). Amyloid plaques in AD brains
also contain an exosome marker (Abner et al., 2016; Winston
et al., 2016; Hamlett et al., 2017, 2018). The muskelin protein
is involved in reorganization of the cytoskeleton and has been
shown to be involved in the determination of either lysosomal
degradation or exosome secretion of PrP (Heisler et al., 2018).
Importantly, PrP is a receptor for Aβ and is reported to increase
the pathogenicity of AD (Cohen et al., 2016). Muskelin may play
a critical role in this type of amyloidosis.

The above data suggested the hypothesis that exosomes could
seed Aβ aggregation (Dinkins et al., 2017). However, neuronal
exosomes can also restrain Aβ oligomerization and accelerate
Aβ fibril formation, facilitating microglia-mediated Aβ clearance
in vitro (Yuyama et al., 2012). Moreover, in an AD mouse model,
intracerebral loading of glycosphingolipid-enriched exosomes led

to trapping and transporting Aβ into microglia, leading to a
decrease in Aβ pathology (Yuyama et al., 2014). These results
might explain why, at least under some circumstances, exosomes
associated with Aβ have a physiological, neuroprotective function
(Yuyama and Igarashi, 2017). It is also possible that in the brain
as exosomes are secreted by various cell types (e.g., neurons,
microglia, and astrocytes), they might exhibit contrary effects
or the exosomal membranes might promote Aβ aggregation
independent of protein-associated exosomal functions (e.g.,
Aβ degradation by exosomal insulin-degrading neprilysin or
enzymes) (reviewed in Dinkins et al., 2017).

Exosomes Containing
Hyperphosphorylated Tau in AD
The gradual deposition of hyperphosphorylated tau protein
within specific neurons is pivotal to the tauopathy of AD
(Saman et al., 2014; Takeda, 2019). Under normal physiological
conditions, incorporation of neuronal microtubule-associated
protein tau for microtubule elongation is a crucial event
of neuronal synapse formation and synaptic plasticity.
Additionally, intracellular tau also participates in neurite
outgrowth, axonal transport, chromosome stability, regulation
the cellular transcriptome and the structural architecture of
heterochromatin (for more details see the review by Sotiropoulos
et al., 2017). Extracellular tau is also secreted into brain
interstitial fluid (Yamada et al., 2011) and may contribute to
some characteristics of sleep (Lucey et al., 2019). The above
functions rely on the site-specific phosphorylation of tau
(Kapitein and Hoogenraad, 2015) in normal condition. However,
hyperphosphorylation and aggregation of the microtubule-
associated tau protein into intracellular neurofibrillary tangles is
one of the classical pathological hallmarks of advanced-stage AD
(Johnson and Stoothoff, 2004; Martin et al., 2011).

During the progressive accumulation of neurofibrillary
tangles, tau becomes hyperphosphorylated in neurons.
Meanwhile, the cellular clearance machinery takes up tau
for degradation and packaging in exosomes (Saman et al., 2012;
Chesser et al., 2013; Perez et al., 2019). In an adeno-associated
virus-based mouse model revealing rapid tau propagation,
microglia help to spread tau through exosome release, and
depletion of microglia or inhibition of exosome synthesis
significantly decreases the propagation of tau in vitro and
in vivo (Asai et al., 2015). In another mouse model of tauopathy,
aggregated tau was isolated from and transmitted through
brain exosomes (Asai et al., 2015). In these mice, exosomes that
were isolated from the brains of tau transgenic rTg4510 mice
containing human four-repeat tau with the P301L mutation
accelerated pathological tau phosphorylation and oligomer
formation (Polanco et al., 2016), indicating that neuronal
exosomes containing human mutated tau are toxic to the
recipient neurons in vivo (Baker et al., 2016). Recently, BIN1 was
found to support spreading of tau via exosome release in mice.
Tau-containing exosomes isolated from the CSF of AD-affected
individuals who contain BIN1-associated genetic variants in AD
etiology showed seeding competence (Crotti et al., 2019). In
human patients, compared with BDEs obtained from the plasma
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or serum of age-matched controls, BDEs from AD patients
showed a 3-20-fold increase in tau phosphorylation at threonine
181 (p-T181-tau) and serine 396 (p-S396-tau) (Crotti et al.,
2019). Moreover, compared with AD patients who had only been
diagnosed with mild cognitive impairment, p-T181-tau levels
were significantly higher in BDEs isolated from the plasma of
later-stage AD patients (Winston et al., 2016), demonstrating
either a dysfunction of the clearance ability or an increase in
pathogenicity of exosomes in later disease states of AD. p-T181-
and p-S396-tau were significantly decreased in BDEs of patients
1–10 years prior to their AD diagnosis (Fiandaca et al., 2015).

Exosomes Containing Synaptic Proteins
in AD
One consequence of AD is neuron loss and dysfunction.
The levels of synaptic proteins, including synaptophysin,
synaptotagmins, synaptobrevin, synaptopodin, Rab3A, GAP 43,
and neurogranin, were decreased in the BDE cargo from the
plasma of AD patients (Goetzl et al., 2016b). Additionally, low-
density LRP 6, REST, heat shock factor protein 1, HSP, and
AMPA receptor levels are also lower in BDEs from the plasma
of AD patients (Goetzl et al., 2015, 2016b; Winston et al.,
2016). Furthermore, neurexin 2α, GluA4-containing glutamate
receptor, and neuroligin 1, essential proteins for long-term
potentiation processes, were all significantly reduced in BDEs
from the plasma of patients 6−11 years prior to AD diagnosis
and, along with neuronal pentraxin 2, were all downregulated in
BDEs (Goetzl et al., 2018, 2019). These proteins are all involved
in normal homeostasis of neurons. Further research into these
proteins in BDEs could be beneficial for the search for earlier
biomarkers of AD.

Ceramide and Sphingosine-1-Phosphate
(S1P) in Exosomes in AD
Activated sphingolipids are signaling molecules that serve
as intracellular second messengers and include ceramide,
sphingosine, and their derivatives, 1-phosphates (C1P and
S1P, respectively) (Czubowicz et al., 2019). Exosomes are
sphingomyelin- and ceramide-enriched vesicles formed inside
MVEs and then are secreted when the MVE membrane fuses
with the plasmalemma. Exosomes can serve as a vehicle for
the extracellular secretion and cell-to-cell transport of Aβ, α-
synuclein and tau protein, possibly further facilitating the spread
of toxic protein aggregation (Ngolab et al., 2017; Wang et al.,
2017). S1P receptor (S1PR) signaling has been reported to
participate in exosomal cargo sorting. Activity of the S1PR-
mediated Rho family of GTPases is essential for this process
and Gβγ inhibitors inhibit this activity (Kajimoto et al., 2018).
The secretion of exosomes can be regulated by the activation of
neutral sphingomyelin synthase 2 (SMS2) and sphingomyelinase
2 (nSMase2), demonstrating distinct functions for these enzymes
in AD (Yuyama et al., 2012; Dinkins et al., 2014). Additionally,
ceramide/sphingolipid shortage results in enhanced secretion of
sAβPPα, the product of non-amyloidogenic cleavage. However,
this shortage gives rise to increased secretion of Aβ42 at the
same time, probably via regulation of raft-associated proteins,

resulting in alteration of the α- vs.β-cleavage ratio (Yuyama
et al., 2012; Dinkins et al., 2014). Enhanced endogenous ceramide
and exogenous additional ceramide both elevate the Aβ level
(Puglielli et al., 2003; Sawamura et al., 2004). The above research
suggests the significance of the ceramide/sphingolipid levels in
the process of AD.

Exosomes Containing Other
AD-Associated Proteins
Dysregulation of insulin by the CNS and peripheral
hyperinsulinemia have been reported as other events highly
associated with AD (de la Monte, 2009; de la Monte and Tong,
2014; Kim et al., 2015). A low tyrosine phosphorylated insulin
receptor substrate 1 (IRS1) to serine phosphorylated IRS1 ratio
is a characteristic of insulin dysregulation (Aguirre et al., 2002;
Draznin, 2006) and is related to greater brain atrophy in AD
patients (Mullins et al., 2017). BDEs isolated from the plasma
of human AD patients have revealed an enhancement in serine
phosphorylation in IRS1 (Kapogiannis et al., 2015). This study
demonstrated that significant differences in the IRS1 levels
were recognizable up to 10 years prior to clinical onset of AD,
which suggests that proteins within BDEs that are involved
in insulin disruption may potentially be useful biomarkers for
clinical diagnosis.

Moreover, exosomes have the ability to spread toxic proteins
through PrP activity (Hartmann et al., 2017). PrP is a cell
surface-anchored protein that is highly related to AD pathology
(Kellett and Hooper, 2009). Its pathological, misfolded form
is associated with spongiform encephalopathy (Prusiner, 1982;
Song et al., 2013). Studies in animal models of AD have
demonstrated that the PrP receptor is essential for the cognitive
impairment linked to Aβ (Gimbel et al., 2010). Additionally,
growing evidence indicates that prion receptor on exosomes are
capable of transmitting pathological substances (Fevrier et al.,
2004; Hartmann et al., 2017). Aberrant autophagy is likely to
play a role in this process (Abdulrahman et al., 2018). However,
further research is needed to explore the potential mechanism
connecting exosomes, AD pathogenesis, and autophagy.

EXOSOMAL MiRNA AS A DIAGNOSTIC
BIOMARKER FOR AD

Generally, the biomarkers used for AD diagnosis include the
expression of Aβ and pTau (Abdulrahman et al., 2018), and
methods such as neuropsychological testing and specialized brain
imaging techniques have also been widely used for diagnosis of
AD. Unfortunately, most AD patients are asymptomatic during
the pre-clinical stages, which may last up to 17 years or longer
(Villemagne et al., 2013). Therefore, it is important to exploit
early diagnostics to confirm and treat individuals who are at risk
before severe and irreversible neuronal pathology occurs.

MiRNAs are a family of 18–22 nt single-stranded RNAs
that post-translationally communicate with and regulate the
expression of mature mRNAs. Single upregulated miRNAs can
target various mRNAs to decrease their expression and multiple
miRNAs can target a single mRNA (Sethi and Lukiw, 2009;
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Sarkar et al., 2016). Studies have demonstrated that mRNA and
miRNA species are present in exosomes. It is possible that some
mRNA sequences are definitely targeted for secretion by these
vesicles (Valadi et al., 2007; Van Giau and An, 2016). Exosomal
miRNAs play essential roles in intercellular communication
between cell membranes in the CNS and in disease progression.
Exosomal miRNAs are also ideal targets for use as potential
biomarkers in clinical diagnostics or therapies as they can
be analyzed through neuronal exosomes in the patient’s body
fluids (A). Indeed, some research has illustrated that proteins
and miRNAs can be transferred from glia to axons (Skog
et al., 2008). It is assumed that miRNA signaling can impact
neurodegenerative diseases via the dysregulation of tau, leading
to neurotoxicity. One study convincingly demonstrated that, in
brain tissues obtained at autopsy from AD patients and from
those with severe primary age-related tau pathology, the level
of the highly conserved miRNA-219 was decreased in the brain
(Santa-Maria et al., 2015). Several reports have illustrated that
high expression of tissue-specific miRNAs in the brain, such as
miR-9, miR-29a/b, miR-107, miR-124, miR-128, miR-134, and
miR-137, may result in defective neuronal development (Sempere
et al., 2004; Kawase Koga et al., 2009; Huang et al., 2010). In
addition, other miRNAs are also abnormal in brain tissues during
neurodegenerative processes. These specific miRNAs, including
miR-132 and miR-212, are among the most robustly declining
miRNAs in neurodegenerative diseases, including AD (Cogswell
et al., 2008; Hebert et al., 2013; Wong et al., 2013; Lau et al., 2014),
Huntington’s disease (Johnson et al., 2008; Packer et al., 2008),
PD (Burgos et al., 2014), schizophrenia and bipolar disorders
(Perkins et al., 2007; Kim et al., 2010) and frontotemporal
dementia (Chen-Plotkin et al., 2012; Hebert et al., 2013).

Remarkably, miRNAs that were found to be greatly expressed
in the brain were also detected in human body fluids such as the
plasma, urine, and CSF. The levels of brain-enriched miRNAs
including miR-9, miR-29a, miR-29b, and miR-137 have been
found to be significantly decreased in plasma samples collected

from AD patients (Geekiyanage et al., 2012). Both miR-128 and
miR-134 were also examined in patients with mild cognitive
impairment, which is an early stage of AD (Sheinerman et al.,
2012). These miRNA biomarkers in the blood represents a
clinical advantage for early disease diagnosis, but differential
miRNA expression may not accurately rescue abnormal miRNA
expression in the brain. The CSF represents a more relevant and
suitable source for the diagnosis of CNS disorders such as AD
(Alexandrov et al., 2012; Patz et al., 2013; Van Giau and An, 2016)
because CSF is a clear biological fluid produced in the choroid
plexus of the brain that circulates via the inner ventricular system,
crosses the BBB, and is absorbed into the bloodstream. The
levels of target candidate miRNAs such as miR-9, miR-146a,
and miR-155 were shown to be greatly increased in CSF from
AD patients compared with those in age-matched controls, as
quantified by microarrays and qRT-PCR (Alexandrov et al., 2012;
Lukiw et al., 2012). Currently, urine is collected and analyzed for
biomarker discovery and diagnostic purposes in clinical practice
(Weber et al., 2010; Bryant et al., 2012). Exosomes can be
purified from the urine using various methods such as differential
ultracentrifugation (Alvarez et al., 2012), which is highly valuable
for investigating whether miRNAs can be detected in the urine.
However, it remains difficult to determine whether the alteration
in miRNA levels in humans is a cause or consequence of
the neurodegenerative process. Investigation of miRNA analysis
profiles in AD animal models might help to solve this problem.
Additionally, the potential to test miRNAs in biological body
fluids may contribute to developing and promoting the discovery
of specific biomarkers for neurodegenerative diseases such as AD.

DEVELOPMENT OF A BRAIN-DERIVED
EXOSOMAL BIOMARKER FOR AD

Currently, a mixed population of exosomes from various types
of cells can be separated from biological fluids by multiple

TABLE 2 | The biomarker of different neural derived exosomes (NDEs).

Exosomes isolated from different cell types Biomarker Function

Cortical neurons-derived exosomes; immature and
mature hippocampal neurons exosomes

The GluR2/3 subunits of glutamate
receptors

Neuronal markers and play key roles in virtually all excitatory
neurotransmission in the brain Faure et al., 2006.

L1 cell adhesion molecule (L1CAM) Neuronal markers, cell adhesion molecule with an important role in
the development of the nervous system Lachenal et al., 2011.

Microglia-derived exosomes Ionized calcium binding adaptor
molecule 1 (Iba1)

A microglia/macrophage-specific calcium-binding protein with
actin-bundling activity that participates in membrane ruffling and
phagocytosis in activated microglia Raffo-Romero et al., 2018.

Astrocytic-derived exosomes Glutamine aspartate transporter
(GLAST)

Selective markers of astrocytic plasma membranes Raffo-Romero
et al., 2018.

Glial fibrillary acidic protein (GFAP) A specific marker for astrocytes; the astrocytic cytoskeleton Goetzl
et al., 2016b.

Glutamine synthetase (GS) Astrocyte marker, it catalyzes the production of glutamine and
4-aminobutanoate Goetzl et al., 2016b.

Oligodendrocytes-derived exosomes Myelin proteolipid protein (PLP) Oligodendrocytes marker, it is the major myelin protein from the
central nervous system. It plays an important role in the formation
or maintenance of the multilamellar structure of myelin
Kramer-Albers et al., 2007.

2′, 3′-cyclic nucleotide
3′-phosphodiesterase (CNP)

Oligodendrocytes marker, it belongs to the cyclic nucleotide
phosphodiesterase family Kramer-Albers et al., 2007.
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techniques such as classically differential ultracentrifugation,
immunomagnetic beads and size exclusion chromatography (Li
et al., 2017; Yu et al., 2018). Moreover, exosomes have a lipid
bilayer to protect their cargo, which is used downstream, from
RNAse treatment to be confirmed whether the miRNAs/mRNA
analyzed are inside the exosomes or not (Cheng et al., 2014).
This mixed population of exosomes may be recognized by
western blots or mass spectrometry using proteins that are
involved in the formation process of ILVs (Lotvall et al.,
2014) as mentioned and discussed at the beginning of this
manuscript. It is worth noting that many of these markers
are not exclusive to exosomes and it is necessary to further
examine the characteristics of exosomes (Watt et al., 2011).
In the CNS, investigating cells from the brain may afford
insights into the mechanisms of brain diseases (Saeedi et al.,
2019). Isolating neuronal exosomes from cells related to AD
may bridge the gaps in knowledge of peripheral biomarkers
and provide mechanistic insight to this disease. Recently, a
precipitation/immunoaffinity system has been developed to
isolate neuron-derived and astrocyte-derived exosomes from
the blood of AD patients (Goetzl et al., 2018). Data from
these studies suggest that BDEs from blood plasma and
measurement of certain forms of tau in BDEs can be used as
diagnostic and prognostic biomarkers for AD (Guix et al., 2018;
Saeedi et al., 2019).

Enrichment of a specific neuron-derived population of
exosomes permits monitoring of target cells of interest (Table 2).
Collectively, although exosome transfer of Aβ seems to mainly
occur in AD and can be exploited as a helpful biomarker
of the disease course, development of additional exosome
biomarkers could contribute to a more accurate diagnosis of AD
and discovering further close connections between the marker
and mechanisms of the early stage of AD as well as other
neurodegenerative diseases.

EXOSOMES AS NOVEL AD
THERAPEUTICS

The BBB is a continuous endothelial membrane within
brain microvessels and is sheathed by mural vascular
cells and perivascular astrocyte end-feet, which seal
the cell−to−cell contacts to prevent the transmission
of potentially toxic compounds between the brain and
the blood (Matsumoto et al., 2017). In addition to
transmembrane diffusion of small (<400 Da) lipid-
soluble molecules, the BBB permits selective transport
of some compounds into and out of the brain
(Sanchez-Covarrubias et al., 2014).

Exosomes have an inherent ability to cross the BBB, and
because their properties remain active in the brain, they are
ideal drug delivery vehicles. This BBB-penetrating capacity,
which was first reported by Alvarez-Erviti et al. (2011), resulted
in effective delivery of small-molecule drugs to the brain
through systemic injection of naked exosomes in mice, leading
to promotion of drug-mediated biological responses (Zhuang
et al., 2011). Later studies have been successful in transmitting
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exosomes through intranasal injection into the mouse brain
(Aliotta et al., 2007). Recently, a study using rats identified
that the fluorescently tagged forebrain astrocyte protein aldolase
C was selectively expressed in brain tissue and could be
recovered in exosomes in the blood (Ratajczak et al., 2006;
Gomez-Molina et al., 2019). This study affords evidence of
communication mediated by exosomes from the brain to the
rest of the body (Ratajczak et al., 2006; Gomez-Molina et al.,
2019). Evidence from these studies illustrates that exosomes
can cross the BBB in a bi-directional manner; however, their
method of accurately crossing the BBB remains unclear and
requires further study.

In contrast, while exosomes may play a role in the
spreading of AD, some studies have shown a positive effect
of introducing non-pathogenic exosomes to change disease
duration and progression (Table 3). In animal studies, this
therapeutic effect was found when exosomes from young mice
were observed to significantly downregulate aging-associated
signaling molecules such as IGF1R and upregulate telomerase-
related genes such as Men1, Mre11a, Tep1, Terf2, Tert, and Tnks
in aged mice (Lee et al., 2018). Furthermore, exosomes injected
into the brain of transgenic mouse models of AD can help to
decrease toxic oligomers and fibrils in a microglial-dependent
manner following intracerebral administration, contributing to
the clearance of Aβ in vivo (Yuyama et al., 2012, 2014;
Yuyama and Igarashi, 2017). Other researchers have suggested
that mesenchymal stromal-derived exosomes may have a
therapeutic effect in vivo on the advancement of neurovascular
plasticity in other neurodegenerative diseases such as stroke
(Xin et al., 2013a).

Additionally, directed exosomal transmission systems for
precision nanomedicine have attracted extensive interest across
the fields of pharmaceutical sciences, molecular cell biology
and nanoengineering (Zhu et al., 2018). Exosomes are also a
promising type of novel drug delivery vehicle because of their
ability to cross the BBB and shield their cargo from enzymatic
and chemical degradation. Recent developments regarding
nanoengineering using targeted exosomes for therapeutic
purposes have been conducted by researchers, for example, Xin
et al. (2013b), Tran et al. (2019).

Introducing exogenous exosomes into the CNS because they
can effectively cross the BBB is a potentially novel strategy for
AD therapies (Chen et al., 2016), and their innate secretion of
enzymes could be beneficial for degrading toxic fibrils (Katsuda
et al., 2015). The field of EV research is still at the initial stage in
the CNS and yet improved therapeutic applications are already
being developed.

OPPORTUNITIES AND CHALLENGES

Quantifying changes in EV cargo would be extremely difficult
because of the lack of unique region-specific markers for
circulating exosomes and the inaccessibility of specific brain
tissue EVs from living patients. Interesting lines of research have
examined both the induction of AD using pathogenic EVs and
the sequestration of toxic plaques using exogenous healthy EVs.

It difficult to distinguish among EV types simply on the basis
of protein markers or size alone. To better interpret and replicate
the experimental results of exosome studies, combined exosome
isolation methods as well as improved techniques for accurate
purification and characterization are recommended. In addition,
a crowdsourcing knowledgebase currently allows researchers in
the EV field to track the latest EV biology and methodology
(Lee et al., 2019).

In recent years, research has been focused on BDEs to
attempt to solve questions of brain-associated disorders using
blood biopsies. Exosomes isolated from plasma were used to
enrich BDEs (Sun et al., 2017; Saeedi et al., 2019). This study
demonstrated that both the number of neural-derived exosomes
as well as the expression of Aβ, neurofilament light chain,
and high-mobility group box 1 potentially act as biomarkers
of neuropsychological impairment in HIV (Sun et al., 2017).
BDEs from plasma have also been tested in a pilot study to
examine protein biomarkers for patients with major depressive
disorder (Kuwano et al., 2018). Moreover, in military personal
with mild traumatic brain injuries, compared with controls,
the levels of tau, Aβ42, and IL-10 deposited by BDEs were
elevated (Kuwano et al., 2018). Cargo proteins and miRNA
from astrocytic-derived exosomes have been analyzed to obtain
mechanistic insight into AD (Goetzl et al., 2016b). Additionally,
other cell-derived exosomes have also been researched for other
brain-related disorders. The ability to access BDEs in plasma
and other biological body fluids such as CSF and urine shows
potential for clinical use in treating nervous system disorders.

CONCLUSION

Although the domain of exosome investigation, especially
BDEs, remains relatively novel, attractive evidence from
other fields demonstrates that investigation of exosomes can
afford insight into the disease mechanisms and processes
associated with AD and treatment responses. Currently,
increased research on exosomes has focused on biomarkers
of the course of AD and their ability to mediate cell-to-cell
communication in the nervous system. However, additional
work is needed with respect to the mechanisms of bi-directional
transport of cargo-carrying exosomes across the BBB, the
alterations in the number or size of exosomes secreted, changes
in cargo constituents, and identification of differences in
specific cell types. Meantime, it is necessary to take into
consideration that several preparations may contain another
type of EVs given the procedure used to obtain them. Exosomes
derived from cells in the CNS have tremendous biomarker
potential because they may reverse physiological changes in
nervous system disorders, and these changes can be tested
in the periphery.
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