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Ensuring the health and welfare of animals in research is paramount, and the normal

functioning of the digestive tract is essential for both. Here we critically assess non- or

minimally-invasive techniques which may be used to assess a cephalopod’s digestive

tract functionality to inform health monitoring. We focus on: (i) predatory response as an

indication of appetitive drive; (ii) body weight assessment and interpretation of deviations

(e.g., digestive gland weight loss is disproportionate to body weight loss in starvation);

(iii) oro-anal transit time requiring novel, standardized techniques to facilitate comparative

studies of species and diets; (iv) defecation frequency and analysis of fecal color (diet

dependent) and composition (parasites, biomarkers, and cytology); (v) digestive tract

endoscopy, but passage of the esophagus through the brain is a technical challenge;

(vi) high resolution ultrasound that offers the possibility of imaging the morphology of the

digestive tract (e.g., food distribution, indigestible residues, obstruction) and recording

contractile activity; (vii) needle biopsy (with ultrasound guidance) as a technique for

investigating digestive gland biochemistry and pathology without the death of the animal.

These techniques will inform the development of physiologically based assessments of

health and the impact of experimental procedures. Although intended for use in the

laboratory they are equally applicable to cephalopods in public display and aquaculture.

Keywords: cephalopods, digestive tract, Directive 2010/63/EU, feces, food intake, nutrition, ultrasound, welfare

assessment

INTRODUCTION

Interest in cephalopods and their welfare is stimulated by significant policy changes initiated at
European Union (EU) level, that are recognized to have an impact beyond Europe (Di Cristina
et al., 2015). Such European Policies and Directives have implications for cephalopods in scientific
research, aquaculture or public display, and relevance for fisheries and ecology, i.e., Directive
2010/63/EU, EU Common Fisheries Policy, Marine Strategy Framework Directive, the revision of
IUCN Red List (review in: ICES, 2014; Di Cristina et al., 2015; Xavier et al., 2015).
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Cephalopods are a special case in a “regulation” context
since: (i) it is the first time that research on an entire class of
invertebrate has been regulated in the European Union (Smith
et al., 2013), and (ii) the species are very diverse in terms of
ecological, biological, physiological, and behavioral adaptations
(e.g., Packard, 1972; Borrelli and Fiorito, 2008; Grasso and Basil,
2009; Kröger et al., 2011; Albertin et al., 2015).

Daily assessment of animal well-being is required under
Directive 2010/63/EU (Fiorito et al., 2015), but few indicators of
digestive system physiology are available. Fiorito and co-workers
list five (out of 27) signs potentially linked to the digestive system
that may indicate an alteration in normal behavior or physiology
(see Table 5 in Fiorito et al., 2015).

How can the functionality of the digestive tract be assessed
routinely at the “tank–side”?

Here we review and suggest a series of non-invasive and/or
minimally invasive approaches (Table 1).

PREDATORY RESPONSE AND FOOD
INTAKE

The vast majority of cephalopod species are active predators,
and prey attack is considered to be a good indicator of overall
health (Fiorito et al., 2014). Latency to attack either a live- or
an artificial crab is used as an indication of health in Octopus
vulgaris (Amodio et al., 2014), and a prompt feeding response
to a live fish is proposed for cuttlefish and squid as an indication
of full recovery after transport (Oestmann et al., 1997). Latency
to attack may vary between individuals (Lee et al., 1991) which
probably denotes different temperaments (e.g., Sinn et al., 2001;
Sinn and Moltschaniwskyj, 2005; Borrelli, 2007; Carere et al.,
2015), and these differences should be taken into account (see
discussion in Borrelli and Fiorito, 2008). In addition, it may be
influenced by housing, as shown by laboratory reared juvenile
cuttlefish that have a shorter attack latency (three times faster)
if housed together (Warnke, 1994), and if there is more available
space (Boal et al., 1999).

Ingestion of a normal amount of food (assuming “normal”
can be defined for species, age, sex, and temperature) at a
regular frequency is probably the most useful indicator of health.
However, monitoring food intake requires knowledge of the
amount of food provided and of possible remains. Therefore,
tanks should be inspected for empty carapaces, shells, and other
residues as well as uneaten food. For prepared diets whenever
accepted, allowance needs to be made for portions of the food
pellet lost, due to leaching and disaggregation, and not ingested.

If animals are fed live prey, uneaten specimens must be
removed to avoid possible welfare issues; the prey may become
the “predator,” particularly if the size difference between the two
individuals is not large (e.g., a small cuttlefish and a shrimp). In
addition, leaving uneaten prey may lead to inaccurate estimation
of intake over a particular time period.

An additional issue is to ensure that every animal has sufficient
food. This can be challenging for species which may be housed in
groups such as S. officinalis, Loligo vulgaris (or other squid) or
O. vulgaris that are kept under culture conditions. This may be

assisted by observation, but feeding hierarchies should be taken
into consideration when animals (e.g., cultured cuttlefish) are
housed together (see discussion inWarnke, 1994). To circumvent
these issues, and again in an aquaculture context animals are fed
ad libitum, but accurate monitoring of food remains is required.

Food intake may decrease with increasing size in cephalopods,
and depends on food availability, its quality and size, the duration
of digestion, maturation, and temperature (Mangold, 1983).

Feeding behavior and food intake may be affected by
experimental procedures; resumption of the normal status should
be assessed at individual animal level. A few examples from the
literature are provided below.

Octopus tetricus attacked and ate crabs within 15 min after
brief anesthesia used to facilitate handling for weighing (Joll,
1977). Similarly, S. officinalis resumed feeding on grass shrimp 7
min after recovery from anesthesia used for handling (Gonçalves
et al., 2012). Cuttlefish resumed feeding 48 h post-surgery after
kainic acid lesion of the vertical lobe (Graindorge et al., 2008).
O. vulgaris performed a normal predatory response 1 h after
anesthesia and arm surgery (Shaw et al., 2016). However, recovery
of the attack response following cold water “anaesthesia” in the
same species is prolonged with respect to circumstances when
magnesium chloride is used as agent (Agnisola et al., 1996).

Cephalopod paralarvae or other early stages provide further
challenges. Ingestion of food and estimation of food intake
may be assessed by direct observation or through the use of
microfluorospheres (around 10 µm diameter) included in the
food (see Villanueva and Norman, 2008, and below), since at
early stages most species are transparent.

BODY WEIGHT AND DEVIATION FROM
“NORMALITY”

Loss of body weight or growth below particular pre-set limits
are frequently used as humane end points (see discussion in:
Smith et al., 2013; Fiorito et al., 2015) in regulated procedures.
However, setting limits requires knowledge of the normal
variations in body weight for the species studied and the housing
conditions (particularly water temperature). Total body length is
not considered a valid index of growth in cephalopods because
of variables including the elasticity of tentacles and arms, and
differences in relative growth linked to sex and season (e.g., Bello,
1991; Cortez et al., 1999; Pierce et al., 1999; Sivashanthini et al.,
2009).

Gross growth efficiency is dependent on food quality, its
ingestion and water temperature (Mangold, 1983). Growth
curves for several cephalopod species in captivity show a
reduction in growth rate over Winter, due to a temperature
decrease in open aquaria (e.g., Nixon, 1966; Joll, 1977; Boyle and
Knobloch, 1982; Domingues et al., 2002). However, in constant
temperature aquaria, a reduction in growth rate is most likely due
to reduced food intake.

Additionally, the available bottom area of the tank and
the stocking density may also influence growth rates (see for
example: Forsythe et al., 2002; Correia et al., 2005; Delgado et al.,
2010; Domingues and Márquez, 2010; Domingues et al., 2010).
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TABLE 1 | Summary of parameters that could be used to monitor cephalopod digestive tract functioning by non-invasive or minimally invasive techniques to provide

either a direct or indirect insight into the physiology of the digestive tract. Examples are taken mainly from studies on S. officinalis or Nautilus pompilius and/or octopus

(mostly O. vulgaris), but all techniques appear equally applicable to squid.

Parameter monitored Technique Hypothesized potential welfare

significance in relation to

digestive tract function

References

Body weight Regular weighing (preferably in water) Indicates normal food intake,

digestive tract functionality, and

metabolism

Nixon, 1966; Joll, 1977; Boyle and

Knobloch, 1982; Domingues et al., 2002;

Semmens et al., 2004; García-Garrido

et al., 2010; Sykes et al., 2014

Predatory behavior and interest in

food

Behavioral observations Normal appetitive drive, major

digestive tract pathology, unlikely

Oestmann et al., 1997; Borrelli and

Fiorito, 2008; Amodio et al., 2014Food seeking behaviors, time to

capture live or alternative prey

Food intake (amount, normal time

course of ingestion, and feeding

frequency)

Behavioral observations (including

video recording)

Ingestion mechanisms functional,

major digestive tract pathology,

unlikely

Guerra and Nixon, 1987; Grisley et al.,

1999; Semmens et al., 2004;

García-Garrido et al., 2010; Lamarre

et al., 2012Inspection of tank for uneaten food and

residues

Visceral pain (if present in

cephalopods), unlikely

Oro-anal transit time Dye, indigestible, or radio-opaque

markers in the food

Normal digestive tract functionality Bidder, 1957; Westermann et al., 2002

Presence of food in the digestive

tract, normally distributed and

contractile activity present

Ultrasound, X-ray (±contrast medium) Indicates ingestion of food and, if

normally distributed, shows lack of

structural defects and indirectly

normal motility (visible with

ultrasound, see Figure 1)

Westermann et al., 2002; Figure 1

(ultrasound), this paper

Direct observation in transparent

paralarvae

Appearance of digestive tract

mucosa

Endoscopy (digestive tract) Identification of mucosa defects and

presence of parasites in the lumen

No publications in cephalopods (but see

Sykes et al., 2017)

Utilized in finfish Moccia et al., 1984,

crabs Heinzel et al., 1993, and veterinary

medicine Sladakovic et al., 2017

External appearance of rectum Endoscopy (mantle) Cysts of some parasites (e.g.,

Aggregata ssp) may be visible

No publications in cephalopods

For Aggregata see Mayo-Hernández

et al., 2013

Digestive gland size (% body

weight) and density

High resolution ultrasound Global indicator of metabolic status

and functionality of digestive tract

García-Garrido et al., 2010;

Speers-Roesch et al., 2016

Increased water content indicates

catabolism and should be detectable

during sonographic examination

Supplementary Figure 1, this paper

Digestive gland biochemistry Needle biopsy Indicator of overall metabolic status

and normal functioning of the

digestive tracta

No publications on needle biopsy in

cephalopods, but well established in

humans (e.g., Kim and Shin, 2017)

For biochemistry approaches see: Lopes

et al., 2014; Lamarre et al., 2016;

Speers-Roesch et al., 2016; Penicaud

et al., 2017

Mantle muscle thickness and gill

morphology (remodeling)

Ultrasound May indicate severe food deprivation

or chronic failure of digestive tract

function

No formal studies in cephalopods, but for

mantle/gill morphology during food

deprivation see Lamarre et al., 2012 See

Figure 1, this paper

Regurgitation of food Behavioral observation (including video

recording)

May indicate toxic food, digestive

tract obstruction, or disordered neural

control

Unpublished observations cited in

Andrews et al. (2013)

A. Sykes and E. Almansa, unpublished

observations

(Continued)
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TABLE 1 | Continued

Parameter monitored Technique Hypothesized potential welfare

significance in relation to

digestive tract function

References

Defecation frequency change Behavioral observation (including video

recording)

Indirect measure of digestive tract

functionality, but only reflects handling

of previous meal

No formal studies in cephalopods

May indicate stress, digestive tract

infection, or alteration in secretion,

absorption of motility, defective

control

Fecal form, color, composition

change

Behavioral observation (including video

recording)

Form may reflect motility of the lower

digestive tract; color most likely

related to diet; composition reflects

epithelial water transport, but

parasites/bacteria may be present

and cytology may eventually reveal

disease

No formal studies (see main text for

incidental observations in the literature)

Fecal collection (molecular and/or

cytological analysis)

Urine composition: Tank water

[ammonia]

Chemical or electrochemical detection

(potentially real time, continuous

monitoring)

Indication of nitrogenous metabolism

reflecting protein intake and overall

metabolic status

Boucher-Rodoni and Mangold, 1985;

Segawa and Hanlon, 1988; Katsanevakis

et al., 2005; García et al., 2011

Oxygen consumption Metabolic chamber Assessment of normal metabolism

and indication of catabolic state of

O2:N2 ratio

Boucher-Rodoni and Mangold, 1988;

Valverde and García, 2005; Capaz et al.,

2017

Circulating nutrients, metabolites Hemolymph sampling Indicates normal functioning of the

digestive tract and particularly the

digestive gland

Aguila et al., 2007; Linares et al., 2015

Circulating hormones, including

those regulating the digestive tract

Hemolymph sampling Insights into the control of the

digestive tract, but also potential

larkers of immune response (e.g.,

TNFα) or stress

No formal studies of digestive tract

hormones in cephalopods, but see

Zatylny-Gaudin et al., 2016 for peptidome

study including haemolymph for

candidates

Circulating inflammatory markers Hemolymph sampling May indicate the presence of a

pathogen in the digestive tract

e.g., Castellanos-Martínez et al., 2014a,b;

Gestal and Castellanos-Martínez, 2015

Obstruction of the hepatopancreatic duct would prevent both water and nutrient absorption by the digestive gland (Wells and Wells, 1989).

The contribution of total body water (intra- and extracellular)
to body weight should not be overlooked. Cephalopods ingest
and absorb water from the sea and from the diet via the digestive
tract, and prevention of fluid absorption from the digestive tract
leads to ∼10% loss in body weight in 24 h in O. vulgaris (Wells
and Wells, 1989, 1993).

Body weight loss should always be investigated, and if a
reduction in food intake is identified as the primary cause then
this also needs investigation.

Body weight and food intake decrease in several species with
maturation (e.g., Mangold and Boletzky, 1973; Lee, 1995) and
around the time of egg laying, and since this may affect females,
their reproductive status should be checked in cases of evident
reduction of body weight/food intake. In females of many, but
not all species, reproductive status is accompanied by loss of body

weight due to reduced or absent food intake (e.g., Wodinsky,
1977; but see Sykes et al., 2013b), and reduction of food intake
may also occur in senescent mature males (Anderson et al.,
2002).

Individual tissues may be affected to a greater degree than
is apparent from body weight. For example, the proportionate
weight loss of the digestive gland in food deprived O. vulgaris is
greater than might be suspected from the change in body weight
(see Supplementary Figure 1).

If an animal is losing weight, but food intake is within
normal limits then the cause is likely to be the functioning
of the digestive tract. However, as the pathophysiology of the
cephalopod digestive tract has not been studied in any detail, we
can only hypothesize about the causes by analogy with vertebrates
(see Table 1).
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Body weight is probably the best overall indicator of adequate
nutrition, but it may not be the most practical parameter to
use for routine health assessment. Repeated measures of body
weight show variability (Nixon, 1971) and may induce effects
linked to handling (e.g., Locatello et al., 2013). Indeed, the effects
of repeated measures of body weight on animal welfare have
not been properly investigated, to the best of our knowledge.
Repeated handling of the animal may be stressful (for example
see: Malham et al., 1998; Grimaldi et al., 2013). According to
Nixon (1966) frequent handling ofO. vulgarismay reduce growth
rate, but this does not appear to be the case in cuttlefish (Sykes
et al., 2003, 2013a,b).

Weighing usually requires removal of the animal from its
tank for measurement in air, although animals can be weighed
in water (Aronson, 1982). Body weight may not be a sufficiently
sensitive welfare indicator for daily assessment, although it may
be useful over longer intervals. However, for species housed
in groups reliable identification of individuals is required, and
several methods are described for cephalopods (e.g., Huffard
et al., 2008; Ikeda et al., 2009; Zeeh and Wood, 2009; Byrne
et al., 2010; Barry et al., 2011; Estefanell et al., 2011; Sykes et al.,
2017).

ORO-ANAL TRANSIT TIME

This is the time from food ingestion until exit as feces, and
provides an overall measure of the key digestive tract functions of
motility, secretion, and absorption. The most common method
is to mark the food with a chemical marker (e.g., carmine in
Bidder, 1957) or to incorporate an indigestible marker into
the food (e.g., glass beads encapsulated in Artemia nauplii,
Villanueva and Norman, 2008). However, if particular dietary
constituents are associated with a fecal color change then by diet
switching it would be possible to estimate transit time for that
food.

A study in Nautilus pompilius applied X-ray imaging of food
labeled with contrast medium (barium sulfate) to monitor the
time course of digestion (about 12 h at 18–19◦C Westermann
et al., 2002). This method has been also explored in S. officinalis
(Figure 1H). However, this requires brief but repeated anesthesia
which, together with restraint and handling, is likely to affect the
oro-anal transit time of the animal.

The relatively few studies undertaken measured oro-anal
transit times (see Supplementary Table 1) ranging from 2–10 h
in squid (temperatures 16–22◦C) to 8–24 h in S. officinalis (14–
23◦C), and 8–30 h in octopus (10–30◦C). Overall, transit is faster
in animals living at higher water temperatures; the slowest time
we were able to find was for Benthoctopus levis (>30 h at 6◦C:
Mangold and Lu, unpublished, cited in Mangold and Bidder,
1989).

High resolution ultrasound may provide a method for
monitoring movement of digestive tract contents (see below),
provided that the animal could be adapted to remain relatively
quiescent during repeated imaging sessions lasting a fewminutes.
This approach is tractable in cuttlefish and octopus, but may be
problematic with squid because of their preference to moving in
the water column rather than remaining quiet on the bottom of a

tank. It is important that measurements are taken in non-sedated
and unrestrained animals as this will modify the results.

FECAL OUTPUT

Fecal analysis provides a non-invasive method for monitoring
digestive tract functionality. Defecation and fecal composition
are considered separately.

Defecation
Based upon transit times (see above) and tank inspection it is
usually assumed that defaecation takes place at least once daily
in S. officinalis and O. vulgaris, but this has yet to be confirmed
by a direct study.

Defecation is highly likely to be under central nervous system
control as “reflex” expulsion of feces, in the presence of a predator
when an animal is attempting to hide, would be disadvantageous.
Central control of defecation is likely to be via the visceral nerve
originating in the palliovisceral lobe (part of the posterior sub-
oesophageal mass) which in O. vulgaris is described as supplying
specific branches with relatively large axons (∼5 µm) to the
terminal rectum and anal flaps (Young, 1967). Injection of 5-
hydroxytryptamine (5-HT) into the brain blood supply (via an
implanted cannula in the dorsal aorta) evoked defecation in
O. vulgaris. This was not induced by nicotine, gamma amino
butyric acid, and L-glutamate injections (Andrews et al., 1983).
Defecation was not evoked by 5-HT following removal of
the supra-oesophageal lobes, suggesting that it may be under
“higher” motor control.

Descriptions of defecation in cephalopods are rare; in both
cuttlefish and O. vulgaris feces are expelled from the anus in a
“rope” and are ejected from the mantle cavity via the siphon by
mantle contraction referred, for octopus, as a “cough” (Wells,
1978).

Studies of defecatory behavior are needed to establish normal
patterns for each laboratory housed species in relation to the diet.
In this way criteria can be set for when a change (increase or
decrease) requires investigation or intervention.

Fecal Appearance and Composition
Descriptions of the appearance of cephalopod feces are scant.
In N. pompilius fed on shrimp feces are described as “red-
brown threads, 2 cm in length and with no solid components”
(Westermann et al., 2002, p. 1620). These appear “long filiform,
but quite variable in size and in color” in O. vulgaris (Taki,
1941), and grayish brown in color when the animals are fed
bivalves. An orange brown color is more characteristic of the
feces in O. vulgaris fed on crabs, and an orange/red color is
characteristic of feces of S. officinalis fed on grass shrimp or
crabs most likely due to carotenes. Feces after feeding animals
with fish or prepared diets not rich in crustaceans will lack any
obvious pigmentation and may be white. The “fecal ropes” have
an obvious mucus coating and presumably contain excretory
products of metabolism from the digestive gland and any
undigested or unabsorbed food. Feces may contain “chips of
cuticle” and fish scales (Wells, 1978) and dead cells (a possible
source of cells for genotyping) sloughed from the digestive tract
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FIGURE 1 | Sonographic scanning of the digestive tract of Octopus vulgaris (A–G) and X-ray imaging in juvenile S. officinalis (H). (A–G) The digestive tract of O.

vulgaris as it appears during ultrasound examination (VEVO 2100, VisualSonics). (A–C) The anterior part of the digestive system (note the crop full of food) and its

relationship to other parts within the mantle. (A) Ultrasound examination in the longitudinal plane with supra- (SEM) and sub-oesophageal masses (SUB, sagittal view)

and the esophagus (Oes) and the crop (CR, on the right). The posterior salivary glands (PSG) are also clearly identifiable. (B) Sonographic scanning using a transverse

plane reveals a distended crop (CR) full of food, the esophagus (Oes), and the cephalic aorta (CA) lying on its dorsal surface between the posterior salivary glands

(PSG). (C) Sonographic examination (longitudinal plane) showing one posterior salivary gland (PSG) with its typical leaf-shaped appearance, the distended crop (CR),

and the hepatopancreas (HP), ventrally. (D) A sequence of frames from the sonographic examination (transversal plane) of the octopus digestive tract octopus reveals

the crop of an animal fed 6 h before the ultrasound scan (about 30 s); the peristaltic motility of the crop is evident through the sequence of snapshots (from t = 0 to 33

s) with contractions and relaxations moving the crop contents. (E) The sequence of frames taken from the same animal during ultrasound examination in the

longitudinal plane identifies contraction and relaxation of the crop dividing the bolus. (F) The caecum with its characteristic spiral organization as it appears during

sonographic scanning. (G) High resolution (48 MHz) ultrasound scanning of the caecum showing the “villi-like” structures. (H) X-ray imaging of food labeled with

contrast medium (barium sulfate) to monitor the course of digestion in juvenile S. officinalis. Scanning performed with a Kodak DXS-4000 Pro system on anesthetized

individual. CA, cephalic aorta; Cae, caecum; CR, crop; Oes, esophagus; HP, hepatopancreas; PSG, posterior salivary gland; SEM, supra-oesophageal mass; SUB,

sub-oesophageal mass. Images provided here resulted from examinations carried out in compliance with local regulations, and for veterinary purposes. Scale bar,

A–F: 5 mm; G: 1 mm.
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epithelium or the digestive gland, digestive tract flora, and shed
parasites and cysts.

Steroid hormones have been detected in the feces of
Enteroctopus dofleini (Larson and Anderson, 2010), further
illustrating the potential of feces as source of biomarkers thus
serving as indicators of animals’ health and welfare. Overall, the
feces are an overlooked potential source of information about the
physiology of the digestive tract and their utility as a non-invasive
monitor of animal health should be investigated.

ENDOSCOPY AND ULTRASOUND

Endoscopy is a technique widely used for human and veterinary
clinical investigation of the digestive tract (for example see
Fritscher-Ravens et al., 2014; Sladakovic et al., 2017) to examine
the mucosa for abnormalities (e.g., polyps, parasites) or to
perform a biopsy for subsequent analysis and for some surgical
procedures. The technique has also been used to investigate
finfish (Moccia et al., 1984) and crab digestive tract (Heinzel et al.,
1993). Endoscopy requires sedation or general anesthesia so the
potential stress of this must also be taken into account when
considering welfare implications.

The size of endoscopes is a limiting factor in the application
to investigate the cephalopod digestive tract with the restriction
placed on the esophagus by the supra- and sub-oesophageal
lobes and their connecting circum-oesophageal structures being
a particular issue. The lower digestive tract is, in theory, accessible
to endoscopic inspection via the anal sphincter, but the size of the
endoscope will again be a limiting factor. In addition, as far as can
be ascertained in all cephalopods, the intestine exits the gastro-
caecal junction running caudally and dorsal, but during its course
turns rostrally and ventral to exit the mantle near the siphon.
Therefore, inspection of the proximal intestine would require a
very flexible endoscope.

Ultrasound is utilized for non-invasive imaging of the mantle,
vasculature, brain and arms of cephalopods. Ultrasonographic
examination can be undertaken without sedation or anesthesia
as carried out in S. officinalis (King et al., 2005; King and Adamo,
2006) or in O. vulgaris (Grimaldi et al., 2007). However, in other
circumstances light anesthesia is required to ensure stable images
for quantitative analysis of arm or brain morphology (Grimaldi
et al., 2007; Margheri et al., 2011).

If an animal stops eating for no apparent reason, ultrasound
may help to investigate the digestive tract and search for an
obstruction; it should also be possible to view contractile activity
of the crop, stomach, caecum or intestine as illustrated in
Figure 1. Since the digestive gland decreases in weight, but has an
increased % water with increasing duration of food deprivation
(see Supplementary Figure 1) it may be possible to use ultrasound
measurements of size and density as an index of the metabolic
status of the animal, contributing to overall welfare assessment.

As cephalopods experiencing severe food deprivation
mobilize lipids from the digestive gland and proteins from
muscle and the gills (Lamarre et al., 2012, 2016; Speers-Roesch
et al., 2016), ultrasound examination of these structures may
provide insights into the overall health status of the animal,

particularly if the same structures were imaged on arrival in the
laboratory.

CLOSING REMARKS

The assessment of cephalopod digestive tract function through
non-invasive methods needs to be developed further but the
above overview highlights key areas (Table 1). For example,
a specific analysis of the oro-anal transit times will facilitate
species comparisons, investigation of the effects of environmental
change, assessment of the impact of pathogens, investigation of
neural and hormonal control, and provide standardized methods
for comparison of experimental diets for use in aquaculture.
Deviation of body weight from normality is considered a key
welfare indicator, and the impact of prolonged food deprivation
on welfare should be taken into account. Analysis of fecal
composition will also give insights into absorption and secretion
in the digestive tract especially if combined with measurements
of metabolites in the haemolymph and/or digestive gland using
minimally invasive techniques (Lamarre et al., 2012, 2016;
Speers-Roesch et al., 2016). Simple methods for assessment of
digestive tract function will also facilitate comparative studies of
a wider range of species including those found more frequently
in public aquaria.

Although we focused our attention on a series of possible
markers of digestive tract function to be monitored through
routine assessment at the “tank-side,” daily assessment of
health and welfare largely relies on observation of the animal.
Understanding the external manifestations, including behavioral
changes, of underlying digestive tract pathophysiology will be
essential to improve welfare assessment tools for cephalopods.
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