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DNA co-methylation modules in 
postmortem prefrontal cortex 
tissues of European Australians 
with alcohol use disorders
Fan Wang1,4, Hongqin Xu1,4, Hongyu Zhao2,5, Joel Gelernter1,2,3,4 & Huiping Zhang1,4

DNA methylome alterations in the prefrontal cortex (PFC) may contribute to risk for alcohol use 
disorders (AUDs). We examined postmortem PFC DNA methylomes of 16 male and seven female pairs 
of AUD and control subjects using Illumina’s HumanMethylation450 BeadChip assays. In male AUD 
subjects, 1,812 CpGs (1,099 genes) were differentially methylated (9.5 × 10−9 ≤ Pnominal ≤ 7.2 × 10−4, 
q < 0.05). In females, no CpGs were associated with AUDs after multiple testing correction (q > 0.05). 
Twenty-one AUD-associated co-methylation modules were identified in males by co-methylation 
analysis. The 1,812 CpGs were over-presented by two AUD-associated co-methylation modules 
(Mturquoise: 1,048 CpGs/683 genes; Mblue: 429 CpGs/304 genes) (Phyper ≤ 0.001). Biological processes 
enriched for genes in these two modules included neural development and transcriptional regulation. 
Genes mapped by CpGs in these two modules were enriched in genome-wide association study-
identified genes with variants associated with four substance dependence phenotypes or five 
psychiatric disorders. Additionally, 106 of the 1,812 CpGs were mapped to 93 genes (e.g., AUD-
associated genes GRIK3, GRIN2C, and GABRA1) with differential expression in postmortem PFC of male 
AUD subjects. Our study demonstrates that DNA methylation alterations in the PFC are associated 
with (and might result in) increased risk of AUDs, and there was a complex DNA methylation-gene 
expression relationship.

Alcohol use disorders (AUDs), including alcohol abuse or dependence, are prevalent and associated with a variety 
of medical and social problems. Despite the high prevalence of AUDs (over 8%)1, their molecular mechanisms 
are not well understood. Given their heterogeneous nature, AUDs are likely to be caused by variation in multiple 
genes and by gene-gene and gene-environment interactions2. Environmental factors alone (e.g., chronic alcohol 
consumption) may also lead to alcohol tolerance or dependence through neuroadaptations. Increasing evidence 
suggests that drugs of abuse and drug-associated cues can alter gene expression in neurons, and this process may 
be mediated by epigenetic mechanisms (e.g., DNA methylation)3. The development of AUDs may result from 
neuroadaptations involving epigenetic modifications after long-term alcohol consumption4.

Several candidate gene studies5–9, including ours10,11, have shown altered DNA methylation in peripheral 
blood of AUD subjects. The only published genome-wide DNA methylation study of AUDs showed widespread 
DNA methylation changes in lymphoblastoid cells derived from peripheral blood lymphocytes12. The extent to 
which DNA methylation in peripheral blood reflects that in the brain is not well established. Our recent study13, 
using the drinking-in-the-dark (DID) mouse model, demonstrated that alcohol exposure resulted in altered DNA 
methylation in the promoter region of the serotonin receptor 3a gene (Htr3a) in the peripheral blood, while loci 
in brain reward circuits showed a wide range of alterations in the methylation of this gene.

To date, only two published studies have analyzed AUD-associated DNA methylation changes in postmor-
tem brains. One study examined methylation levels of CpGs in the prodynorphin gene (PDYN) and reported 
altered methylation of three SNP-CpGs in postmortem prefrontal cortex (PFC) of AUD subjects14. Another study 
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examined global methylation alterations in postmortem brains of AUD subjects using methylated DNA immuno-
precipitation and microarray15, but the sample size was small (10 AUD cases and 10 controls) and the differential 
methylation at individual CpGs was not directly measured.

The above DNA methylation studies were limited as follows. First, most of the studies examined DNA methyl-
ation changes only in peripheral blood cells of AUD subjects; but DNA methylation patterns in peripheral blood 
may not reflect those in brain reward regions. Second, most published studies analyzed AUD-associated DNA 
methylation changes only in the promoter region of candidate genes; while intragenic (gene body or 3′  UTR)16,17 
and intergenic18,19 DNA methylation can also impact gene transcription. Third, although two studies examined 
DNA methylomic changes in AUD subjects, DNA samples for one study12 were extracted from lymphoblastoid 
cells and the sample size for another study15 was small. To understand the molecular basis of chronic alcohol 
consumption-induced neuroadaptations, a systematic analysis of methylomic alterations in reward-related brain 
regions (e.g., the PFC) of AUD subjects is required.

The PFC functions in planning cognitive performance and moderating social behaviors and has been linked 
to rewarding pathways and alcohol-seeking behaviors20,21. Thus, in the present study, we examined genome-wide 
DNA methylation alterations in postmortem PFC of 16 pairs of male and seven pairs of female AUD and con-
trol subjects (46 European Australians in total). We identified differentially methylated CpGs (or CpG clusters) 
in AUD subjects, discovered biological pathways in which genes harboring these CpGs are involved, analyzed 
the enrichment of differentially methylated genes in substance dependence and psychiatric disorders-associated 
genes, and examined the correlation of differentially methylated CpGs and differentially expressed genes in the 
PFC.

Results
Differentially methylated CpGs in AUD subjects. In male AUD subjects, 87,588 (20.4%) of the 
430,407 CpGs (that remained after preprocessing Illumina 450 K methylation array data) showed differential 
methylation (Pnominal =  9.5 ×  10−9 −  0.05), and the associations of 1,812 CpGs and AUDs survived correction for 
multiple testing (9.5 ×  10−9 ≤  Pnominal ≤  7.2 ×  10−4 and q <  0.05) (Fig. 1a). Kernel density plotting of log2 (fold 

Figure 1. Differentially methylated CpGs in male subjects with alcohol use disorders (AUDs). (a) Volcano 
plot of effect size [log2(fold changes)] against − log10(P values) of 434, 015 CpGs. The red dots represent 1,812 
CpGs with q ≤  0.05 (the horizontal green dash line) and the absolute value of log2(fold change) > 0.03 (two 
vertical green dash lines), and the black dots represent non-significant CpGs. (b) Kernel density plotting of 
log2(fold changes) of 1,812 significant CpGs. The asymmetric plot indicates that a greater proportion (66.3%) 
of CpGs were hypermethylated in AUD subjects. (c). Hierarchical clustering of the 32 male subjects using a 
heatmap based on methylation levels of the above 1,812 CpGs (adjusted for age and PMI). The 32 male subjects 
were clustered into two distinct groups that were consistent with their actual AUD status (the red color: 16 
male AUD patients; the blue color: 16 male healthy control subjects). The colors in the heatmap indicate CpG 
methylation levels (green to red: low to high methylation levels).
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changes) of these 1,812 CpGs showed that a greater proportion (1,201/1,812 =  66.3%) of them were hypermeth-
ylated in male AUD subjects (Fig. 1b). Hierarchical clustering analysis, based on normalized methylation levels 
of these 1,812 CpGs and adjusted for age and postmortem interval (PMI), indicated that 32 male subjects (16 
male AUD and 16 control subjects) included in this study were clustered into two distinct subgroups that were 
consistent with their AUD status (Fig. 1c). Of the 1,812 CpGs, 1,350 CpGs were located in or near genes (611 
in promoters, 644 in gene bodies, and 95 in 3′ UTRs) and 462 were located in intergenic regions. The top 20 
hits are listed in Table 1. The three most significant CpGs were cg19099433 in the gene body of the allantoi-
case gene (ALLC) involved in the uric acid degradation pathway, cg16460727 in the promoter of the complexin 
2 gene (CPLX2) involved in synaptic vesicle exocytosis, and cg11938646 in the promoter of the U42A small  
nucleolar RNA (snoRNA) gene (SNORD42A) involved in directing site-specific 2′-O-methylation of substrate 
RNAs. In the smaller sample of female AUD subjects, 22,091 (5.1%) of the above 430,407 CpGs showed differ-
ential methylation (Pnominal =  9.8 ×  10−7 −  0.05). There were 154 CpGs with P <  1.0 ×  10−3, and the three top hits 
were cg22707691 (Pnominal =  9.8 ×  10−7) located in the 3′  UTR region of the NAD Kinase gene (NADK) which 
participates in the NAD+  kinase activity and two intergenic CpGs (cg19901523: Pnominal =  1.7 ×  10−5; cg22788657: 
Pnominal =  2.4 ×  10−5). However, none of them withstood correction for multiple testing (q >  0.05) (Supplemental 
Fig. S1).

AUD-associated DNA methylation modules in male subjects. Since significant results were 
obtained from male subjects and more male subjects were included in this study (32 males vs. 14 females), we 
performed co-methylation analysis only in male subjects. AUD-associated CpGs identified in male subjects were 
first assigned into different modules (a module is defined as a group of co-methylated CpGs) by examining their 
pair-wise correlations. Then, the first principle component (PC1) of each module, which was calculated using nor-
malized methylation levels of all CpGs within a module and represented the average methylation level of a mod-
ule, was used to examine AUD-module associations. Under the default setting of the weighted gene co-expression 
network analysis (WGCNA) program22, the above 87,588 nominally significant CpGs (Pnominal <  0.05) identified 
in male AUD subjects were clustered into 21 modules (Supplemental Fig. S2). In each module (median size: 211 
CpGs), CpGs were significantly correlated in their methylation levels. Those CpGs, which were not significantly 
correlated in their methylation levels, were assigned to the grey module (containing 9,615 CpGs). As expected, 
the overall methylation pattern (represented by the ME, i.e., the first principle component) of all 22 modules 
(including the grey module) was significantly correlated with AUDs. The top three modules (consisting of signifi-
cantly correlated CpGs) were the green module (Mgreen with 1,890 CpGs: r =  0.75, Pcorrelation =  9.8 ×  10−7), the light 
cyan module (Mlightcyan with 161 CpGs: r =  0.71, Pcorr =  6.2 ×  10−6), and the pink module (Mpink with 289 CpGs: 
r =  0.69, Pcorr =  1.3 ×  10−5).

We further examined whether the top 1,812 CpGs identified in male AUD subjects were over-represented in 
any of the above 22 modules by hypergeometric-based tests. We calculated the ratio of the number of the observed 
top CpGs (n.top) over the expected number of CpGs in each module given the module size. Eight modules with 
a ratio of more than 1 were identified (Mdarkred: size =  81, n.top =  3, ratio =  1.8, Phyper =  0.087; Mroyalblue: size =  92, 

CpGs Chr. Position Genes Locationa βb Effectc Pnominal
d qe

cg19099433 2 3748379 ALLC Body 0.92 − 0.03 9.5 ×  10−9 0.002

cg16460727 5 175297349 CPLX2 Promoter 0.87 − 0.04 2.9 ×  10−7 0.035

cg11938646 17 27050355 SNORD42A Promoter 0.77 0.07 7.0 ×  10−7 0.038

cg10767665 19 44279027 KCNN4 Body 0.17 0.05 9.6 ×  10−7 0.038

cg05764102 16 72991344 ZFHX3 Promoter 0.91 − 0.03 1.8 ×  10−6 0.038

cg11562309 7 94286473 PEG10 Promoter 0.47 0.04 1.9 ×  10−6 0.038

cg11415275 1 146715872 CHD1L Body 0.13 0.05 2.6 ×  10−6 0.038

cg09244748 11 63532530 C11orf95 Body 0.68 0.07 2.7 ×  10−6 0.038

cg14250274 7 66206258 RABGEF1 Promoter 0.09 0.04 2.7 ×  10−6 0.038

cg15836231 6 91490663 Intergenic 0.92 0.04 3.5 ×  10−6 0.038

cg09249675 19 3401572 NFIC Body 0.86 0.06 4.9 ×  10−6 0.038

cg11344164 10 101878520 Intergenic 0.87 − 0.05 5.5 ×  10−6 0.038

cg14932133 2 121739247 GLI2 Body 0.90 − 0.04 6.3 ×  10−6 0.038

cg16695999 5 93905343 C5orf36 Promoter 0.81 0.05 6.5 ×  10−6 0.038

cg17865555 19 49133647 SPHK2 3′ UTR 0.26 0.10 7.0 ×  10−6 0.038

cg13556266 4 8696173 Intergenic 0.83 − 0.06 7.6 ×  10−6 0.038

cg00147578 12 120730932 Intergenic 0.17 0.04 7.8 ×  10−6 0.038

cg03064005 11 68142768 LRP5 Body 0.82 − 0.07 8.3 ×  10−6 0.039

cg07881365 19 15833929 Intergenic 0.29 0.08 8.8 ×  10−6 0.039

cg06122518 1 168356673 Intergenic 0.20 0.06 9.4 ×  10−6 0.039

Table 1.  Top 20 hits identified in 32 male subjects (16 AUD cases vs. 16 controls). aLocation of CpGs in 
promoter regions, gene bodies, or 3′  untranslated regions (3′  UTRs). bAverage CpG methylation levels. cLog-
scale fold changes obtained by the R package limma. dP values obtained by the R package limma. eq values 
obtained by multiple testing controlling FDR at 0.05.
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n.top =  3, ratio =  1.6, Phyper =  0.124; Mpink: size =  289, n.top =  9, ratio =  1.5, Phyper =  0.080; Msalmon: size =  198, 
n.top =  6, ratio =  1.5, Phyper =  0.119; Mcyan: size =  169, n.top =  5, ratio =  1.4, Phyper =  0.140; Mturquoise: size =  42,389, 
n.top =  1,048, ratio =  1.4, Phyper =  1.7 ×  10−16; Mblue: size =  18,061, n.top =  429, ratio =  1.1, Phyper =  0.001; Mbrown: 
size =  8,469, n.top =  189, ratio =  1.1, Phyper =  0.126) (Fig. 2a). The two larger modules (Mturquoise and Mblue) showed 
significant enrichment (Phyper ≤  0.001) of the 1,812 top CpGs that were differentially methylated in male AUD 
subjects. For these two larger modules, we assessed the correlation of two parameters, i.e., the gene significance 
(GS) and the module membership (MM). As displayed in Fig. 2b,c, a significant positive correlation between the 
GS and the MM was observed in these two larger modules, suggesting that AUD-associated CpGs were also the 
most important (central) elements of the module for AUDs.

Biological processes enriched for genes mapped by CpGs in modules Mturquoise and Mblue. 1,048 
CpGs in the turquoise module (Mturquoise) were mapped to 683 unique genes, and 429 CpGs in the blue module 
(Mblue) were mapped to 304 unique genes. These two sets of genes were subjected to DAVID23 for functional 
annotation. As shown in Supplementary Table S1, highly enriched biological progresses observed in Mturquoise 
included: cell projection organization (fold =  2.5, P =  3.7 ×  10−6), cell projection morphogenesis (fold =  2.6, 
P =  7.7 ×  10−5), and neuron development (fold =  2.3, P =  9.8 ×  10−5). Highly enriched biological progresses 
observed in Mblue included: rhythmic process (fold =  4.6, P =  7.1 ×  10−4), positive regulation of transcription 
(fold =  2.4, P =  2.4 ×  10−3), and DNA-dependent positive regulation of macromolecule metabolic process 
(fold =  1.9, P =  2.5 ×  10−6).

Genes mapped by CpGs in modules Mturquoise and Mblue were enriched in GWAS-identified 
genes. Gene set enrichment analysis (GSEA) was performed to examine the over-representation of dif-
ferentially methylated genes by GWAS-identified genes mapped by SNPs associated with four types of sub-
stance dependence phenotypes [alcohol dependence (AD)24, cocaine dependence (CD)25, opioid dependence 
(OD)26, or nicotine dependence (ND)27] or five psychiatric disorders [attention deficit hyperactivity disorder 
(ADHD), autism spectrum disorders (ASD), bipolar disorder (BPD), major depressive disorder (MDD), or 
schizophrenia (SCZ)]28–32, given the pleiotropic effects of genetic variants (or epigenetic changes) on various 

Figure 2. Alcohol use disorder (AUD)-associated CpG methylation modules. (a) Enrichment of the top 
1,812 CpGs (identified in male AUD subjects) in each of the 22 modules (including the grey module). The 
ratio was calculated as the observed number of the top CpGs over the expected number of the top CpGs. 
(b,c). Correlation of the gene significance (GS) and the module membership (MM) in two large modules (the 
turquoise module and the blue module).
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neurodevelopmental, psychiatric, and neurological outcomes32–34. Table 2 summarizes the enrichment analysis 
results of genes mapped by CpGs in the above two large CpG modules (Mturquoise: 1,048 CpGs mapped to 683 
unique genes; Mblue: 429 CpGs mapped 304 unique genes). Genes mapped by CpGs in both modules were highly 
enriched in GWAS-identified genes harboring SNPs that were associated with substance dependence or psychi-
atric disorders. When GWAS-identified genes were limited to those genes that were expressed in human PFC 
tissues35, similar results were observed (Table 2).

Transcriptional effect of DNA methylation changes. The correlation of the above 22 AUD-associated 
CpG modules (including the grey module) and five AUD-associated gene expression modules35 (refer to 
“Materials and Methods”) was analyzed, and the results are presented in Supplementary Table S2. Two large 
AUD-associated CpG modules (Mturquoise and Mblue) were significantly correlated with all five AUD-associated 
gene expression modules except the correlation of CpG module Mturquoise and gene expression module Ebrown. Of 
interest, those AUD-associated CpGs modules in which the top 1,812 CpGs were not enriched (refer to Fig. 2) 
were also correlated with some of the five AUD-associated gene expression modules (e.g., the Mred-Eturquoise pair). 
Additionally, we analyzed the correlation of methylation levels of individual CpGs and expression levels of indi-
vidual genes. Of the top 1,812 CpGs identified in male AUD subjects, 106 were mapped to 93 host genes that were 
differentially expressed in postmortem PFC of male AUD subjects (Fig. 3). These 106 CpG methylation-gene 
expression pairs were divided into four subgroups: (1) 58 pairs of hypermethylated CpGs and upregulated genes; 
(2) 31 pairs of hypermethylated CpGs and downregulated genes; (3) 16 pairs of hypomethylated CpGs and upreg-
ulated genes; and (4) one pair of a hypomethylated CpG and a downregulated gene (Table 3). The first two sub-
groups (hypermethylated CpGs and paired up- or down-regulated genes) were presented in Supplemental Table 
S3, and later two subgroups (hypomethylated CpGs and paired up- or down-regulated genes) were presented 
in Supplemental Table S4. Several genes previously identified to be AUD-related, such as GRIK3, GRIN2C, and 
GABRA1, were contained in the 106 CpG methylation-gene expression pairs. Additionally, genes involved in 
these 106 CpG methylation-gene expression pairs potentially participate in Biological Processes, such as cell mor-
phogenesis, locomotion, differentiation, and homeostasis as well as neuron development (Supplemental Table S5).

Discussion
In this study, we presented data demonstrating DNA methylome alterations in the PFC of AUD subjects (par-
ticularly in male AUD subjects). Most of the AUD-associated CpGs identified in male AUD subjects were signif-
icantly correlated, forming CpG clusters (or modules), in which the overall methylation pattern was also highly 
correlated with AUDs. Some of the genes mapped by CpGs in the module were involved in neural development 
and transcriptional regulation. Additionally, those genes mapped by CpGs contained in AUD-associated CpG 

Mturquoise (n = 640)a Mblue (n = 284)a Mturquoise (n = 451)b Mblue (n = 191)b

NES nc FDR q-val NES nc FDR q-val NES nc FDR q-val NES nc FDR q-val

AD (AA) 1.49 297 0.006 1.25 158 0.027 1.47 213 0.013 1.07 69 0.287

CD (AA) 1.49 325 0.002 1.46 114 0.002 1.50 193 0.008 1.40 60 0.013

OD (AA) 1.47 330 0.003 1.50 113 0.006 1.43 164 0.013 1.46 78 0.016

ND (AA) 1.42 330 0.010 1.37 146 0.006 1.43 243 0.017 1.27 100 0.034

AD (EA) 1.45 328 0.005 1.48 111 0.005 1.39 196 0.014 1.50 77 0.008

CD (EA) 1.45 278 0.005 1.48 92 0.005 1.36 194 0.038 1.34 61 0.024

OD (EA) 1.34 276 0.006 1.48 110 0.014 1.40 183 0.008 1.43 73 0.008

ND (EA) 1.36 249 0.013 1.43 112 0.009 1.34 178 0.028 1.44 60 0.019

ADHD 1.37 363 0.006 1.45 116 0.006 1.39 154 0.016 1.42 80 0.014

ASD 1.33 305 0.011 1.40 116 0.008 1.33 255 0.036 1.31 55 0.038

BPD 1.41 292 0.006 1.43 135 0.010 1.40 213 0.025 1.39 58 0.018

MDD 1.43 326 0.003 1.66 115 < 0.001 1.39 239 0.014 1.56 76 0.005

SCZ 1.29 233 0.014 1.56 112 0.003 1.34 145 0.020 1.51 73 0.007

Table 2.  Enrichment of genes mapped by CpGs in two large AUD-associated modules in GWAS-identified 
disease-associated genes. AD, alcohol dependence; CD, cocaine dependence; OD, opioid dependence; ND, 
nicotine dependence. ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorders; BPD, 
bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia. AA, African American. EA, European 
American. GWAS, genome-wide associated study; NES, normalized enrichment score; FDR q value, false 
discovery rate (FDR) statistic. Subjects for studying five psychiatric disorders (ADHD, ASD, BPD, MDD, and 
SCZ) were reported of European ancestry, as described by the Psychiatric GWAS Consortium (PGC) (http://
www.med.unc.edu/pgc/results). aGene set enrichment analysis (GSEA) was performed using GWAS-identified 
disease-associated genes for four substance dependence traits (AD, CD, OD, or ND) or five psychiatric 
disorders (ADHD, ASD, BPD, MDD, or SCZ). bGene set enrichment analysis (GSEA) was performed using 
GWAS-identified disease-associated genes for four substance dependence traits (AD, CD, OD, or ND) or five 
psychiatric disorders (ADHD, ASD, BPD, MDD, or SCZ) and these genes were found to be expressed in human 
prefrontal cortex (PFC) in our previous study35. cNumber of leading genes when NES reached maximum in the 
enrichment analysis.

http://
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modules were over-represented by GWAS-identified genes with variants associated with substance (alcohol, 
cocaine, opioid, or nicotine) dependence or psychiatric disorders (ADHD, ASP, BPD, MDD, or SCZ). The major 
findings of this study are discussed below.

First, we observed altered DNA methylation patterns in the PFC of AUD subjects (mainly male AUD subjects). 
To profile AUD-associated methylome alterations in reward-related brain regions, we used a set of postmor-
tem PFC samples that were unique in two aspects: (1) AUD subjects did not have co-morbid drug dependence 
or major psychotic disorders, and thus DNA methylation changes in AUD subjects were more likely to have 
resulted from chronic alcohol consumption (or alternatively, be predisposing to this trait); and (2) AUD cases 
and healthy controls were well-matched to minimize the influence of confounding factors (such as sex, age, and 
PMI) on DNA methylation. When analyzing DNA methylation data from all 23 pairs of samples (i.e., 23 AUD 
cases vs. 23 matched healthy controls), no CpG sites showed genome-wide significant results (Supplementary 
Fig. S1a), although in the absence of confounding sex effects, our sample was expected to have sufficient power 
[the observed power (one-tail hypothesis) =  84.7%, supposing the observed effect size (Cohen’s d) is 0.8, the 
probability level is 0.05, and the sample size is 46] to identify differentially methylated CpGs. Given our recent 
findings concerning sex-biased effects on methylome patterns of CpGs located on either sex or autosomal 
chromosomes36, we proceeded to examine AUD-associated DNA methylation alterations in males and female  
separately. One thousand eight hundred and twelve CpGs (mapped to 1,099 genes) were associated with AUDs in 
male subjects (16 male AUD cases vs. 16 male controls) and the associations survived correction for multiple tests 
(Fig. 1), but no genome-wide significant results were obtained from the female subjects (7 female AUD cases vs.  
7 female controls) (Supplementary Fig. S1b). The negative findings in female subjects is possibly due to (1) 
small sample size and consequent lack of statistical power [the observed power (one-tail hypothesis) =  40.1%,  
supposing the observed effect size (Cohen’s d) is 0.8, the probability level is 0.05, and the sample size is 14] 
to identify AUD-associated CpGs; and/or (2) the lower severity of alcohol consumption in AUD women com-
pared to AUD men [this was reflected by less alcohol daily use in women (162.8 ±  79.5 g) compared to men 
(165.6 ±  84.2 g)], and thus DNA methylation alterations in AUD women may have been lower in magnitude, 
further compromising power. However, no significant overlap was observed between the top 1,000 CpGs iden-
tified in male and female AUD subjects (Enrichment fold =  0.87, Phypergeometric =  0.329), suggesting that alcohol 
consumptions might induce different methylation patterns in males and females. It should be noted that indi-
vidual alcohol consumption might confound DNA methylation-AUD associations because it is correlated with 
both sex and AUD status. Nevertheless, alcohol daily use amounts in control subjects (mean ±  S.D.: 11 ±  9 gram) 
were much lower to that in AUD subjects (mean ±  S.D.: 165 ±  81 gram) (Supplementary Table S6). By assessing 
alcohol daily use amounts, subjects were easily classified as AUD cases or controls. To circumvent the collinearity 

Figure 3. Pairs of hypo- or hypermethylated CpGs and up- or downregulated genes in postmortem PFC 
of male AUD subjects. Vertical and horizontal dash lines indicate significantly changed CpG methylation and 
gene expression, respectively.

Correlation Methylation-Expression
Number of 

pairs
Number of 

CpGs/genes

CpG Location CpG Island

Promoter
Gene 
body 3′ UTR Yes No

Hypermethylated/Upregulated 58 58/49 17 30 11 43 15

Hypermethylated/Downregulated 31 31/28 12 18 1 21 10

Hypomethylated/Upregulated 16 16/15 11 5 0 11 5

Hypomethylated/Downregulated 1 1/1 1 0 0 0 0

Table 3.  106 CpG methylation-gene expression correlation pairs in males.
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problem and avoid inaccurate coefficient estimation, we performed a case-control (or logistic regression) analysis 
rather than a linear regression analysis.

Second, we found that the majority of the differentially methylated CpGs identified in male AUD subjects 
were hypermethylated, and the hypermethylated CpGs were dispersed over different gene regions. Among the 
1,201 hypermethylated CpGs (Fig. 1b), 417 (34.7%) were located in promoter regions, 503 (41.9%) were located 
in gene bodies, 82 (6.8%) were located in 3′  UTRs, and 199 (16.6%) were located in other regions. Our findings in 
promoter regions are consistent with those reported in most candidate gene studies that demonstrated increased 
DNA methylation levels in the promoter regions of AUD risk genes5–11. The association of promoter hyper-
methylation to risk of AUDs is relatively easier to understand because increased promoter DNA methylation  
may result in transcriptional silencing. Nevertheless, only about one-third of the hypermethylated CpGs iden-
tified in the present study are located in promoter regions, and most of the hypermethylated CpGs are located 
in non-promoter regions. Our findings suggest that altered DNA methylation in non-promoter regions may 
modulate gene transcription and confer increased vulnerability to AUDs. There is evidence that methylation of 
non-promoter CpGs located in gene bodies, enhancers, and insulators may influence the binding and function of 
regulatory proteins37. Further studies are warranted to confirm these findings and to gain a better understanding 
of the function of DNA methylation in non-promoter regions.

Third, we did not observe a clear-cut relationship between DNA methylation and gene expression. By  
integrative analysis of DNA methylome and gene transcriptome data, we discovered that DNA methylation and 
gene expression changes in the PFC of male AUD subjects were either positively or negatively correlated (Table 3). 
Besides 59 positively correlated CpG methylation-gene expression pairs (58 hypermethylated/upregulated and 
1 hypomethylated/downregulated pairs), we also observed 47 negatively correlated CpG methylation-gene 
expression pairs (31 hypermethylated/downregulated and 16 hypomethylated/upregulated pairs). Considering 
that DNA methylation in promoter or transcription start site (TSS) regions may inhibit transcription initia-
tion whereas DNA methylation in gene bodies may enhance transcription elongation37, we expect to observe a  
negative correlation between promoter DNA methylation and gene expression but a positive correlation between 
gene body DNA methylation and gene expression. However, the results from our study did not show such a sim-
ple relationship. The complex DNA methylation-gene expression relationship we observed in the present study 
may be due to at least two possible mechanisms. One possibility is that the influence of genetic variants, i.e, SNPs, 
on DNA methylation and/or gene expression potentially confounds the relationship between DNA methylation 
and gene expression. Our recent studies demonstrated that promoter DNA methylation levels of a number of 
genes involved in AUDs were significantly affected by genetic variants38. Thus, the effect of DNA methylation 
on gene transcription depends at least partially on the existence of underlying DNA sequence variants. Another 
possibility is that the gene-gene interaction network leads to a complex relationship between DNA methyla-
tion and gene expression. Because the CpG methylation-gene expression pairs obtained from the present study 
were generated by statistical (correlation) analyses, they do not reflect a direct biological relationship between 
DNA methylation and gene expression. Those genes involved in CpG methylation-gene expression pairs may be  
indirectly regulated by DNA methylation that impacts the transcription of other genes in the gene-gene inter-
action network. Of the 1,812 top CpGs identified in male AUD subjects, 611 were located in promoter regions. 
Except 41 promoter CpGs (29 hypermethylated and 12 hypomethylated) (Table 3), the remaining promoter CpGs 
did not show a significant contribution to their host gene transcription. A tentative explanation for this observa-
tion is that these promoter CpGs may not be located in transcription factor binding sites (TFBSs) or there are no 
interactive effects of the methylation of these promoter CpGs and the modification of histone proteins on gene 
transcription. Additionally, genetic variants around these promoter CpGs may influence their regulatory effects 
on gene transcription. Therefore, more effort is required to understand the function of DNA methylation on gene 
transcription.

Fourth, we found that some of the differentially methylated genes expressed in the PFC of male AUD subjects 
were enriched in GWAS-identified genes with variants associated with four types of substance dependencies 
(including alcohol dependence) or five psychiatric disorders. Our study indirectly demonstrated that some of the 
differentially methylated genes were potential genetic risk factors for AUDs. The enrichment analysis approach 
enabled us to appreciate the implications of the differentially methylated genes expressed in the PFC of AUD sub-
jects. Our recent studies demonstrated that DNA methylation alterations in AUD subjects may be attributable to 
either genetic variants (also referred to as methylation quantitative trait loci or mQTLs)38 or non-genetic factors 
such as childhood adversity39 or chronic alcohol consumption11,13. In other words, the differentially methylated 
genes identified in AUD subjects may be simply biomarkers correlated to risk of AUDs, rather than causal factors 
that directly drive the occurrence of AUDs. Thus, there is a need to know which of the differentially methyl-
ated genes truly participate in the AUD pathway. Different complex disorders (particularly drug addiction and 
psychiatric disorders) may share genetic risk factors (i.e., pleiotropy)40. By enrichment analysis, we found that 
36.4–56.7% of genes included in the turquoise module (Mturquoise) and 32.4–55.6% of genes included in the blue 
module (Mblue) were enriched in GWAS-identified genes containing variants associated with alcohol or drug 
dependence, or five specific psychiatric disorders. Similar enrichment patterns were observed when enrichment 
analysis was limited to genes expressed in the same brain region (i.e., the PFC) (Table 2). Despite the pleiotropic 
effects of a number of leading genes, other leading genes were heterogeneous with respect to effects for the four 
types of addiction and the five different psychiatric disorders. This may be due to the fact that different addiction 
and psychiatric disorders also have their own susceptibility and pathway genes. It can be reasonably speculated 
that the top differentially methylated genes (especially the leading genes identified in the enrichment analysis) 
could also serve as a prior resource to prioritize GWAS signals for addiction and other psychiatric disorders.

Several limitations of the present study must be overcome in future studies. First, although the size of our brain 
tissue sample was larger than that of any published studies, the statistical power of the sample was nevertheless 
limited. Thus, our findings should be replicated and extended in a larger postmortem collection of PFC samples. 
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Second, the present study examined DNA methylation alterations in only one reward-related brain region (i.e., 
the PFC) of AUD subjects. Chronic alcohol exposure causes structural alteration of dendrites and their spines in 
multiple brain reward regions41, and DNA methylation is tissue-specific42,43. Hence, AUD-associated DNA meth-
ylation changes should be examined in additional brain regions such as the nucleus accumbens and the ventral 
tegmental area. Third, using postmortem samples, we cannot determine whether the observed DNA methylation 
and gene expression changes in AUD subjects occurred before (presumably caused by other environmental fac-
tors) or after heavy alcohol consumption. That is, all we can state is that there is an association – we cannot draw 
clear conclusions about cause or effect. To address this issue, we could use the dinking-in-the-dark mouse model 
that was applied in our recent study for analyzing alcohol drinking-induced DNA methylation alterations13.

In summary, this study demonstrated genome-wide DNA methylation changes in postmortem PFC of AUD 
subjects. These findings could increase our understanding of the biology of AUDs and the role of epigenetics in 
risk for this trait, and help in the development of pharmacotherapies for AUDs by targeting the differentially 
methylated genes or biological pathways identified here.

Methods
Postmortem PFC tissues. Autopsy brain tissue samples were obtained from the New South Wales Tissue 
Resource Centre (NSW TRC) at the University of Sydney. The NSW TRC is partially sponsored by the National 
Institute on Alcohol Abuse and Alcoholism (NIAAA) for collecting postmortem human brain tissues for  
alcohol-related research. It has ethics approval from the Sydney Local Health Network and The University of 
Sydney. Fresh-frozen sections of Brodmann area 9 (BA9, mainly the dorsolateral PFC) were obtained from 
16 male and seven female pairs of AUD and control subjects (46 European Australians in total). Each pairs of 
AUD and control subjects were matched by sex, age, brain weight, brain pH, and postmortem interval (PMI). 
AUD subjects were affected with AUDs but not with illegal drugs of abuse or major psychotic disorders (such as 
schizophrenia and bipolar disorder) according to the criteria in the Diagnostic and Statistical Manual of Mental 
Disorders 4th Edition (DSM-IV)44. Control subjects were assessed to be free of alcohol or drug abuse or depend-
ence or major psychotic disorders. The sample information on AUD status, sex, age, alcohol daily use, PMI, brain 
weight, and brain pH is summarized in Supplementary Table S6.

Genome-wide DNA methylation profiling. Genomic DNA was extracted from postmortem PFC tissues 
of 23 AUD and 23 control subjects using the QIAamp DNA Micro Kit (QIAGEN, Valencia, CA, USA). Genomic 
DNA was checked for quality by electrophoresis on a 0.7% agarose gel and quantified using a NanoDrop 8000 
spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 500 ng of genomic DNA was treated with bisulfite 
reagents included in the EZ-96 DNA methylation kit (Zymo Research, Orange, CA, USA) according to the man-
ufacturer’s protocol. DNA methylation assays were performed at the Yale Center for Genome Analysis (YCGA). 
Genome-wide DNA methylation levels were examined using the Illumina Infinium HumanMethylation450 
BeadChip (Illumina, San Diego, CA, USA), following the Illumina Infinium HD Methylation protocol45. Four 
chips (12 samples per chip) were used. Paired case and control samples were processed together on the same 
chip to reduce the impact of batch effects on microarray data. The BeadChip interrogates 485,577 CpG sites per 
sample at single-nucleotide resolution. It covers 99% of RefSeq genes, with 41% of CpG sites in promoter regions 
[from 1,500 bp upstream to 200 bp downstream of the transcription start site (TSS), including all or part of the 5′  
untranslated region (5′  UTR) and/or the first exon], 31% in gene bodies, 3% in 3′  UTRs, and 25% in intergenic 
regions45. GenomeStudio software V2011.1 (Methylation Module V1.9.0) from Illumina was used to generate raw 
beta (β ) values for each CpG site, with β  values ranging from 0% (completely unmethylated) to 100% (completely 
methylated). The raw DNA methylation data was preprocessed by normalizing internal control probes that were 
designed specifically for the HumanMethylation450 BeadChip. Probes with intensities indistinguishable from 
background noises (detection P-value >  0.05) in any subject were excluded. Data from ch- probes (or non-CpG 
probes), SNP-CpG probes, cross-reactive probes were also excluded. The influence of two color channels and 
two types of CpG probes on CpG methylation measurements were eliminated using the R package limma46, a 
beta-mixture quantile normalization method (BMIQ)47 (Supplementary Fig. S3,S4). The batch effect (caused by 
the use of multiple chips in the assays) was compensated by normalizing the DNA methylation data using the 
ComBat function built-in R package sva48. Our DNA methylation data have been deposited in the NCBI GEO 
database (Accession Number: GSE49393).

After the above data preprocessing steps, 434,015 CpGs with high-quality methylation data were remained 
for analysis of differential DNA methylation in AUD subjects. Of the 434,015 CpGs, 34,840 CpGs (8.0%) were 
hypomethylated (β  ≤  0.2), 165,323 CpGs (38.1%) were hypermethylated (β  ≥  0.8), and the remaining CpGs were 
intermediately methylated (0.2 <  β  <  0.8). Density plotting of methylation levels of CpGs across the genomes of 
all 46 subjects in terms of their genome locations indicated that a high density of hypomethylated CpGs were 
located in CpG islands (CGIs) or gene promoter regions (Supplementary Fig. S5).

To assess the reproducibility of the array-based DNA methylation assay, the DNA methylome of a selected 
sample was profiled by three different chips. As shown in Supplementary Fig. S6a–c, the array-based DNA meth-
ylation assay was highly reproducible. Methylation levels of six CpGs in six genes (AGT cg01083716, ALDH1L1 
cg23141914, GABRA1 cg02469186, GRIN2C cg16086007, PAX6 cg09656389, and SLC1A3 cg15841415), which 
showed differential methylation in AUD subjects by paired t-tests, were also determined by bisulfite sequencing49. 
GRIN2C cg16086007 and AGT cg01083716 failed this assay because no specific PCR products were obtained. As 
shown in Supplementary Fig. S6d, mean methylation levels of the other four CpGs measured by the two methods 
were highly correlated. Information regarding PCR primers and PCR conditions for bisulfite sequencing is pro-
vided in Supplementary Table S7.
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Differential DNA methylation analysis. Statistical analysis was carried out using the R package version 
3.1.1. Differential DNA methylation was identified following two steps. In the first step, normalized methylation 
levels of 434,015 CpGs (those that remained after DNA methylation data quality managements) were marginally 
regressed on three covariates, i.e., sex, age, and PMI. In the second step, the residuals obtained from the first step 
were used to analyze DNA methylation differences between AUD cases and healthy controls using the empirical 
Bayesian linear model built-in R package limma46, which is a suitable tool for a small scale microarray study. The 
q-value was computed for each nominal P value by controlling the False Discovery Rate (FDR) at 0.05 using the 
R package q-value50. Considering the sex effect on DNA methylation36,51,52, differential DNA methylation analysis 
was conducted in men (16 male AUD cases vs. 16 matched male controls) and women (7 female AUD cases vs. 7 
female matched controls). Differentially methylated CpGs in male or female AUD subjects were identified.

Co-methylation network analysis. To assess the inter-correlation among CpGs, the co-methylation anal-
ysis was performed using the WGCNA R package22. The overall methylation level of CpGs clustered in a module 
was represented by the module eigengene (ME)53, which was equivalent to the first principal component (PC1). 
AUD-associated CpG clusters (or modules), in which CpGs were highly correlated in their methylation levels, 
were identified. For each module, the correlation of two parameters [the gene significance (GS) and the module 
membership (MM)] was evaluated. The GS stood for the magnitude of correlation between methylation levels 
of individual CpGs in the module and AUDs, and the MM meant the magnitude of correlation between meth-
ylation levels of individual CpGs in the module and the ME of the module. A significant correlation of GS and 
ME suggested that the differentially methylated CpGs identified in AUD subjects were also the most important 
(or central) elements of the module for AUDs. The hypergeometric-based test was also conducted to examine 
whether differentially methylated CpGs (Pnominal ≤  0.05 and q ≤  0.05) in AUD subjects were enriched in clustered 
CpGs included in AUD-associated CpG modules.

Functional annotation by database DAVID. The function of genes mapped by differentially methyla-
tion CpGs that were also clustered in AUD-associated modules was annotated by the Database for Annotation, 
Visualization and Integrated Discovery (DAVID)23. The significance of gene ontology (GO) term enrichment was 
calculated according to a modified Fisher exact test (EASE <  0.1), and the top 10 GO terms together with fold 
enrichments were obtained from DAVID.

Gene set enrichment analysis (GSEA) using genome-wide association study (GWAS) data. The 
GSEA method54,55 was used to assess whether genes mapped by differentially methylated CpGs included 
in AUD-associated CpG modules were over-represented by GWAS-identified genes with single nucleotide  
polymorphisms (SNPs) associated with alcohol dependence (AD)24, cocaine dependence (CD)25, opioid depend-
ence (OD)26, or nicotine dependence (ND)27; the GSEA analysis was repeated in both African Americans and 
European Americans. Considering the genetic pleiotropy between substance dependence and psychiatric  
disorders, we also performed GSEA using GWAS data from the Psychiatric Genomics Consortium (PGC)56 for 
five psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder 
(ASD), bipolar disorder (BPD), major depressive disorder (MDD), and schizophrenia (SCZ); those GWAS data 
was described in published PGC studies28–32, and the summary statistics were obtained through public database 
(http://www.med.unc.edu/pgc/downloads). To generate the ranked gene list for GSEA, the genomic coordinates 
(i.e., the gene start and stop positions) of genes were first retrieved from the UCSC Genome Browser (data version  
hg19/GRCH 37). An intersection of 1,196,033 SNPs among the above 13 GWAS data was cross-checked and 
prepared before GSEA. For each GWAS data, P values of genes across the genome were assigned by minimal P 
values of CpGs or SNPs that were located from 10 kb upstream to 10 kb downstream of the gene, and the obtained 
P values of genes were ranked by − log10(P value). We also performed GSEA using only those genes that were 
found to be expressed in the PFC of human subjects in our recent study35, considering that drug addiction and 
psychiatric disorders are most often influenced by genes mainly expressed in the brain.

Correlation analysis of DNA methylation and gene expression changes. We explored whether 
methylation levels of genes mapped by differentially methylated CpGs in postmortem PFC of AUD subjects 
were correlated with expression levels of differentially expressed gene in postmortem PFC of AUD subjects. 
Postmortem PFC genome-wide expression data for the same 16 pairs of male subjects (for the present study) were 
extracted from our previous study35. By co-expression analysis via WGCNA, 1,595 differentially expressed genes 
(Pnominal <  0.05) were clustered into five AUD-associated modules [Eturquoise (593 genes): P =  1.0 ×  10−3); Ebrown 
(234 genes): P =  1.0 ×  10−3); Eblue(575 genes): P =  1.0 ×  10−3); Eyellow(62 genes): P =  1.0 ×  10−3; and Egrey(n =  131 
genes): P =  1.0 ×  10−13]. We first examined pair-wise correlations between the overall methylation level (i.e., ME) 
of AUD-associated CpG modules and the overall gene expression level (i.e., ME) of the above five gene expression 
modules. We then analyzed the correlation of AUD-associated CpG methylation-gene expression pairs.
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