
RESEARCH ARTICLE

Analytical validation and performance

characteristics of a 48-gene next-generation

sequencing panel for detecting potentially

actionable genomic alterations in myeloid

neoplasms

Sun Hee RosenthalID
1*, Anna Gerasimova1, Charles Ma1, Hai-Rong Li1, Andrew Grupe1,

Hansook Chong1, Allan Acab1, Alla Smolgovsky1, Renius Owen1, Christopher Elzinga1,

Rebecca Chen1, Daniel Sugganth1, Tracey Freitas2, Jennifer Graham2, Kristen Champion2,

Anindya Bhattacharya1, Frederick Racke1*, Felicitas Lacbawan1*

1 Department of Advanced Diagnostics, Quest Diagnostics, San Juan Capistrano, CA, United States of

America, 2 Department of Molecular Oncology, Med Fusion, Lewisville, TX, United States of America

* Sunhee.x.Rosenthal@questdiagnostics.com (SHR); Frederick.K.Racke@questdiagnostics.com (FR);

Felicitas.L.Lacbawan@questdiagnostics.com (FL)

Abstract

Identification of genomic mutations by molecular testing plays an important role in diagno-

sis, prognosis, and treatment of myeloid neoplasms. Next-generation sequencing (NGS)

is an efficient method for simultaneous detection of clinically significant genomic muta-

tions with high sensitivity. Various NGS based in-house developed and commercial mye-

loid neoplasm panels have been integrated into routine clinical practice. However, some

genes frequently mutated in myeloid malignancies are particularly difficult to sequence

with NGS panels (e.g., CEBPA, CARL, and FLT3). We report development and validation

of a 48-gene NGS panel that includes genes that are technically challenging for molecular

profiling of myeloid neoplasms including acute myeloid leukemia (AML), myelodysplastic

syndrome (MDS), and myeloproliferative neoplasms (MPN). Target regions were cap-

tured by hybridization with complementary biotinylated DNA baits, and NGS was per-

formed on an Illumina NextSeq500 instrument. A bioinformatics pipeline that was

developed in-house was used to detect single nucleotide variations (SNVs), insertions/

deletions (indels), and FLT3 internal tandem duplications (FLT3-ITD). An analytical vali-

dation study was performed on 184 unique specimens for variants with allele frequencies

�5%. Variants identified by the 48-gene panel were compared to those identified by a 35-

gene hematologic neoplasms panel using an additional 137 unique specimens. The

developed assay was applied to a large cohort (n = 2,053) of patients with suspected

myeloid neoplasms. Analytical validation yielded 99.6% sensitivity (95% CI: 98.9–99.9%)

and 100% specificity (95% CI: 100%). Concordance of variants detected by the 2 tested

panels was 100%. Among patients with suspected myeloid neoplasms (n = 2,053), 54.5%

patients harbored at least one clinically significant mutation: 77% in AML patients, 48% in

MDS, and 45% in MPN. Together, these findings demonstrate that the assay can identify
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mutations associated with diagnosis, prognosis, and treatment options of myeloid neo-

plasms even in technically challenging genes.

Introduction

Myeloid neoplasms are a heterogeneous group of malignancies of the hematopoietic stem/pro-

genitor cells. Substantial clinical and genomic overlap exists among different subclasses of

myeloid neoplasms that are currently classified by the World Health Organization (WHO):

acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), myeloproliferative neo-

plasms (MPN), and overlap myelodysplastic/myeloproliferative neoplasms (MDS/MPN) [1].

Coupled with clinical, morphologic, and immunophenotypic abnormalities, identification of

genetic alterations by molecular testing has an important role in the classification, risk stratifi-

cation, and management of myeloid neoplasms [2]. For example, mutations in NPM1, CEBPA,

and RUNX1 can identify specific subclass of AML, and mutations in FLT3, IDH1, IDH2, and

JAK2 can guide targeted therapies for AML [3]. For patients with MDS, identification of muta-

tions in genes including TET2, SF3B1, ASXL1 and TP53 is particularly useful to help establish

clonal hematopoiesis to make a definitive diagnosis of MDS [4]. In addition, for MPN, certain

mutations such as JAK2 V617F or exon 12 mutation satisfy diagnostic criteria to help establish

a diagnosis of MPN [5]; mutations in ASXL1, SRSF2, EZH2, IDH1, and IDH2 categorize

patients to high molecular risk in Primary Myelofibrosis (PMF) [6]; and mutations in IDH2,

U2AF1, EZH2, TP53, SH2B3, and SF3B1 indicate adverse prognostic value in Essential Throm-

bocythemia (ET) and Polycythemia Vera (PV) [7, 8].

Historically, single gene testing using Sanger sequencing or real-time PCR have been used

to identify genetic alterations in myeloid neoplasms [9]. Although these methods are readily

adaptive and widely used in clinical laboratories, their major limitation is that very few selected

mutations can be detected at a time. In recent years, whole genome sequencing (WGS) and

whole exome sequencing (WES) studies have been used to identify oncogenic mutations in

hundreds of genes, revealing a wide genetic heterogeneity in myeloid neoplasms [9]. Indeed,

more molecular genetic markers have been added in the most recent revision of the WHO

classification [1]. Since the number of mutations that can guide diagnosis, prognosis, and

treatment options are increasing, using single-gene testing for myeloid malignancies is becom-

ing impractical. Although WGS and WES are standard in research settings, targeted next gen-

eration sequencing (NGS) panel assays that are composed of genes associated with a disease

and recurrently mutated are more commonly used in clinical settings. Compared to WGS or

WES, targeted NGS assays are highly sensitive for detecting low-frequency variants and can

identify a number of mutations that are critical in diagnosis and risk stratification in a rela-

tively short time [10].

In recent years, various NGS based myeloid neoplasm panels developed in-house and com-

mercially have been integrated into routine clinical practice [10–13]. Panels developed in-

house can differ substantially between laboratories in many aspects including gene content,

the analysis of genes in a panel, sequencing library preparation chemistry, sequencing plat-

form, and variant types detected [14–20]. Among many others, amplicon-based commercial

panels, e.g. Illumina TruSight Myeloid panel, Thermo Fisher Oncomine Myeloid research

panel, and Archer VariantPlex Core Myeloid panel are most commonly used in clinical labora-

tories [12, 21, 22]. However, some genes frequently mutated in myeloid malignancies are par-

ticularly difficult to sequence with NGS, especially with amplicon-based or RNA bait capture-
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based panels. For example, technical difficulties hinder the ability to capture targets with high

GC content, such as CEBPA, which is associated with poor prognosis of AML, or repetitive

genomic regions, such as FLT3-ITD, which is associated with poor prognosis of AML in the

absence of NPM1 mutation [10, 12, 21–27]. Aguilera-Diaz and colleagues evaluate the perfor-

mance of four different targeted NGS gene panels, three commercial panels and one in-house

developed panel, and noted that CEBPA, CALR and FLT3 genes remain challenging the use of

NGS for diagnosis of myeloid neoplasms in compliance with current guidelines [21]. Similarly,

Lzevbaye and colleagues evaluated an amplicon based commercial panel and noted that the

panel is unable to detect specific variants in ASXL1 and CEBPA in long homopolymer regions

[22]. The application of NGS in clinical settings has additional challenges. For example, many

artifacts are known to arise during NGS library preparation, sequencing, and data analysis

(e.g., read mapping, variant calling) and these may cause challenges in discriminating true

genetic alterations from artifacts caused by PCR, sequencing, and post-sequencing steps. The

lack of uniform practice standards for quality assessment of NGS data also challenges imple-

mentation of NGS in clinics [11, 28]. As such, careful design of panel contents and workflow

as well as through analytical validation of each clinical NGS assay for its defined performance

requirements for the intended use is critical to ensure the clinically impactful high-quality

sequencing results in clinical settings.

In this study, we report development and validation of a 48-gene NGS panel that includes

technically challenging genes for the detection of alterations that have a putative role in diag-

nosis, prognosis, or therapy of myeloid neoplasms. We also report our experience with the

first 2,053 clinical specimens of suspected myeloid neoplasms submitted for the 48-gene panel

and estimate the frequency of actionable alterations in a clinical laboratory.

Materials and methods

Gene selection

A total of 48 genes (S1 Table) frequently mutated and/or associated with known diagnostic,

prognostic, or therapeutic utilities for myeloid neoplasms at the time of test development were

selected: 42 genes for AML; 36 genes for MDS; and 26 genes for MPN. Of the 48 genes, 47

were analyzed by NGS: the entire coding regions were covered for 23 genes (ATM, BCOR,

BCORL1, BRAF, CDKN2B, CEBPA, CREBP[ATF2], CUX1, DDX41, ETNK1, ETV6, GATA2,

HRAS, IKZF1, KDM6A, NF1, PHF6, PTEN, STAG2, STAT3, STK11, TP53, and ZRSR2) and

targeted exons were covered for 24 genes (ASXL1, CALR, CBL, CSF3R, DNMT3A, EZH2,

FLT3, GATA1, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1,

SETBP1, SF3B1, SRSF2, TET2, U2AF1, and WT1). KMT2A (formerly known as MLL) partial

tandem duplication (PTD) analysis was supplemented by a long-range PCR method developed

in our laboratory using a previously reported primer set, a forward primer on exon 8 and a

reverse primer on exon 2 [29], to detect the 3 most frequent forms of MLL-PTD

(NM_005933.1: exons 2~8, 2~9, and 2~10) [30].

Validation specimens

A total of 184 unique specimens (S2 Table) were included: 96 whole blood, 20 bone marrow

aspirate, 20 cell pellet, 17 FFPE, and 31 extracted DNA. The 184 specimens included 32 com-

mercial controls, 25 from healthy individuals, and 127 clinical specimens previously tested by

alternative analytical methods for indications of myeloid neoplasms (n = 105), unknown his-

tory (n = 18), and adjacent normal tissue from FFPE section (n = 4). All patient specimens

were de-identified before use. Alternative analytical methods included Sanger sequencing,

fragment analysis for FLT3-ITD, and 4 different CLIA-validated NGS assays developed in our
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laboratory (see Alternative analytical methods, below). The 32 commercial controls included 6

multiplex mutation controls (5% Tier, Horizon discovery, Lafayette, CO), 19 controls with

known mutation(s) within the 48 genes in the panel (Coriell Institute, Camden, NJ), and 7

well-characterized Genome In a Bottle (GIAB) reference specimens (Coriell Institute, Cam-

den, NJ). For the 7 GIAB specimens, high-quality public sequence data were downloaded from

http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ for comparison.

Alternative analytical methods

Sanger sequencing on CEBPA or JAK2 were performed using gene-specific PCR primers for tar-

get amplification and incorporation of BigDye Terminator (Applied biosystems, Foster City,

CA, USA). T7 promoter and terminator sequences fused to gene specific primers were used for

sequencing on an ABI 3730 fragment analyzer (Applied biosystems, Foster City, CA, USA).

FLT3-ITD fragment analysis was performed by Laboratory for Personalized Molecular Med-

icine (LabPMM, San Diego, CA) or in-house using a modified protocol based on one reported

previously [31]. In brief, FLT3-ITD was PCR-amplified with a fluorescence-labeled forward

primer, and a non-labeled reverse primer. The PCR products were analyzed using an ABI3730

genetic analyzer (Applied Biosystems, Foster City, CA, USA), and the amplicons with a size

greater than that of wild type (324–326 bp) were interpreted as positive for the FLT3-ITD.

Four separate CLIA-validated NGS panel assays were used for the accuracy study to

cover the variants detected by the 48-gene panel. The first, LeukoVantage v1.0, is a 30-gene

NGS test for somatic mutations in myeloid neoplasms using the Truseq Amplicon Cancer

Panel kit (Illumina, San Diego, CA). It contains amplicons for hot-spot locations of the fol-

lowing genes: ASXL1, CALR, CBL, CEBPA, CSF3R, DDX41, DMNT3A, EZH2, FLT3,

GATA1, IDH1, IDH2, JAK2, KDM6A, KIT, KRAS, MLL, MPL, NPM1, NRAS, PTPN11,

RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, and ZRSR2 [11]. The second,

MyVantage, is a germline mutation panel of 34 cancer predisposition genes, including ATM
and PTEN, and uses RNA bait capture method [32]. The third, Watson Genomics, is a

50-gene NGS test for solid tumor mutation using RNA bait capture-based NGS, and

includes BRAF, CDKN2B, FLT3, HRAS, IDH1, JAK2, KIT, KRAS, NRAS, PTEN, PTPN11,

and TP53. The fourth, MPN diagnostic cascading reflex test, includes hotspots in MPN,

CALR, MPL, and CSF3R genes and employs multiplex PCR method and sequencing on Ion

Torrent S5 XL (Thermo Fisher Scientific, Markham, ON).

DNA isolation, library preparation, and NGS

Genomic DNA was isolated from whole blood, bone marrow, or cell pellet using Qiagen EZ1

kit or DSP DNA mini kit (Qiagen, Mississauga, ON). FFPE DNA was extracted using

QIAAMP DNA FFPE tissue kit (Qiagen, Mississauga, ON), or Arcturus PicoPure kit (Thermo

Fisher Scientific, Markham, ON). Isolated genomic DNA was mechanically sheared to an aver-

age size of 250 bases using a Covaris instrument LE220 (Covaris Inc., Woburn, MA). The frag-

mented DNA was enzymatically repaired and end-modified with adenosine (NEBNext1

Ultra™ II End Repair/dA-Tailing Module, NEB, Ipswich, MA) and ligated (NEBNext1 Ultra ™
II Ligation Module, NEB, Ipswich, MA) with barcoded adapters (Integrated DNA Technolo-

gies, Coral, IL). The ligated products were size-selected (AMPure Beads, Agencourt, Beverley,

MA) and amplified (GeneRead DNA I Amp Kit, Qiagen, Mississauga, ON); then the regions

of interest were captured using biotinylated DNA baits (Integrated DNA Technologies, Coral,

IL). The hybridized DNA fragments were enriched with streptavidin-attached magnet beads

(Dynabeads M-270, Thermo Fisher Scientific, Markham, ON) and washed under increasing

stringency to remove non-targeted DNA sequences (xGen1 Lockdown1 Reagents,
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Integrated DNA Technologies, Coral, IL). A second amplification was performed (KAPA HiFi

HotStart ReadyMix, Kapabiosystems, Wilmington, MA), followed by bead purification

(AMPure Beads, Agencourt, Beverley, MA) to remove all unused primers and nucleotides.

The prepared sequencing library was then quantified (Qubit dsDNA HS Assay Kit, Thermo

Fisher Scientific, Markham, ON) and sequenced on an Illumina NextSeq 500 sequencer, 2 x

150 cycles (NextSeq 500/550 Mid Output v2 kit, Illumina, San Diego, CA).

Bioinformatics processing

De-multiplexing and conversion of NextSeq500 BCL files were done by using Illumina’s

bcl2fastq software utility. The raw sequence reads in FASTQ files were then aligned to the

Genome Reference Consortium human genome build 37(GRCh37) by using BWA alignment

package. Reads were sorted and indexed using SAMtools with subsequent reads duplication

removal by Picard Tools. Local realignment and base quality score recalibration were per-

formed using the Genome Analysis Toolkit (GATK). Mapped reads were further filtered by

mapping score� 30 (� 99.9% accuracy) and base quality score� 20 (� 99% accuracy) before

downstream analysis. This assay covered 98,809 bp from a total of 999 target regions, approxi-

mately100 bp for each target, across the 48 genes in the panel. Average and minimum depth of

coverage for every region of interest (ROI) and depth of each targeted positions were com-

puted using SAMtools Pysam. SNVs and short indels were called by MuTect2 and LoFreq.

CALR indels and FLT3-ITD were called by PINDEL. Criteria used for specimen and variant

quality control are provided in S3 Table.

Variant call comparison

An additional 137 unique specimens that were submitted for the 48-gene panel or a 35-gene

panel, which was independently developed and analytically validated for hematologic neo-

plasms (HemeSEQ, med fusion, Lewisville, TX), were subsequently sequenced by the other

panel. The 35-gene panel uses Illumina TruSeq custom-amplicon library preparation chemis-

try, which is sequenced on an Illumina MiSeq. A total of 33,812 bp in 26 genes overlapped

between the 2 assays; genes included ASXL1, CALR, CBL, CSF3R, DNMT3A, ETV6, EZH2,

FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PHF6, RUNX1, PTEN, SETBP1,

SF3B1, SRSF2, TET2, TP53, U2AF1, and WT1. Each of the 137 specimens (22 whole blood and

115 bone marrow) were selected because they harbored at least one pathogenic mutation

within the overlapping genes.

Clinical specimens

A total of 2,053 consecutive patient specimens submitted for the 48-gene NGS panel were

included in this study. Patient results were de-identified before analysis. Based on the clinical

information submitted, indications for testing included AML (23.9%, n = 490), MDS (49.6%,

n = 1,018), or MPN (26.5%, n = 545). Patient characteristics are presented in Table 1. This

Table 1. Patient characteristics.

AML MDS MPN Total

Number of patients 490 1,018 545 2,053

% of total 23.9 49.6 26.5 100.0

Male, % 61.6 61.5 57.8 60.5

Female, % 38.4 38.5 42.2 39.5

Median age (Min, Max) 58 (2, 89) 60 (2, 89) 55.5 (14, 69) 58 (2, 89)

https://doi.org/10.1371/journal.pone.0243683.t001
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retrospective study was exempt from Institutional Review Board oversight, as determined by

the Western Institutional Review Board.

Variant classification

For the 2,053 clinical cases, clinical interpretation of variants was performed in conjunction

with a third-party annotation group (N-of-One, Concord, MA). Detected variants were classi-

fied in the following categories based on the 2017 guideline recommendations by AMP/

ASCO/CAP [33]: Tier I, strong clinical significance; Tier II, potential clinical significance; Tier

III, uncertain clinical significance; and Tier IV, benign or likely benign. A pathologist or a

licensed clinical laboratory director reviewed the results and the clinical annotation, edited

information as deemed necessary for specific cases and indications, and signed out the results

for reporting. For this study, variants were considered clinically significant if they provided

prognostic or diagnostic information for the disease or were clinically actionable. Variants

were considered clinically actionable when a targeted therapy or an experimental drug was

available for the disease or other disease.

Results

Assay performance

The analytical validation study was performed on 184 unique specimens for a total of 427 trials

in 20 consecutive sequencing runs. On average, each specimen generated 11.8 million reads;

100% (SD = 8.8%) of reads mapped to the reference sequence (hg19); 65% (SD = 8.8%) of

reads were on-target; and average coverage depth across target regions was 1,767 (SD = 875)

(S4 Table). Average and median coverage of each target region across all validation specimens

are plotted in Fig 1A. Of the 184 specimens, 181 (98.3%) specimens exceeded the coverage

requirement in 422 trials (98.8%) and 3 specimens (1 whole blood, 1 FFPE, and 1 extracted

DNA) failed in 5 trials. This result demonstrated that the developed workflow is robust for

routine clinical testing and compatible with different specimen types.

We next assessed coverage at each target region as a function of target region % GC using a

control specimen NA12878, which was tested 17 times. Throughout the whole % GC spectrum

(range: 12%-87%), we observed narrow coverage distribution, even in the extreme end of %

GC (Fig 1B). In addition, we reviewed specimen pass rates of each target for Q20 coverage of

500X, 250X, or 100X (Fig 1C). A limited number of target regions did not achieve 500X cover-

age in >10% of validation specimens. Those regions included STAG2 exon 11, 16, and 21, all

of which were situated near polyA tracts and represented 0.36% (354/98,809bp) of our target

capture region. All 3 target regions achieved 100X coverage in 100% of validation sets and

250X coverage in >96% of validation sets.

Precision

To test inter-assay precision, 22 specimens that harbored at least one pathogenic mutation by

alternative methods and a negative control (NA12878) were analyzed 3 times in 3 indepen-

dently prepared sequencing runs. A total of 141 variants (98 SNVs, 39 indels, and 4 FLT3-ITD)

were detected and were 100% concordant among 3 repeated runs (S5A Table). As expected,

no reportable variant was detected from the negative control (NA12878) after applying variant

filtering rules (S3 Table). Intra-assay precision was tested on 9 specimens that were tested in

triplicate within a run. A total of 40 variants (30 SNVs, 8 indels, and 2 FLT3-ITD) were

detected and all were concordant among the triplicates (S5B Table). In addition, detected vari-

ant frequency among replicates was reproducible within coefficient of variation <0.2 in 98.3%
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and<0.25 in 100% of variants (n = 181) tested in the precision studies (Fig 2A and 2B). In

summary, both intra- and inter-assay variant call concordance was 100%.

Accuracy

A total of 140 unique specimens harboring variant(s) identified by alternative analytical meth-

ods, such as Sanger sequencing, fragment analysis, and other CLIA validated NGS assays, were

Fig 1. Target coverage depth. (A) Mean and median coverage of each target region across all validation trials

(n = 427). Target regions are sorted by chromosomal location. Targets on X chromosome are marked with a dotted

line. (B) NA12878 coverage across all target regions from 17 independent setups. Target regions are sorted by % GC

(orange dot). Standard deviation of coverage is shown (black bar). (C) Percentage of specimens that passed a base

quality Q20 coverage of 100X, 250X, or 500X.

https://doi.org/10.1371/journal.pone.0243683.g001

Fig 2. (A) Inter-assay precision of 141 variants from 22 specimens repeated 3 times. The mean of the detected variant

frequencies (orange dot) with standard deviation (closed vertical bar) and coefficients of variations (blue dot) are

shown. (B) Intra-assay precision of 40 variants from 9 specimens replicated 3 times. The mean of the detected variant

frequencies (orange dot) with standard deviation (closed vertical bar) and coefficients of variations (blue dot) are

shown.

https://doi.org/10.1371/journal.pone.0243683.g002
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analyzed for a total of 237 trials (S6 Table). The identified 165 unique variants by alternative

methods consisted of 97 SNVs, 49 indels (1–33 bp insertions, 1–52 bp deletions), and 19 FLT3-

ITDs (18–117 bp). From the 237 trials, collectively, 405 variants of various frequencies were

analyzed including 229 SNVs, 117 indels, and 59 FLT3-ITDs in 29 genes (Fig 3A and 3B). All

expected SNV and indel variants were accurately detected. If variant frequency was provided by

an alternative method (n = 106), frequency of detected variant was highly concordant with

expected (R2 = 0.966, Fig 3C). In addition, all expected FLT3-ITD variants from 59 trials of 27

unique specimens were detected by this assay (Table 2). In 18.5% (5/27) of FLT3-ITD positive

specimens, additional ITD sizes that were not reported by a fragment analysis method were

detected; this result may indicate higher sensitivity of NGS assay for FLT3-ITD detection.

We extended the accuracy study to 7 well-characterized GIAB reference specimens by com-

paring variant calls made by our pipeline with publicly available data. The variant concordance

study was limited to those regions where high-quality public sequence data were available,

approximately 62% to 86% of our target regions for each GIAB reference specimen (Table 3).

Population SNVs that would normally be excluded from reporting were also included for this

study. Across the 7 reference specimens, a total of 464,162 bp were analyzed. All 142 expected

variants were correctly detected (Table 3), and no false positives were called, yielding 100%

sensitivity (95% CI: 97.3–100%) and 100% specificity (95% CI: 100%). Review of the detected

variant frequency at the expected homozygous and heterozygous positions revealed the mean

observed variant frequency to be 99.9% (N = 70, SD = 0.1) and 49.6% (N = 72, SD = 2.6),

respectively, demonstrating good agreement with the expected values.

Analytical sensitivity

In order to evaluate the analytic sensitivity of the assay, 5 multiplex mutation control speci-

mens (5% Tier, Horizon discovery) were tested for a total of 16 trials. Collectively, 124

expected variants (104 SNVs and 20 indels) with variant allele frequency (VAF) ranging from

3.8% to 25% were identified (S7A Table). All expected variants were detected when expected

VAF was either at 5% (71/71) or >5% (35/35). However, 89% (16/18) of expected variants

were detected when expected VAF was <5%.

Fig 3. (A) Number and type of variant used for accuracy study per gene. (B) Variant frequency distribution used for

accuracy study. Variant frequency not provided by alternative method is categorized as undetermined. (C) Variant

frequency concordance. Compared only if variant frequency is known by alternative method.

https://doi.org/10.1371/journal.pone.0243683.g003
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In addition, DNA from each of 5 well-characterized GIAB reference specimens was

mixed with NA12878 DNA in a proportion of 10% test specimen and 90% NA12878. From

heterozygous or homozygous variants unique to test specimens, a total of 64 variants (63

SNVs and 1 insertion) were created with VAF 10% or 5% (S7B Table). A total of 119 vari-

ants were tested from the 5 mixed specimens of which 4 specimens were repeated twice.

Table 2. FLT3-ITD used for accuracy study.

Sample FLT3-ITD length (bp) Number trial(s) Detected Additional FLT3-ITD detected (bp)

BM08 36 3 yes -

BM15 57 3 yes -

BM17 57 3 yes -

BM19 60 3 yes -

CP04 45 1 yes -

CP17 24 1 yes -

CP20 21, 27, 36, 117 1 yes 48

WB09 30 11 yes 33, 81

WB32 21 1 yes -

WB45 96 6 yes -

WB46 72 3 yes -

WB47 51, 114 4 yes -

WB48 63 1 yes -

WB50 18, 63, 90 4 yes -

WB51 33, 57 1 yes -

WB52 21, 51, 90 1 yes -

WB53 18 1 yes -

WB54 36 1 yes 24

WB56 24 1 yes -

WB57 48 1 yes 33

WB58 30 1 yes -

WB59 36 1 yes -

WB60 51, 54 1 yes -

WB61 24 2 yes -

WB62 66 1 yes -

WB63 24 1 yes -

WB64 84 1 yes 27

BM, bone marrow; CP, cell pellet; WB, whole blood

https://doi.org/10.1371/journal.pone.0243683.t002

Table 3. Variant call concordance study using Genome in a Bottle reference specimens.

Specimen Overlapping regions: High confidence sequence from GIAB Number of variants % Concordance

NA12878 86,423 bp 23 100

NA24143 62,850 bp 16 100

NA24149 62,924 bp 20 100

NA24385 62,815 bp 22 100

NA24631 63,047 bp 21 100

NA24694 63,070 bp 19 100

NA24695 63,033 bp 21 100

Total 464,162 bp 142 100

https://doi.org/10.1371/journal.pone.0243683.t003
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All (50/50) variants were detected at 10% VAF and 95.6% (66/69) variants were detected at

5% VAF.

Similarly, 9 specimens harboring variants (2 SNVs and 10 indels) identified by alternative

analytical methods were serially diluted with a GIAB control (NA12878) up to 64-fold, yielding

an expected VAF well below 5% (S7C Table). All expected variants were detected when

expected VAF was >5% (n = 45). However, when expected VAF was below 5%, only 41% (2/8

at<3.0%, 5/9 at 3.1–3.4%) of expected variants were detected.

In addition, 3 FLT3-ITD positive specimens were serially diluted up to 16-fold with

NA12878. We considered FLT3-ITD positive when at least one ITD size is called. All dilution

series yielded correct ITD calls (S7D Table). As the orthogonal method does not provide abso-

lute FLT3-ITD frequency, in order to estimate sensitivity, we simulated expected variant fre-

quency based on the relative fraction of different ITD sizes in a specimen, WB52. WB52

contained 3 different ITD sizes (21b, 51b, and 90b) with relative ITD fraction of 1.4, 75.7, and

23.0%. The major ITD size (51b) was detected from all dilution series including 16-fold dilu-

tion with simulated VAF of 4.7% (16-fold dilution of 75.7%). This result demonstrated that

FLT3-ITD detection sensitivity to be at least 5%.

A summary of analytical sensitivity study results is provided in Table 4. Inspection of the

discordant variants from this study (12 at�3.1% VAF and 3 at 5% VAF) showed that those

variants had been detected by a variant caller, but the calls were filtered out because of low fre-

quency (<3%) or low variant count (<25) (S8 Table).

Collectively, in this validation, a total of 154 unique specimens were analyzed for 830

known variants (588 SNVs, 167 indels, and 75 FLT3-ITDs) of VAF�5%, including results

described in the accuracy section. Almost all variants (99.6%, 827/830) of VAF�5% variants

were correctly detected, resulting in analytical sensitivity of 99.6% (95% CI: 98.9–99.9%). Ana-

lytical sensitivity for various VAFs for each variant type is summarized in Fig 4 and S9 Table.

In conclusion, the variant detection limit for this assay is 5% for SNV, indels (including CALR
52 bp deletion), and FLT3-ITD.

Variant call comparison study

To increase per-sample data comparison efficiency, we compared variants of an additional 137

unique specimens identified by the validated 48-gene NGS panel for myeloid neoplasms to

those detected by an independently developed and analytically validated 35-gene NGS panel

for hematologic neoplasms (HemeSEQ, med fusion, Lewisville, TX). The 137 specimens were

selected because they harbored at least one pathogenic mutation within overlapping genes

(n = 26) between the 2 assays. From the 137 specimens (141 trials), a total of 1,094 variants

(278 unique) of various frequencies were concordantly detected by the 2 assays: 1,007 (219

unique) SNVs and 87 (59 unique) indels (Fig 5A). In this study, benign variants (e.g., common

population SNVs) were also included. In addition, agreement in VAF between the 2 assays was

Table 4. Summary of analytical sensitivity study result.

Study Expected VAF Total

<5% 5% >5%

Multiplex mutation control 89 (16/18) 100 (71/71) 100 (35/35) 98 (122/124)

GIAB dilution N/A 96 (66/69) 100 (50/50) 97 (116/119)

Positive specimen dilution 41 (7/17) N/A 100 (58/58) 87 (65/75)

Total 66 (23/35) 98 (137/140) 100 (143/143) 95 (303/318)

Performance is provided as % detected (no. detected/no. expected). N/A, not applicable.

https://doi.org/10.1371/journal.pone.0243683.t004
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good (R2 = 0.986) (Fig 5B). Collectively, a total of 4.8 million individual base calls (33,812 bp X

141 specimens) were compared, including 1,094 variants and resulted in 100% sensitivity (95%

CI: 99.7–100%) and 100% specificity (95% CI: 99.9–100%).

Long-term test reproducibility

To evaluate long-term reproducibility, we examined variant calls for a multiplex mutation con-

trol (HD728) that was repeatedly tested, 119 times over 10 months, as a mutation positive con-

trol. The mutation control contained 7 alterations of�5% VAF (6 SNVs and 1 deletion, S7A

Table). All alterations were successfully detected in all repeat tests, including 5 alterations

occurring at 5% VAF. Detected VAF remained stable over the extended time period (Fig 6)

with coefficient of variation less than 0.1x (range: 0.04–0.1x).

Detection of clinically actionable alternations

Retrospective analysis was performed on the mutation profiling of 2,053 consecutive, de-iden-

tified unique patient specimens submitted for the 48-gene NGS panel. In total, 98.3% (2,018/

2,053) of specimens were successfully tested upon initial testing and the remaining 35 speci-

mens passed QC criteria upon repeat test. Based on the clinical information submitted,

Fig 4. Analytical sensitivity of the assay for various VAFs for each variant type. Analytical sensitivity percentage

represents the proportion of detected variants out of all variants tested at a given VAF.

https://doi.org/10.1371/journal.pone.0243683.g004

Fig 5. Variant call concordance study between the 48-gene panel for myeloid neoplasms and 35-gene panel for

hematologic neoplasms. (A) Number and type of variants compared per gene. (B) Scatter plot of VAFs (n = 1,094)

across 141 trials detected by the 48-gene panel (x-axis) and 35-gene panel (y-axis).

https://doi.org/10.1371/journal.pone.0243683.g005
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indications for testing included 490 AML (23.9%), 1,018 MDS (49.6%) and 545 MPN (26.5%).

At least one pathogenic mutation was detected in 55.6% (1,142/2,053) of patient specimens.

AML patients had the highest positive rate (81.2%, 398/490), followed by MDS (49.0%, 499/

1,018) and MPN (45.0%, 245/545). A median of 2 mutations (range 1–12) were detected per

positive patient: 3 (1–12) in AML, 2 (1–9) in MDS, and 2 (1–7) in MPN. Collectively 2,799

pathogenic mutations (Tier I or Tier II) were found in 44 genes (Fig 7). The most frequently

mutated genes, which were found in at least 10% of patients for each indication, were TET2,

ASXL1, TP53, FLT3, NPM1, DNMT3A, IDH2, RUNX1 and NRAS in AML; TET2, SF3B1, and

ASXL1 in MDS; and JAK2, TET2, and ASXL1 in MPN (S1 Fig). The genomic alterations iden-

tified across 2,023 specimens are depicted in Fig 8.

Based on functionally related categories (Fig 8), genes involved in epigenetics (ASXL1,

BCOR, BCROL1, DNMT3A, EZH2, IDH1, IDH2, KDM6A, and TET2) were the most fre-

quently mutated group, detected in 43% (n = 875/2,053) of patients. Genes involved in signal

transduction (BRAF, CALR, CBL, CSF3R, FLT3, JAK2, KIT, KRAS, MPL, NF1, NRAS, PTPN11,

and STAT3), RNA splicing (SF3B1, SRSF2, U2AF1, and ZRSR2), and transcription factor

(CEBPA, ETV6, GATA1, GATA2, IKZF1, KMT2A, PHF6, RUNX1, SETBP1, and WT1)

accounted for 27% (n = 574/2,053), 22% (n = 444/2,053), and 13% (n = 272/2,053) of patients,

respectively. These findings are consistent with the mutational frequency of gene groups in

myeloid neoplasms as reported in literature [12, 34–37].

In 41.7% (856/2,053) of patients, at least 1 actionable mutation was identified (Fig 9): 27.5%

(n = 565) of patients harbored mutations for which a targeted therapy is available either in the

disease (n = 126) or another disease (n = 439); and 40.1% (n = 823) patients contained muta-

tions for which an experimental drug is available. For this study, variants were considered clin-

ically actionable when a targeted therapy or an experimental drug was available for the disease

Fig 6. Detected variant frequency of a mutation-positive control (HD728) from 119 repeat tests over 10 months.

Expected variant frequency is indicated along with variant name.

https://doi.org/10.1371/journal.pone.0243683.g006

Fig 7. Pathogenic mutations (Tier I or Tier II) detected in 44 genes from the total cohort of 2,053 patients by the

48-gene NGS panel for myeloid neoplasms.

https://doi.org/10.1371/journal.pone.0243683.g007
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or other disease. In addition, 34.6% of patients (n = 711) had mutations with prognostic signif-

icance, and 36.4% (n = 748) of patients had mutations with diagnostic significance. In total,

the assay identified clinically significant mutations in 51.7% (1,062/2,053) of patients. Muta-

tions were considered clinically significant if they provided prognostic or diagnostic informa-

tion for the disease or were clinically actionable.

Discussion

Molecular profiling can help diagnose, classify, and guide treatment of myeloid neoplasms [38,

39]. In this study, we reported development and validation of a 48-gene NGS panel that

includes genes that are technically challenging for molecular profiling of myeloid neoplasms,

such as CEBPA, CALR, and FLT3. The assay demonstrated good inter- and intra-assay preci-

sion for SNVs, indels including CALR 52 bp deletion, and FLT3-ITDs (Fig 2 and S5A and S5B

Table). In addition, the assay detected 827 of 830 variants with VAF�5% reported by

Fig 8. Identified Tier I and Tier II mutations in 44 genes from the total cohort of 2,053 patients detected by the

48-gene NGS panel for myeloid neoplasms. Each column in the x = axis represents a patient. Only patients with at

least 1 mutation (n = 1,142) are shown. The percent of patients with Tier I and Tier II mutations in the indicated gene

is presented.

https://doi.org/10.1371/journal.pone.0243683.g008

Fig 9. Frequency of patients harboring potentially actionable alterations.

https://doi.org/10.1371/journal.pone.0243683.g009
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alternative analytical methods for a sensitivity of 99.6% (95% CI: 98.9–99.9%) (Fig 4 and S8

Table). The specificity of this assay appears to approach 100% as no false positive call was

made in 7 GIAB accuracy studies across 0.4 million bp (Table 3) and in a cross-platform study

using 137 unique specimens across 4.8 million bp (Fig 5).

The 48-gene NGS assay offers the advantage of detecting variants in genes that are techni-

cally difficult to sequence, including CEBPA, CALR, and FLT3, with high sensitivity and speci-

ficity from a wide range of specimen types. In NGS, the limitation of a target enrichment

method often leads to low coverage in genes with high GC content, and this may cause sub-

optimal assay accuracy. Supplementary single-gene assays are recommended to improve low

coverage targets in some clinical assays [21, 22, 40]. In this study, we demonstrated a broad

reportable range of the 48-gene panel even in extreme % GC spectrum (Fig 1B). For example,

despite the very high GC content of CEBPA gene (up to 87% GC within a 100-bp window),

hybridization enrichment coupled with careful bait design achieved an excellent result: median

depth of 1,918X. During our development, direct comparison of capture technologies demon-

strated superior performance of DNA bait over RNA bait for targets with high GC contents

(S2 Fig). FLT3-ITD is inherently difficult to detect using NGS approaches [12, 41]. In our vali-

dation studies, we also identified FLT3-ITDs of varying lengths (range: 18–117 bp) with 100%

sensitivity and specificity (Table 2). In some trials, additional ITD size(s) were detected, and

we reasoned that our assay is more sensitive than the method compared, fragment analysis.

In clinical settings, specimen types submitted for an assay may vary. Thus, an ideal assay

must be able to deal with a wide range of specimen types appropriate for the assay. Overall,

our assay produced robust results (98.8% pass rate) for all specimen types (S2 Table), suggest-

ing that DNA recovered from various specimen types can be successfully and accurately

sequenced by this protocol. During our validation, we showed that VAF of SNVs and indels

detected by our assay were highly concordant with ones observed by reference methods (Figs

3C and 5B), indicating our assay is accurate in variant quantification. Long-term test repro-

ducibility of an analytical method is critical in clinical settings following initial validation; con-

sistent variant allele frequencies over a 10-month period in a positive control specimen

highlighted the long-term reproducibility of our assay (Fig 6).

However, this assay has several limitations. First, the assay does not include fusion detec-

tion. Accessing fusion by RNA analysis is an important component of comprehensive genomic

approaches for improved clinically impactful data [42]. Fusion analysis is especially important

for AML, as a wide variety of recurrent chromosome rearrangements define different disease

subtypes for AML [1]. Conventional methods such as fluorescent in situ hybridization (FISH)

or real-time PCR should be supplemented for fusion detection along with our NGS panel. Sec-

ond, interlaboratory reproducibility studies have not been performed for our in-house devel-

oped protocol and bioinformatics pipeline. In-depth multi-center analytical validation would

be required prior considering implementation of the assay in other clinical laboratories. Com-

bining this assay with RNA sequencing as well as additional multi-center analytical validation

studies would provide improved clinical utility of the assay.

In our study of 2,053 clinical patients, 55.6% had at least one pathogenic variant and 51.7%

harbored clinically significant mutations with prognostic, diagnostic, or therapeutic relevance

(Fig 9). The clinical utility of our assay is underscored by our ability to identify clinically signif-

icant variants in specific diseases. For example, from our cohort of 490 patients with indica-

tions of AML, TET2 had the highest mutation rate (17% of patients) followed by ASXL1, TP53,

FLT3, NPM1, SRSF2, DNMT3A, IDH2, RUNX1 and NRAS (10~15%), frequencies similar to

literature [37]. Among those frequently mutated genes, ASXL1, RUNX1, TP53, and FLT3-ITD

mutations have been associated with poor prognosis, whereas NPM1 mutations in the absence

of FLT3-ITD have been associated with favorable outcomes in AML [43]. In the 2016 revision

PLOS ONE Analytical validation of a 48-gene next-generation sequencing panel for myeloid neoplasms

PLOS ONE | https://doi.org/10.1371/journal.pone.0243683 April 28, 2021 14 / 21

https://doi.org/10.1371/journal.pone.0243683


of the WHO classification, AML with an NPM1 mutation is recognized as a subtype of AML;

and AML with an RUNX1 mutation has been added as a provisional category of AML [1]. In

addition, FDA-approved targeted therapies for AML are available for FLT3-ITD and IDH2, as

well as IDH1 [44] which was mutated in 5% of patients in our study.

From our cohort of 1,018 patients with indications of MDS, TET2, SF3B1, and ASXL1 were

the most frequently mutated genes (in >10% of patients), followed by SRSF2, TP53, DNMT3A,

and RUNX1 (in >5% of patients), similar to Haferlach and colleague’s study on the mutational

profiles of 944 patients with MDS [36]. Among those genes, ASXL1 and TP53 mutations have

been associated with poor prognosis [45], whereas SF3B1 mutation in MDS patients with

ringed sideroblasts has been associated with favorable prognosis [46]. All of the frequently

mutated genes have been associated with clonal hematopoiesis, and support the diagnosis of

several different myeloid malignancies, including MDS, when found in combination with

other diagnostic features [47, 48]. While there are currently no therapies directly targeting

mutated genes in MDS, hematologic malignancies harboring SF3B1 and SRSF2 mutations

have been reported to be sensitive to splicing factor 3B subunit 1 (SF3b155) inhibitors, which

are in clinical development [49, 50].

Certain mutations in the MPN-associated genes satisfy subclassification of the disease. In

our study of 545 patients with indications of MPN, JAK2 was the most frequently mutated

gene (23% of patients) followed by TET2 (12%) and ASXL1 (10%), frequencies similar to litera-

ture [51, 52]. CALR, CSF3R, and MPL were mutated in 4%, 3%, and 1% patients, respectively.

Presence of a mutation in JAK2, CALR, and MPL is among the major criteria for the diagnosis

of myelofibrosis (MF) or essential thrombocythemia (ET), while presence of JAK2 V617 or

exon 12 mutations is among the major criteria for the diagnosis of polycythemia vera (PV) [1,

53, 54]. Activating CSF3R mutations have been found in the majority of chronic neutrophilic

leukemias (CNLs) [55]. FDA-approved therapies for JAK2 mutations in PV and MF are avail-

able [56]. In addition, mutations in CALR exon 9, CSF3R, and MPL have been shown to be

sensitive to Jak inhibitors [57–59].

For BCR-ABL1-negative MPN, common mutations of JAK2, CALR, and MPL genes are

often examined as diagnostic targets using a cascade single-gene assay [54]. In our cohort of

545 patients with indications of MPN, 159 patients (29%) were positive for those 3 genes.

Detection of an additional clinically significant mutation is more common in an NGS panel

assay than single-gene tests owing to the multiplicity of genes tested. An additional 86 patients

(16%) who were negative for those 3 genes were positive for pathogenic mutations in other

genes in the panel. Of the 86 patients, 23 had mutations in genes that can aid diagnosis when

found in combination with other diagnostic features (CBL, NRAS, and PTPN11) [1, 8, 48], 43

had mutations in genes with poor prognosis (ASXL1, EZH2, IDH2, NRAS, SETBP1, SRSF2,

TP53, and U2AF1), and 29 had mutations in genes for which a therapy is available (BRAF,

CSF3R, IDH2, KRAS, NF1, NRAS, PTPN11, and STAG2). In addition, of the 159 patients who

were positive for those 3 genes, 84 patients had additional mutation(s) in 16 other genes.

Among the 16 genes, 6 genes (IDH1, IDH2, KRAS, NF1, NRAS, and STAG2) are linked to

available therapies in other diseases [38, 60]. Combinations of Jak inhibitors with other tar-

geted therapies may be relevant for those patients who harbor additional mutations.

In contrast to single-gene assays, NGS allows assessment of co-occurring mutations that

might have heterogeneity of response to targeted therapy and survival. According to the recent

National Comprehensive Cancer Network guidelines, AML patients with FLT3-ITD and

NPM1 double mutation (AML FLT3-ITD+/NPM1+) are categorized as favorable and interme-

diate risk levels, depending on the allelic ratio of FLT3-ITD, for whom allogenic stem cell

transplantation (allo-HSCT) is not obligated. Loghavi and colleagues reported that AML

FLT3-ITD+/NPM1+ patients with a DNMT3A mutation had shorter event-free survival

PLOS ONE Analytical validation of a 48-gene next-generation sequencing panel for myeloid neoplasms

PLOS ONE | https://doi.org/10.1371/journal.pone.0243683 April 28, 2021 15 / 21

https://doi.org/10.1371/journal.pone.0243683


compared to those in other mutation groups [61]. Similarly, recent studies have suggested that

AML patients with concomitant DNMT3A R882+/FLT3-ITD+/NPM1+ mutations had a very

poor prognosis, and allo-HSCT could moderately improve their survival [62, 63]. Our study

cohort included 21 AML FLT3-ITD+/NPM1+ patients, 4 of whom had a DNMT3A R882

mutation. In addition, Ardestani and colleagues reported that DNMT3A R882 mutations

alone do not affect the clinical outcomes of AML patients, but when accompanied by FLT3-

ITD mutations, overall survival was reduced, even after allo-HSCT [64]. In our study, 5 of 26

DNMT3A R882-positive AML patients had FLT3-ITD. These results support the clinical utility

of our assay for detecting mutations that can alter prognostic and therapeutic significance

when they occur in combination.

Conclusions

We have developed and validated a 48-gene NGS assay that can detect SNVs, indels, and

FLT3-ITD with high sensitivity and specificity, even in technically challenging genes. The

assay detects variants with clinical significance from a substantial proportion of patients tested.

The developed assay may be used to guide more precise and targeted therapeutic strategies,

possibly leading better treatment outcomes for patients with myeloid neoplasms.
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S2 Fig. Integrative Genomics Viewer (IGV) for CEBPA (A) and CUX1 (B) comparing target

capture performance between RNA bait (top panel) and DNA bait (bottom panel). Even cover-

age distribution was achieved using DNA bait whereas low to no coverage was observed using

RNA bait for high % GC targets. % GC in 100bp window is color-coded

(XLSX)
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21. Aguilera-Diaz A, Vazquez I, Ariceta B, Mañú A, Blasco-Iturri Z, Palomino-Echeverrı́a S, et al. Assessment

of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or

design. PLoS One. 2020; 15(1):e0227986. https://doi.org/10.1371/journal.pone.0227986 PMID: 31978184

22. Izevbaye I, Liang LY, Mather C, El-Hallani S, Maglantay R Jr, Saini L. Clinical Validation of a Myeloid

Next-Generation Sequencing Panel for Single-Nucleotide Variants, Insertions/Deletions, and Fusion

Genes. J Mol Diagn. 2020; 22(2):208–219. https://doi.org/10.1016/j.jmoldx.2019.10.002 PMID: 31751678

23. Barnell EK, Newcomer K, Skidmore Z, Krysiak K, Anderson S, Wartman L, et al. Impact of a 40-Gene

Targeted Panel Test on Physician Decision Making for Patients With Acute Myeloid Leukemia. JCO

Precision Oncology. 2021; 5:191–203.

PLOS ONE Analytical validation of a 48-gene next-generation sequencing panel for myeloid neoplasms

PLOS ONE | https://doi.org/10.1371/journal.pone.0243683 April 28, 2021 18 / 21

https://doi.org/10.1200/JCO.2016.71.0806
http://www.ncbi.nlm.nih.gov/pubmed/28297619
https://doi.org/10.1038/s41408-018-0054-y
http://www.ncbi.nlm.nih.gov/pubmed/29426921
https://doi.org/10.1038/leu.2013.119
https://doi.org/10.1038/leu.2013.119
http://www.ncbi.nlm.nih.gov/pubmed/23619563
https://doi.org/10.1182/bloodadvances.2016000216
https://doi.org/10.1182/bloodadvances.2016000216
http://www.ncbi.nlm.nih.gov/pubmed/29296692
https://doi.org/10.1016/j.jmoldx.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30138727
https://doi.org/10.1182/blood-2017-03-734533
https://doi.org/10.1182/blood-2017-03-734533
http://www.ncbi.nlm.nih.gov/pubmed/28600338
https://doi.org/10.1111/ijlh.12361
http://www.ncbi.nlm.nih.gov/pubmed/25976969
https://doi.org/10.3390/cancers11020252
http://www.ncbi.nlm.nih.gov/pubmed/30795628
https://doi.org/10.1186/s13000-016-0456-8
https://doi.org/10.1186/s13000-016-0456-8
http://www.ncbi.nlm.nih.gov/pubmed/26796102
https://doi.org/10.3390/cancers11091364
http://www.ncbi.nlm.nih.gov/pubmed/31540291
https://doi.org/10.1016/j.jmoldx.2016.02.003
http://www.ncbi.nlm.nih.gov/pubmed/27339098
https://doi.org/10.1186/s13073-019-0644-8
https://doi.org/10.1186/s13073-019-0644-8
http://www.ncbi.nlm.nih.gov/pubmed/31133068
https://doi.org/10.1111/cas.14552
http://www.ncbi.nlm.nih.gov/pubmed/32619037
https://doi.org/10.1186/s12920-020-00739-4
https://doi.org/10.1186/s12920-020-00739-4
http://www.ncbi.nlm.nih.gov/pubmed/32727569
https://doi.org/10.1371/journal.pone.0212228
http://www.ncbi.nlm.nih.gov/pubmed/30840646
https://doi.org/10.3324/haematol.2018.194258
http://www.ncbi.nlm.nih.gov/pubmed/30190345
https://doi.org/10.4084/MJHID.2021.013
http://www.ncbi.nlm.nih.gov/pubmed/33489052
https://doi.org/10.1371/journal.pone.0227986
http://www.ncbi.nlm.nih.gov/pubmed/31978184
https://doi.org/10.1016/j.jmoldx.2019.10.002
http://www.ncbi.nlm.nih.gov/pubmed/31751678
https://doi.org/10.1371/journal.pone.0243683


24. Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, et al. Challenges in the introduc-

tion of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine

use. Blood Cancer J. 2018; 8(11): 113. https://doi.org/10.1038/s41408-018-0148-6 PMID: 30420667

25. Ng CWS, Kosmo B, Lee PL, Lee CK, Guo J, Chen J, et al. CEBPA mutational analysis in acute myeloid

leukaemia by a laboratory-developed next-generation sequencing assay. Journal of Clinical Pathology.

2018; 71: 522–531. https://doi.org/10.1136/jclinpath-2017-204825 PMID: 29180507

26. Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, Ramu A, et al. Optimizing cancer genome

sequencing and analysis. Cell Syst. 2015; 1(3): 210–223. https://doi.org/10.1016/j.cels.2015.08.015

PMID: 26645048

27. Spencer DH, Abel HJ, Lockwood CM, Payton JE, Szankasi P, Kelley TW, et al. Detection of FLT3 inter-

nal tandem duplication in targeted, short-read-length, next-generation sequencing data. J Mol Diagn.

2013; 15: 81–93. https://doi.org/10.1016/j.jmoldx.2012.08.001 PMID: 23159595

28. Delcourt T, Vanneste K, Soumali MR, Coucke W, Ghislain V, Hebrant A, et al. NGS for (Hemato-)

Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Qual-

ity Assessment Program. Cancers (Basel). 2020; 12(11):3180. https://doi.org/10.3390/

cancers12113180 PMID: 33138022

29. Strout MP, Marcucci G, Bloomfield CD, Caligiuri MA. The partial tandem duplication of ALL1 (MLL) is

consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc

Natl Acad Sci U S A. 1998; 95(5): 2390–2395. https://doi.org/10.1073/pnas.95.5.2390 PMID: 9482895
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