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Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and

the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger

evidence for the pathophysiology of cognitive impairment. Whether the altered patterns

of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild

cognitive impairment (vMCI) is largely unknown. The purpose of this study was to

explore the ALFF/fALFF changes in the two diseases and to further explore whether

they contribute to the diagnosis and differentiation of these diseases.

Methods: We searched PubMed, Ovid, and Web of Science databases for articles

on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the

activation likelihood estimation (ALE) method, connectivity modeling based on coordinate

meta-analysis and functional meta-analysis was carried out.

Results: Compared with healthy controls (HCs), patients with aMCI showed increased

ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right

amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left

cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum

limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the

bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC)

in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed

decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate

gyrus (CG).
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Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable

altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings

of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may

help understand the pathophysiological mechanisms of these diseases.

Keywords: amnestic mild cognitive impairment, vascular mild cognitive impairment, amplitude of low-frequency

fluctuations, fractional amplitude of low-frequency fluctuations, resting state

INTRODUCTION

Mild cognitive impairment is a nosological entity referred
to as a cognitive decline that is beyond normal peers. The
condition is considered to be the transitional state between
normal aging and dementia, where activities of daily living
are unaffected (Sanford, 2017; Petersen et al., 2018). Amnestic
mild cognitive impairment (aMCI) and vascular mild cognitive
impairment (vMCI) are the two most common forms of the pre-
dementia subtypes (Wentzel et al., 2001; Sun et al., 2016). The
aMCI is characterized by isolated episodic memory impairment
associated with higher risk; it is also considered as the prodromal
state for the development of Alzheimer’s disease (AD) (Yan
et al., 2019). The vMCI, on the other hand, is described as
an abnormal condition caused by vascular diseases, where the
cognitive impairment of the patient is not serious and does not
meet the criteria of dementia (Consoli et al., 2012). Interests in
diagnosing and distinguishing between aMCI and vMCI have
attracted a lot of attention and have brought out a great deal
of research in both clinical and research settings. From this,
researchers proposed that early diagnosis and active intervention
could effectively delay the progression from MCI to dementia
(Sanford, 2017). Currently, the clinical and research diagnostic
criteria for aMCI and vMCI mainly depend on clinical history,
neuropsychological assessment, and neuroimaging examination
(Sudo et al., 2015; Anderson, 2019), but it is still difficult to
distinguish between these two forms of cognitive impairment
at an early stage. Therefore, a study on the similarities and
specificities between aMCI and vMCI in MRI may provide
a new prospect for the diagnosis and differentiation of these
two diseases.

Resting-state functional MRI (rs-fMRI) has also been widely
used to study the internal brain function of patients with
many neuropsychiatric diseases, including MCI (Ni et al., 2016;
Yang et al., 2018; Xu et al., 2020). The amplitude of low-
frequency fluctuations (ALFF) of the rs-fMRI is a method to
measure low-frequency oscillations of the blood-oxygen-level-
dependent (BOLD) signal and local spontaneous activity during
the resting state (Zang et al., 2007; Zou et al., 2008; Xi et al.,
2013). Several studies have shown that ALFF can be used as
an indicator of the disease state of the brain (Han et al., 2011;
Chen et al., 2015), but it may be affected by a number of non-
neurophysiological fluctuations. The fractional amplitude of low-
frequency fluctuations (fALFF), on the other hand, represents the
ratio of the amplitude in the low-frequency range to the sum
of the amplitude in the whole frequency range (Wang et al.,
2016). It has high sensitivity and specificity in the detection of

spontaneous brain activity, but it is not as reliable as ALFF (Zou
et al., 2008). These two indicators reflect the amplitude of low-
frequency oscillations from different aspects and are sensitive
indicators of related neurodegenerative changes (Wang et al.,
2016). Both ALFF and fALFF have been more and more applied
in numerous basic and clinical neuroscience studies with high
reliability and reproducibility (Liu et al., 2017; Zhao et al., 2018;
Luo et al., 2020). Moreover, ALFF and fALFF have been found to
be abnormal in a number of neuropsychiatric disorders, such as
AD, depression, and schizophrenia, and have also been found to
be altered in aMCI and vMCI.

Previous ALFF/fALFF studies revealed abnormal intrinsic
brain activity in aMCI. Xi et al. suggested that patients
with aMCI, compared with healthy controls (HCs), showed
decreased ALFFs in the left lateral temporal cortex, right
hippocampus (Hip), parahippocampal gyrus (PHG), and right
ventral medial prefrontal cortex (vMPFC), while increased
ALFFs were displayed in the left temporal-parietal junction
(TPJ) and inferior parietal lobule (IPL) (Xi et al., 2013).
Meanwhile, a machine learning method demonstrated the
gradual disturbances of the ALFF/fALFF in the AD spectrum
as disease advanced. These studies showed several brain regions
with decreased ALFF/fALFF within different bands among
the bilateral cingulum, bilateral inferior cerebellum lobe, and
bilateral precuneus (PCUN). However, increased ALFF/fALFF
were also detected in the hip, frontal lobe, and paracentral
lobe and involved in default-mode regions, such as the hip,
PHG, posterior cingulate gyrus (PCG), and middle frontal gyrus
(MFG). These abnormities were significantly correlated with
the neuropsychological assessments as diseases progressed (Long
et al., 2016; Yang et al., 2018). More recently, vascular risk factors
have been found to modulate the spontaneous brain activity
in patients with MCI, thus providing preliminary evidence that
MCI patients with high vascular risk demonstrated decreased
ALFF in the left Hip as compared with HCs with high vascular
risk. This may serve as a potential neuroimaging biomarker
for an underlying vascular contribution to AD (Zhuang et al.,
2020). Previous studies have shown that ALFF/fALFF changes are
closely related to cognitive function in patients with AD, MCI,
white matter osteoporosis, and cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL), suggesting that ALFF/fALFF may be an imaging
biomarker for these diseases (Li et al., 2017; Yang et al., 2018;
Su et al., 2019; Wang J. et al., 2019; Wang P. et al., 2019). Thus,
the study of ALFF/fALFF changes in aMCI and vMCI can help
us find their imaging diagnostic markers and understand their
pathophysiological mechanisms.
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Considering the above-mentioned ALFF and fALFF findings,
in this study, we used the activation likelihood estimation (ALE)
method to study ALFF/fALFF changes in aMCI and vMCI
to explore their ALFF change pattern compared to HCs and
diagnose and differentiate aMCI from vMCI at an early stage.
Since there have been many reports of decreased ALFF/fALFF
in the PCUN and posterior cingulate cortex (PCC) in aMCI and
vMCI (Jing et al., 2012; Ding et al., 2015; Ni et al., 2016; Yang et al.,
2018), we hypothesized that aMCI and vMCI also follow this
pattern and are expected to find changes in ALFF/fALFF in some
other brain regions, which may serve as a reliable neuroimaging
biomarker for the two subtypes of MCI.

METHODS

Literature Search and Selection Criteria
This study followed the list of the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) statement and
the phase flowchart for meta-analysis (Liberati et al., 2009; Moher
et al., 2009).

Search Strategy
Studies were comprehensively searched in the PubMed,
Web of Science, and Ovid databases. Search keywords were
as follows: (“vascular cognitive impairment” OR “vascular
cognitive impairment-no dementia” OR “vascular mild cognitive
impairment” OR “amnestic mild cognitive impairment”
OR “mild cognitive impairment”) AND (“amplitude of
low-frequency fluctuations” OR “fractional amplitude of low-
frequency fluctuations”). Considering that different articles
may use different terms to describe vMCI, in order to ensure
the comprehensiveness of the search, a supplementary search
was made for vMCI. The search keywords are as follows:
(“small vessel disease” OR “vascular cognitive impairment
not dementia” OR “subcortical ischemic vascular disease” OR
“moyamoya disease” OR “Leukoaraiosis” OR “leukodystrophy”
OR “CADASIL” OR “vascular deficit” OR “vascular disorder”
OR “cerebrovascular disorder” OR “cerebrovascular deficit”
OR “vascular” OR “cerebrovascular”) AND (“amplitude of
low-frequency fluctuations” OR “fractional amplitude of
low-frequency fluctuations”). All articles published up to and
including March 2021 were examined; thus, a total of 515 articles
were studied.

Inclusion and Exclusion Criteria
Criteria for inclusion were as follows: (1) The patients met the
diagnostic criteria for aMCI or vMCI; (2) the patients were
compared with HCs for ALFF/fALFF; (3) information on three-
dimensional Talairach or Montreal Neurological Institute (MNI)
coordinates was reported; (4) the study was based on rs-fMRI;
and (5) the research was written in English and published in a
peer-reviewed journal.

Criteria for exclusion were as follows: (1) The study was based
on other diseases, such as schizophrenia and epilepsy; (2) the
study was categorized as a case report or secondary literature
(e.g., systematic review and meta-analysis).

Data Extraction and Quality Assessment
The research results were screened independently by two authors
(Xulian Zhang and Chen Xue) according to the inclusion and
exclusion criteria. In case of disagreement, the reviewers (Xuan
Cao and Qinlging Huang) evaluated and made the final decision.
Firstly, we conducted a preliminary screening of the titles and
abstracts of the studies to evaluate whether they conformed to
the research content being explored. Secondly, for articles that
conformed to the research content or with content that could not
be determined according to the title and abstract, the full text was
reviewed for a more extensive assessment. Thirdly, the articles
obtained after preliminary screening were examined again to
assess whether they met the inclusion criteria. Finally, we cross-
checked the references of all the retrieval results to find the
missing studies.

Data Analysis Procedures
The results of that compared aMCI with HCs and vMCI with
HCs were divided into three groups according to decreased or
increased ALFF/fALFF values: aMCI increased ALFF/fALFF (n
= 377; 43 foci); aMCI decreased ALFF/fALFF (n = 351; 61 foci);
and vMCI decreased ALFF/fALFF (n= 136; 20 foci).

JAVA GingerALE Version 2.3.6 (http://www.brainmap.
org/ale) was used for meta-analysis free of charge and
for calculating the ALFF changes in amnestic and vMCI
compared to HCs based on the method of ALE. First, the
foci data recorded in the text file were imported into the
reading software (Eickhoff et al., 2012), and coordinates
in the Talairach space were converted into the MNI 152
standard space using the GingerALE converter foci tool.
Then, the threshold for using the error discovery rate
in the ALE map was set to p < 0.05 (Eickhoff et al.,
2012). Finally, the ALE map was overlaid into the MNI
152 template and viewed using the DPABI software
(http://rfmri.org/DPABI).

RESULTS

Search Results
After the preliminary screening of the retrieval results, 62 studies
were obtained, of which 21 were excluded because they focused
on other diseases ormeta-analysis, 14 were excluded because they
did not have an HC group or group comparison coordinates,
and 5 were excluded because they were not published in English.
Finally, 22 studies were included in the present meta-analysis
(Figure 1; Table 1).

Meta-Analysis Results
Abnormal ALFF/fALFF in aMCI

Compared with HCs, patients with aMCI showed increased
ALFF/fALFF in the bilateral PHG/Hip, right amygdala (AMYG),
right cerebellum anterior lobe (CAL), left middle temporal gyrus
(MTG), left cerebrum temporal lobe sub-gyral, left inferior
temporal gyrus (ITG), and left cerebrum limbic lobe uncus
(Table 2; Figure 2A). Patients with aMCI also showed decreased
ALFF/fALFF in the bilateral PCUN, bilateral cuneus (CUN), and
bilateral PCC (Table 2; Figure 2B).
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FIGURE 1 | Flowchart to identify the studies that are eligible for systematic review.

Abnormal ALFF/fALFF in vMCI

Compared with HC, patients with vMCI showed decreased
ALFF/fALFF in the bilateral CUN, left PCUN, left PCC, and right
cingulate gyrus (CG) (Table 2; Figure 3).

DISCUSSION

This study is the first meta-analysis to investigate the changes of
ALFF/fFALFF in aMCI and vMCI and further explore whether
these changes contribute to the diagnosis and differentiation
of the two diseases. Compared with HCs, we found that the
ALFF/fALFF values of both aMCI and vMCI were altered, which
was consistent with the findings of the previous studies (Xi et al.,
2013; Yin et al., 2014). In patients with aMCI, ALFF/fALFF
increased mainly in the bilateral PHG/Hip, right AMYG, right
CAL, left MTG, left cerebrum temporal lobe sub-gyral, left ITG,
and left cerebrum limbic lobe uncus, while these values decreased
mainly in the bilateral PCUN, bilateral CUN, and bilateral
cingulate cortex. However, we only found that the ALFF/fALFF
decreased in the left side of the bilateral CUN, the left PCC of
the PCUN, and the right CG in patients with vMCI, but no brain
regions with increased ALFF/fALFF values were found.

In this study, we found that, in aMCI compared to
HCs, the brain regions with increased ALFF/fALFF were
mainly concentrated in the limbic lobe, MTG, ITG, and
anterior cerebellar lobe, while the brain regions with decreased
ALFF/fALFF were mainly concentrated in the parietal lobe,
occipital lobe, and limbic lobe. A quantitative meta-analysis
found that patients with aMCI showed increased ALFF/fALFF
in the right CAL, right PCUN, right IPL, and left ITG, while
decreased ALFF/fALFF was found in the right PCUN and
PCC. These results are mostly consistent with our findings (Xu
et al., 2020). Meanwhile, increased ALFF/fALFF also occurred
in the right AMYG and right CAL within our meta-data. A
voxel-based morphometry meta-analysis found that the aMCI
group showed significant GM atrophy in the left AMYG and
right Hip, and these findings were highly consistent with the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
These abnormalities further confirmed that GM atrophy is
accompanied by local ALFF/fALFF abnormalities in patients
with aMCI (Zhang J. et al., 2021). However, different results
have been reported previously. Studies have revealed that
aMCI groups showed increased ALFF in the calcarine, right
cuneus, and bilateral PC/PCUN, and decreased ALFFs in the
left inferior frontal gyrus, superior temporal gyrus, and insula
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TABLE 1 | Demographic characteristics of the included studies.

Study Imaging

modality

N Age (SD) Gender

(male/female)

MMSE (SD) Group

contrasts

Foci

ALFF/fALFF IN THE aMCI PATIENTS

ALFF

Xi et al. (2013) rs-fMRI aMCI 18 67.39 (7.67) 8/10 25.16 (3.43) MCI > HC 2

HC 20 65.42 (5.75) 9/11 28.14 (1.84) MCI < HC 3

Cai et al. (2017) rs-fMRI aMCI 39 72.4 (5.01) 19/20 25.52 (2.88) MCI > HC 5

HC 38 73.92 (3.90) 19/19 29.28 (0.88) MCI < HC 7

Yin et al. (2014) rs-fMRI aMCI 11 66.6 (8.7) 2/9 24.6 (3.2) MCI > HC 2

HC 22 62.1 (8.1) 12/10 29.2 (1.1) MCI < HC 4

Li et al. (2014) rs-fMRI aMCI 17 67.0 (7.9) 9/8 25.6 (1.27) MCI > HC 5

HC 22 62.6 (5.8) 11/11 28.5 (1.1) MCI < HC 2

Ni et al. (2016) rs-fMRI aMCI 26 71 (9) 12/14 25 (1.48) MCI > HC 2

HC 28 70 (9) 17/11 29 (1.09) MCI < HC 5

Wang et al. (2011) rs-fMRI aMCI 16 69.38 (7.00) 7/9 26.50 (1.03) MCI > HC 0

HC 22 66.55 (7.67) 7/15 28.59 (0.59) MCI < HC 2

Zhuang et al. (2020) rs-fMRI aMCI 43 64.5 (5.64) 18/25 26.77 (1.66) MCI > HC 2

HC 29 66.79 (3.68) 7/22 28.71 (0.91) MCI < HC 0

Liang et al. (2014) rs-fMRI aMCI 53 73.2 (7.3) 22/31 27.1 (2.3) MCI > HC 1

HC 35 74.3 (5.9) 17/18 28.9 (1.6) MCI < HC 8

fALFF

Yang et al. (2020) rs-fMRI aMCI 52 68.06 (9.32) 26/26 24.52 (4.27) MCI > HC 2

HC 55 63.41 (7.97) 22/23 28.07 (2.14) MCI < HC 7

Liu et al. (2020) rs-fMRI aMCI 20 68.8 (11.2) 12/8 27.4 (1.66) MCI > HC 4

HC 22 72.7 (8.05) 9/13 28.3 (1.42) MCI < HC 4

Zhou et al. (2020) rs-fMRI aMCI 24 69.8 (6.2) 10/14 23.9 (3.6) MCI > HC 4

HC 32 67.9 (6.4) 14/18 28.0 (1.9) MCI < HC 0

Zhao et al. (2015) rs-fMRI aMCI 34 68.0 (7.6) 14/20 25.5 (1.6) MCI > HC 0

HC 34 66.9 (6.7) 18/16 29.2 (0.9) MCI < HC 2

Jing et al. (2012) rs-fMRI aMCI 10 78.42 (9.65) 5/5 – MCI > HC 2

HC 8 75.35 (6.45) 3/5 – MCI < HC 0

Li et al. (2017) rs-fMRI aMCI 27 67.44 (8.49) 13/14 23.52 (3.31) MCI > HC 0

HC 32 64.88 (7.54) 16/16 27.69 (1.67) MCI < HC 9

Yang et al. (2018) rs-fMRI aMCI 55 67.51 (9.62) 27/28 24.66 (4.20) MCI > HC 4

HC 57 63.77 (8.09) 22/35 28.14 (2.13) MCI < HC 8

ALFF IN THE vMCI PATIENTS

Ni et al. (2016) rs-fMRI vMCI 22 79 (6) 16/6 25 (1.48) MCI > HC 2

HC 28 70 (9) 17/11 29 (1.09) MCI < HC 2

Ding et al. (2015) rs-fMRI vMCI 11 63.09 (4.99) 6/5 – MCI > HC 4

HC 12 63.64 (5.35) 6/6 – MCI < HC 4

Li et al. (2015) rs-fMRI vMCI 28 67.9 (6.1) 16/12 27.89 (1.57) MCI > HC 3

HC 30 66.6 (4.6) 14/16 28.10 (1.73) MCI < HC 2

Wang J. et al. (2019) rs-fMRI vMCI 28 59.28 (6.12) 14/14 24.96 (1.48) MCI > HC 1

HC 28 58.35 (6.82) 13/15 29.46 (1.07) MCI < HC 1

Su et al. (2019) rs-fMRI vMCI 22 49.0 (14.2) 13/9 23.3 (6.3) MCI > HC 3

HC 44 48.5 (13.7) 26/18 28.6 (1.1) MCI < HC 1

Lei et al. (2014) rs-fMRI vMCI 11 40.2 (11.2) 4/7 19.6 (4.3) MCI > HC 15

HC 22 40.2 (7.2) 10/12 29.0 (1.2) MCI < HC 3

Ding et al. (2018) rs-fMRI vMCI 14 67.9 (8.7) 8/6 26.87 (0.32) MCI > HC 2

HC 15 65.8 (7.9) 7/8 28.51 (0.28) MCI < HC 7

Frontiers in Aging Neuroscience | www.frontiersin.org 5 August 2021 | Volume 13 | Article 711023

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Amnestic and Vascular Cognitive Impairment

TABLE 2 | All clusters from the activation likelihood estimation (ALE) analysis.

Cluster Volume

(mm3)

MNI Anatomical regions Maximum

ALE value

Side BA

X Y Z

ALFF/fALFF IN THE aMCI PATIENTS

MCI > HC

1 12120 36 −36 −16 Parahippocampal Gyrus 0.009105647 Right 36

1 12120 30 −6 −26 Amygdala 0.008697757 Right –

1 12120 34 −12 −22 Parahippocampal Gyrus/Hippocampus 0.008655652 Right –

1 12120 42 −24 −24 Parahippocampal Gyrus 0.008040754 Right 36

1 12120 38 −20 −24 Parahippocampal Gyrus/Hippocampus 0.007865525 Right –

1 12120 36 −50 −18 Cerebellum Anterior Lobe 0.007794415 Right –

2 11160 −36 −10 −22 Parahippocampal Gyrus/Hippocampus 0.009343305 Left –

2 11160 −60 0 −24 Middle Temporal Gyrus 0.009123246 Left 21

2 11160 −50 −18 −16 Sub-Gyral 0.008646758 Left 21

2 11160 −62 −18 −24 Inferior Temporal Gyrus 0.008411912 Left 20

2 11160 −38 −14 −32 Uncus 0.007911957 Left 20

MCI < HC

1 23032 −10 −60 10 Cuneus 0.014755126 Left 30

1 23032 12 −66 28 Precuneus 0.011124825 Right 31

1 23032 −10 −74 48 Precuneus 0.010285008 Left 7

1 23032 18 −68 42 Precuneus 0.010156754 Right 7

1 23032 10 −72 22 Cuneus 0.00971911 Right 18

1 23032 18 −54 24 Posterior Cingulate 0.009503377 Right 31

1 23032 −14 −72 42 Precuneus 0.009484317 Left 7

1 23032 4 −58 24 Posterior Cingulate 0.009442661 Right 23

1 23032 −4 −52 14 Posterior Cingulate 0.009429278 Left 29

1 23032 10 −66 42 Precuneus 0.008669218 Right 7

1 23032 −6 −60 44 Precuneus 0.006714426 Left 7

1 23032 14 −52 44 Precuneus 0.00636507 Right 7

ALFF/fALFF IN THE vMCI PATIENTS

MCI < HC

1 17944 6 −81 30 Cuneus 0.008325707 Right 18

1 17944 −8 −80 42 Cuneus 0.008055744 Left 19

1 17944 0 −66 54 Precuneus 0.006901417 Left 7

1 17944 −2 −52 66 Precuneus 0.006225559 Left 7

2 16000 −4 −46 24 Posterior Cingulate 0.01040697 Left 30

2 16000 −4 −54 20 Posterior Cingulate 0.007187156 Left 30

2 16000 8 −50 32 Cingulate Gyrus 0.006430536 Right 31

(Liu et al., 2014; Zhuang et al., 2019). This may be due to the
frequency bands chosen (Slow-4 and Slow-5). An rs-fMRI study
showed abnormal ALFF/fALFF in the Slow-5 band of PCC/PCU
and PHG, and that several occipital regions were greater than
the Slow-4 band in patients with aMCI compared with age-
and sex-matched HCs. These abnormalities reflect the functional
differences between groups that rely on these frequency bands
(Han et al., 2011). In addition, some studies have found that
the PICALM rs541458 and TOMM40 gene polymorphisms can
regulate ALFF in elderly patients with aMCI (Liu et al., 2014;
Zhuang et al., 2019). From the above, we can see that changes
in ALFF/fALFF are the result of the combined action of many
factors. Although our results are broadly consistent with those of
most previous studies (Xi et al., 2013; Yin et al., 2014), there are

still some differences, which may be related to the influence of
multiple factors on ALFF/fALFF changes.

The limbic lobe mainly includes the hip, parahippocampal
gyrus, CG, and AMYG and is mainly involved in emotion
and motivation functions (Heimer and Van Hoesen, 2006).
Studies have shown that the hip and its parahippocampal gyrus
play an important role in memory function, which is mainly
related to information storage and episodic memory retrieval
(Xi et al., 2013). Heimer et al. found that the hip and CG
played a role in regulating emotional state and the AMYG was
mainly involved in the recognition of emotional meaning and
the generation of emotional state (Heimer and Van Hoesen,
2006). A meta-analysis by Davey et al. found that the MTG
is an important junction between the default mode network

Frontiers in Aging Neuroscience | www.frontiersin.org 6 August 2021 | Volume 13 | Article 711023

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Amnestic and Vascular Cognitive Impairment

FIGURE 2 | (A) Brain regions showing increased ALFF/fALFF in patients with aMCI compared with HCs. (B) Brain regions showing decreased ALFF/fALFF in patients

with aMCI compared with HCs. aMCI, amnestic mild cognitive impairment; HCs, healthy controls; ALFF/fALFF, the amplitude of low-frequency fluctuation/fractional

amplitude of low-frequency fluctuation; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; CAL, cerebellum anterior lobe; PHG, parahippocampal gyrus;

AMYG amygdala; PCUN, precuneus; CUN, cuneus; PCC, posterior cingulate; R, right; L, left.

FIGURE 3 | Brain regions showing decreased ALFF in patients with vMCI

compared with HCs. PCUN, precuneus; CUN, cuneus; PCC, posterior

cingulate; CG, cingulate gyrus R, right; L, left.

(DMN) and the multi-need network and is mainly involved in
semantic control, while the ITG is mainly involved in higher
cognitive functions such as language and vision (Davey et al.,
2016; Lin et al., 2020). The anterior cerebellum is known to be
involved in sensorimotor activity, but studies have also suggested
that it plays an important role in cognition and emotion
(Schmahmann, 2019). In addition, previous studies have found
that the PCUN/CUN is structurally and functionally connected
to the DMN, which may play a central role in the neural network
related to consciousness (Cavanna, 2007; Cunningham et al.,
2017; Su et al., 2019). Although the conclusions of studies on
ALFF have exhibited some inconsistency, a meta-analysis of rs-
fMRI studies using the seed-based mapping software package
revealed widespread aberrant regional spontaneous brain activity
in aMCI and a regression analysis found that the severity of

cognitive impairment in aMCI was negatively correlated with
increased ALFFs in the CUN/PCUN cortices. These results
were consistent with our meta-analysis results (Pan et al.,
2017). We also found a meta-analysis based on brain 18F-
fluorodeoxyglucose positron emission tomography (FDG-PET),
which found that the left PCC/PCUN was the most robust and
reliable metabolic altered brain region for metabolic alterations
in aMCI converted to AD. The hypometabolism in the left
PCC/PCNU and altered fMRImay serve as a potential biomarker
for AD and other forms of cognitive impairment (Ma et al., 2018;
Zhang Q. et al., 2021). These findings support our meta-analysis
results that found that these aberrant regions may be regarded as
early neuroimaging biomarkers for aMCI (Lau et al., 2016).

Our study found that, compared with HCs, vMCI showed
no significant difference in ALFF/fALFF increased brain regions,
while the decreased brain regions were the bilateral CUN, left
PCUN, left PCC, and right CG. These brain areas are essentially
the same as those that were decreased in patients with aMCI.
Previous researchers have also found consistent results based
on rs-fMRI in vMCI. A study on leukoaraiosis (LA) divided
LA patients into two groups of LA-vMCI and LA with vascular
dementia (LA-VaD). The ANOVA statistical analysis showed
the predominant and widespread differences of ALFF in the
PCC/PCUN and the right ITG for LA patients compared with the
HCs. In particular, ALFF was found to be significantly decreased
in the PCC/PCUN and increased in the temporal regions for
LA-VaD patients, while the LA-vMCI group showed significantly
increased ALFFs in the ITG compared to the HCs and the LA-
VaD group. Furthermore, the results revealed that decreased
executive functions were correlated with altered ALFF in the left
PCUN (Wang J. et al., 2019). In addition, studies have shown that
CG is related to cognitive processes and behaviors, which may be
the reason why vMCI is mainly shown as decreased processing
speed and executive ability (Vasquez and Zakzanis, 2015; Apps
et al., 2016). In view of our meta-analysis results between aMCI
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and vMCI groups, we found that decreased ALFF/fALFF in the
PCC/PCUN and CG both occurred in the two groups. Our
results are consistent with the aforementioned meta-analysis,
whichmay indicate that theremay be some similarity in cognitive
impairment caused by different brain etiologies.

However, decreased ALFF/fALFF in the PCUN/CUN and CG
may present a decompensated stage of cognitive impairment in
aMCI and vMCI, and this may contribute to the understanding
of the pathophysiology and interconnectivity of disparate
cognitive processes. Patients with aMCI not only displayed
decreased ALFF/fALFFs in several different brain regions but also
demonstrated increased ALFF/fALFFs in other brain regions.
Meanwhile, we could not achieve satisfactory results regarding
the increased ALFF/fALFF in vMCI even after we increased the
statistical threshold. Through careful observation, we found that
all the included studies on vMCI had brain regions with increased
ALFF/fALFF, but there were different opinions on the specific
brain regions with increased ALFF/fALFF. We speculated that
the inclusion criteria of vMCI and the frequency bands selected
in the studies might be related. This may explain the absence of
elevated brain regions found in patients with vMCI. Although
ALFF/fALFF abnormalities may depend on different frequency
bands, these increased ALFF/fALFF in patients with aMCI may
still indicate a compensatory mechanism in the early stage of
cognitive impairment.

LIMITATIONS

The limitations of thismeta-analysismainly include the following
points. Firstly, different studies in the included literature used

different criteria to distinguish vMCI from HCs; thus, there
is no strict unified standard yet. This may be because the

concept of vMCI was only proposed in recent years, and previous
studies had inconsistent statements on the disease. Secondly,
our meta-analysis was based on a whole-brain analysis, without
specific analysis of the various networks in the brain. Finally,
although some brain regions of aMCI and vMCI were found
to be different from those of HCs, we did not have enough
evidence to indicate which brain regions that ALFF/fALFF
changes are the early neuroimaging biomarkers of aMCI and
vMCI. But finding them is going to be an important part of our
future work.

CONCLUSIONS

This study showed that aMCI and vMCI had different
ALFF/fALFF changes compared with HCs. Taken
together, our findings provide novel insights into the
pathophysiological mechanisms of aMCI and vMCI and
may be helpful to distinguish aMCI from vMCI for early
clinical interventions.
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