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Abstract: Colloidal suspensions of regular fluids and nanoparticles are known as nanofluids. They
have a variety of applications in the medical field, including cell separation, drug targeting, destruc-
tion of tumor tissue, and so on. On the other hand, the dispersion of multiple nanoparticles into a
regular fluid is referred to as a hybrid nanofluid. It has a variety of innovative applications such as
microfluidics, heat dissipation, dynamic sealing, damping, and so on. Because of these numerous
applications of nanofluids in minds, therefore, the objective of the current exploration divulged the
axisymmetric radiative flow and heat transfer induced by hybrid nanofluid impinging on a porous
stretchable/shrinkable rotating disc. In addition, the impact of Smoluchowski temperature and
Maxwell velocity slip boundary conditions are also invoked. The hybrid nanofluid was formed by
mixing the copper (Cu) and alumina (Al2O3) nanoparticles scattered in the regular (viscous) base
fluid (H2O). Similarity variables are used to procure the similarity equations, and the numerical
outcomes are achieved using bvp4c in MATLAB software. According to the findings, double solutions
are feasible for stretching (λ > 0) and shrinking cases (λ < 0). The heat transfer rate is accelerated
as the hybrid nanoparticles increases. The suction parameter enhances the friction factors as well as
heat transfer rate. Moreover, the friction factor in the radial direction and heat transfer enrich for the
first solution and moderate for the second outcome due to the augmentation δ1, while the trend of
the friction factor in the radial direction is changed only in the case of stretching for both branches.

Keywords: hybrid nanofluid; axisymmetric rotating flow; Maxwell velocity slip; Smoluchowski
temperature slip; rotating disk

1. Introduction

The study of nanofluids piqued the interest of researchers because of different ap-
plications in science and technology, like hybrid-powered engines, fuel cells, measures
of different heat transport with pharmaceutical, and micro-electronic dealings. Nanoflu-
ids are composed of nanoparticles, and the presence of ultrafine nanoparticles magnifies
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thermal conductivity. Choi and Eastman [1] first proposed the idea of nanofluids by dis-
persion of fluids comprising ultra-fine particles. Later, several researchers investigated
the mechanism of nanofluid in different geometrical domains: such as Khan and Pop [2]
addressed the flow problem past a stretchable sheet containing nanofluids. The effect
of free buoyancy flow via a vertical plate induced by nanofluid saturated in a porous
medium was inspected by Gorla and Chamkha [3]. Xu et al. [4] presented an exact solution
of the time-dependent flow induced by thin fluid film subject to the stretchable sheet.
Gireesha et al. [5] examined the impact of dust particles scattered in a nanofluid flow from
a stretched surface. Krishnamurthy et al. [6] scattered fluid particles in a magnetic fluid
flow induced by nanofluid past an exponentially stretchable sheet with viscous dissipation.
Makarem et al. [7] numerically inspected the fluid flow and features of heat transfer with
distinct nanofluids on a stretchable surface. Ghalambaz et al. [8] discussed the features
of fluid flow and analysis of heat transfer through a vertical plate saturated in a porous
media packed with nano-encapsulated suspensions. They observed that the heat transfer
uplifts in the presence of nano-encapsulated materials. Wakif and Sehaqui [9] revised
the two-phase model by utilizing the water-based nanofluid to investigate the features of
metal nanoparticles with a magnetic effect. Hajjar et al. [10] inspected the free convective
flow of time-periodic with heat transfer scattered nano-encapsulated materials in a cavity
and utilized the finite element technique to get a solution. The impact of nanofluid on
gravity-driven flow induced by thixotropic fluid comprising microorganisms through a
vertical sheet was examined by Koriko et al. [11]. Gul et al. [12] scrutinized the influence of
thermophoresis and Brownian motion on thin fluid film induced by Carreau fluid from a
stretched sheet with couple stress. The impact of magnetic field on the unsteady thin film
flow of nanofluid with irregular convective stream past an inclined stretched surface is
inspected by Saeed et al. [13]. Mathew et al. [14] investigated the effects of nanoparticle
shape and slips on the magneto stagnation-point flow induced by nanofluid with chemical
reaction and thermal radiation. Gul et al. [15] investigated a 3D MHD steady flow of
Casson nanofluid induced by gyrotactic microorganisms through the gap of a cone and
disk and developed the homotopy method to find the result. Recently, Gul et al. [16]
examined the dissipative flow of nanofluid past a time-dependent turning disc with the
magnetic field. They observed that the magnetic factor declines the velocities in radial and
transverse directions.

Generally, each nanofluid possesses only one nanoparticle, whereas the hybrid nanofluid
consists of two different nanoparticles dispersed in a different element regular fluid or a
combination of component regular fluids. Hybrid nanofluids are created by combining two
distinct nanomaterials to improve thermal and rheological properties. The main objective of
hybrid nanofluid advancement is to effectively manage heat transport phenomenon in the
examination of flow characteristics field. It has a wide range of technological applications
including microfluidics, damping, acoustics, naval, heat dissipation, dynamic sealing, and
so on. Suresh et al. [17] investigated the effect of dissipation on the time-dependent free
buoyancy consequences of a hybrid nanofluid flow through a circular tube. The analysis
of mixed convection flow induced by hybrid nanofluid was experimentally inspected by
Momin [18]. Takabi and Salehi [19] scrutinized the hybrid nanofluid within a sinusoidal en-
closure. Devi and Devi [20] presented the numerical solution of hybrid liquids past stretch-
able surfaces. They discovered an enrich the heat transport, which was followed by an
increase in nanoparticle concentration. Hayat and Nadeem [21] described an escalation in
heat transfer provided by an Ag-CuO/water nano solution. Rostami et al. [22] investigated
the mixed convective flow of a water-based silica-alumina hybrid nanofluid in conjunction
with a vertical plate by imposing linearly unstable temperatures with analysis of heat
transfer. Double solutions were presented for opposing flow as well as for assisting flow. A
parallel problem was surveyed by Zainal et al. [23] by considering convective boundary
conditions along with different nanomaterials. Acharya et al. [24] discussed the charac-
teristics of Hall current through a moving disk by including the Cu/TiO2nanomaterials
suspended into base fluid water along with subject to thermal radiation and magnetic
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effects. Recently, several researchers [25–34] explored the significance of hybrid nanofluid
flow with different aspects.

Over the last decade or so, there was a lot of interest in the analysis of stagnation
point flow past a rotating disc. Hiemenz [35] discovered an analytic solution to N-S
equations describing 2D steady flow handled orthogonally by an extended flat plate. Later
the aforesaid problem was extended by Homann [36] to include an axisymmetric flow
case. Hannah [37] used the irrotational far-field flow to extend Homann’s [36] classic
stagnation-point flow on a flat surface to survey the flow dynamics versus a spinning disc.
Alternatively, Agrawal [38] formed a novel axially symmetric stagnation point flow on
rotating external flow and normal impact to an infinite or inestimable or vary far plane wall.
Then, Weidman [39] prolonged Agrawal’s problem numerically. The impact of magnetic
field on a 3D rotated flow towards a stagnation-point through a stretched radial rotating
disk was inspected by Turkyilmazoglu [40]. Weidman [41,42] scrutinized the Agrawal
axisymmetric flow near a stagnation-point over a flat sheet and stretched sheet, respectively.
Recently, Waini et al. [43] reconnoitered the Agrawal’s flow and the features of heat transfer
along with hybrid nanoparticles from a stretchable/shrinkable disc.

The component of tangential velocity at the surface is proportional to the shear stress
wall is known as the slip boundary condition. Navier [44] coined the term slip boundary
condition after discovering a relationship between shear stress and slip rate. Maxwell [45]
proposed the simplest explanation of the phenomena of velocity slip, which depends on a
gradient of velocity exerting normal to a creep term and the surface. Smoluchowski [46]
later introduces the idea of temperature slip. Ramya et al. [47] investigated the effect of
thermal and velocity slips on fluid dispersed in a nanofluid. Recently, Khashi et al. [48]
scrutinized the impacts of convective boundary stipulations and slip on a 3D flow of a
hybrid nanofluid past a stretchable/shrinkable sheet.

The goal of the current study is to look into axisymmetric rotating radiative flow and
heat transfer induced by hybrid nanofluid through a stretchable/shrinkable sheet with
Smoluchowski temperature and Maxwell velocity slip. The following are the key points of
research of the current study:

• The impacts of Smoluchowski temperature and Maxwell velocity slip on the axisym-
metric rotating flow were not explored yet.

• The radiation effect on the axisymmetric rotating flow induced by hybrid nanofluid
was not yet considered.

• Double solutions of axisymmetric rotating flow past a moving rotating disk in the
presence of hybrid nanofluid were not presented before.

2. Mathematical Formulation

The configuration of the Agrawal flow problem is schematically shown in Figure 1,
where the steady radiative axisymmetric flow of heat transfer along with rotational stagnation-
point induced by hybrid nanoparticles impinging radially a porous shrinkable/stretchable
rotating disk is contemplated. The problem is initially expressed in terms of cylindrical
coordinates (z, r, θ) considered in the following axial, radial, and azimuthal directions,
respectively, with the associated component of velocities (w, u, v). The Agrawal flow is
symmetric to the rθ−plane and also axisymmetric about the axial direction (z−axis), i.e.,
the variation along the coordinate θ (azimuthal direction) is ignored. The stagnation line is
located at z = 0 and the region of the flow dynamics is in the upper half-plane. Therefore,
the stretching/shrinking disk is rotating about the axial direction (z−axis) together with a
fixed angular velocity ω. In addition, the hybrid nanofluid is composed of two dissimilar
nanoparticles (i.e., alumina (Al2O3) and copper (Cu)) along with viscous pure fluid (water).
The physical properties of the binary hybrid nanomaterials are taken to be in equilibrium
and no-slip occurs between them. It is assumed that the component of the free stream
velocities is characterized by ue(r, z) = 2arz, ve(r, z) = 0 and we(r, z) = −2az2, where a is
a constant parameter measuring the strength of the Agrawal flow having units (LT)−1, see
Weidman [39]. Moreover, the surface velocity at the wall z = 0 is denoted by uw = a2/3υ1/3

f r
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along with Maxwell slip velocity [45] having slip length 2−σv
σv

λ0
∂u
∂z were implemented to

study the velocity slip effect and further vw = rω, here, ω is the unchanging rotational
speed of the disc, however, the uniform mass flux velocity via the wall is equal to w0, where
w0 < 0 for suction and w0 > 0 for blowing. The constant wall surface temperature Tw along
with the Smoluchowski slip temperature [46] is indicated by 2−σT

σT

(
2γ

γ+1

)
λ0
Pr

∂T
∂z , whereas the

constant ambient temperature is signified by T∞ with the case Tw > T∞. Under the impact
of the aforementioned assumptions, the modeled governing equations in form of PDEs are
premeditated by (see Weidman [39]):

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (1)

u
∂u
∂r
− v2

r
+ w

∂u
∂z

= − 1
ρhn f

∂P
∂r

+
µhn f

ρhn f

(
∂2u
∂r2 +

1
r

∂u
∂r
− u

r2 +
∂2u
∂z2

)
, (2)

u
∂v
∂r

+
uv
r

+ w
∂v
∂z

=
µhn f

ρhn f

(
∂2v
∂r2 +

∂

∂r

(v
r

)
+

∂2v
∂z2

)
, (3)

u
∂w
∂r

+ w
∂w
∂z

= − 1
ρhn f

∂P
∂z

+
µhn f

ρhn f

(
∂2w
∂r2 +

1
r

∂w
∂r

+
∂2w
∂z2

)
, (4)

u
∂T
∂r

+ w
∂T
∂z

=
khn f(

ρcp
)

hn f

(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2

)
− 1(

ρcp
)

hn f

∂qr

∂z
, (5)

along with subject to the boundary conditions

u = λuw + 2−σv
σv

λ0
∂u
∂z , v = vw, w = w0, T = Tw + 2−σT

σT

(
2γ

γ+1

)
λ0
Pr

∂T
∂z at z = 0,

∂u
∂z →

∂ue
∂z , ve → 0, T → T∞ as z→ ∞.

}
(6)

In the above governing equations, u, v and w are the component of velocities along
r−, θ− and z−axes, P is the pressure, σv is the tangential momentum accommodation
coefficient, λ0 is the coefficient of the main free path, T is the temperature, σT is the
thermal accommodation coefficient,γ is the specific heat ratio and λ is the constant stretch-
ing/shrinking parameters with λ > 0 for the stretching sheet, λ < 0 for the shrinking sheet,
and λ = 0 for the static disk. Further, ρhn f is the density, khn f is the thermal conductivity,(
ρcp
)

hn f is the heat capacity, µhn f is the dynamic viscosity, and (σ)hn f is the electrical
conductivity of the hybrid nanofluid, which is given as (see [19,20]).

µhn f
µ f

= (1− φ) −2.5 where φ = φ1 + φ2,
ρhn f
ρ f

= φ1

(
ρ1
ρ f

)
+ φ2

(
ρ2
ρ f

)
+ (1− φ),

khn f
k f

= (Aa + Ab)× (Aa + Ac)
−1, where Aa =

(φ1k1+φ2k2)
φ ,

Ab = 2k f + 2(φ1k1 + φ2k2)− 2φk f , Ac = 2k f − (φ1k1 + φ2k2) + φk f
(ρcp)hn f

(ρcp) f
= φ1

(
(ρcp)1
(ρcp) f

)
+ φ2

(
(ρcp)2
(ρcp) f

)
+ (1− φ),

(7)

where φ corresponding to the solid nanoparticle volume fraction and is equal to the sum
of the two distinct nanoparticles such as φ = φ1 + φ2, in which φ1 signifies the copper
(Cu) nanoparticles, φ2 signifies to alumina (Al2O3) nanoparticles, and φ = 0 signifies to
a regular (viscous) fluid. Besides, ρ f ,k f ,

(
ρcp
)

f , ρ1, ρ2, k1, k2,
(
ρcp
)

1 and
(
ρcp
)

2 are the
densities, thermal conductivities, and heat capacitance of the (viscous) regular fluid and
the hybrid nanoparticles, respectively. Thermophysical properties of the regular (viscous)
fluid and both the distinct nanomaterials (copper (Cu) and alumina (Al2O3)) are written
in Table 1.
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Figure 1. Physical model of problem. (a) Stretching disk, (b) Shrinking disk.

Table 1. Thermophysical properties of regular fluid and hybrid nanoparticles [43].

Properties ρ(kg/m3) cp (J/KgK) k (W/mK) Pr

Water 997.1 4179 0.613 6.2
Cu 8933 385 400 -

Al2O3 3970 765 40 -
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In energy Equation (5) the last term is used for the radiative heat flux qr. Therefore,
the simplified form of the term radiative heat flux using the Rosseland approximation for
an optically (hybrid nanoliquid) thick layer one can write (see Hayat et al. [49]):

qr = −
4σ∗

3k∗
∂T4

∂z
, (8)

where σ∗ is the Stefan Boltzman constant and k∗ is the mean absorption constant. Further,
executing the well-known Taylor series about the point T∞, the corresponding fourth power
of T4 can be simplified as T4 ∼= 4T3

∞T − 3T4
∞ by ignoring the higher-order term.

To further, simplify the analysis of the given model, here, we introduce the following
self-similarity dimensionless variables are (see Weidman [39]):

u(r, z) = a2/3υ1/3
f rF′(ξ), v(r, z) = ωrG(ξ), ξ =

(
a/υ f

)1/3
z,

θ(ξ) = T−T∞
Tw−T∞

, w(r, z) = −2a1/3υ2/3
f F(ξ),

(9)

where primes correspond the derivative with respect to the pseudo-similarity variable ξ
and further the expression (9) leads us to yield:

w0 = −2a1/3υ2/3
f S. (10)

In the above Equation (10), the symbol S demonstrates the transparent factor with
S > 0 and S < 0 correspond to suction and blowing, respectively, whereas S = 0 is for an
impervious surface of the disk.

Now utilizing the self-similarity variables in the governing equations, where Equation (1)
is evidently satisfied, while the rest of the Eqs. are transmuted into following ODEs as follows:

µhn f /µ f

ρhn f /ρ f
F′′′ + 2FF′′ − F′2 + αAG2 = 0, (11)

µhn f /µ f

ρhn f /ρ f
G′′ + 2

(
G′F− GF′

)
= 0, (12)

1(
ρcp
)

hn f /
(
ρcp
)

f

(
khn f /k f +

4
3

Rd

)
θ′′ + 2PrFθ′ = 0, (13)

with appropriate BCs are:

F(0) = S, F′(0) = λ + δ1F′′ (0), G(0) = 1, θ(0) = 1 + δ2θ′(0)
F′′ (ξ)→ 2, G(ξ)→ 0, θ(ξ)→ 0 as ξ → ∞.

(14)

The above similarity equations comprise some of the dimensionless influential param-
eters which are namely and symbolically premeditated as like Pr = µ f

(
cp
)

f /k f the Prandtl

number, δ1 = (2− σv/σv)λ0

(
a/υ f

)1/3
is the velocity slip parameter, Rd =

(
4σ∗T3

∞
)
/k f k∗

is the radiation parameter, δ2 = (2− σT/σT)(2γ/γ + 1)λ0/Pr
(

a/υ f

)1/3
is the temperature

slip parameter, and αA = ω2/a4/3υ2/3
f corresponds the rotating disk factor, necessitating

that αA is greater or equal to zero.
The important gradients of the problem are the following shear stress in the relative

radial and azimuthal directions indicated by C f r and C f θ , respectively, and the local Nusselt
number Nur is defined as

C f r =
µhn f

ρ f uw2

(
∂u
∂z

)∣∣∣
z=0

, C f θ =
µhn f

ρ f vw2

(
∂v
∂z

)∣∣∣
z=0

,

Nur = − r
k f (Tw−T∞)

(
khn f

(
∂T
∂z

)
− (qr)w

)∣∣∣
z=0

(15)
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Using similarity transformation (9) in the above equations, we get

Re1/2
r C f r =

µhn f
µ f

F′′ (0), Re1/2
r

(
uw
vw

)
C f θ = αA

−1 µhn f
µ f

G′(0),

Re1/2
r Nur = −

( khn f
k f

+ 4
3 Rd

)
θ′(0),

(16)

where Rer =
uwr
υ f

is called the local Reynolds number.

3. Temporal Stability Analysis

The present Agrawal hybrid nanofluid flow problem was solved numerically and
admits double solutions (upper branch solution and lower branch solution). Therefore,
the multiple branch outcomes for a structure of a different geometry of the problems were
documented by Weidman et al. [50], and Chu et al. [51], where the upper branch solution
is stable and physically trustworthy, while the lower branch solution is unstable and not
physically acceptable. Keeping these published available work in mind, we should test the
properties of these stated efforts by letting the two-point problem of Equations (11)–(13).
Hence, we define here the new non-dimensional time variable Π = a2/3υ1/3

f t. To test and
ease the procedure of the stability analysis, rewrite Equation (9) with new nondimensional
variables as follows:

u = a2/3υ1/3
f r ∂F

∂ξ (ξ, Π), v = ωrG(ξ, Π), ξ =
(

a/υ f

)1/3
z,

θ(ξ, Π) = T−T∞
Tw−T∞

, w = −2a1/3υ2/3
f F(ξ, Π).

(17)

Now executing Equation (17), the governing Equations (11)–(13) along with BCs (14),
take the following form:

µhn f /µ f

ρhn f /ρ f

∂3F
∂ξ3 + 2F

∂2F
∂ξ2 −

(
∂F
∂ξ

)2
+ αAG2 − ∂2F

∂ξ∂Π
= 0 (18)

µhn f /µ f

ρhn f /ρ f

∂2G
∂ξ2 + 2

(
∂G
∂ξ

F− G
∂F
∂ξ

)
− ∂G

∂Π
= 0 (19)

1(
ρcp
)

hn f /
(
ρcp
)

f

(
khn f /k f +

4
3

Rd

)
∂2θ

∂ξ2 + 2PrF
∂θ

∂ξ
− ∂θ

∂Π
= 0 (20)

and the altered BCs become
∂F(0,Π)

∂ξ = λ + δ1
∂2F(0,Π)

∂ξ2 , F(0, Π) = S, G(0, Π) = 1, θ(0, Π) = 1 + δ2
∂θ(0,Π)

∂ξ

∂2F(ξ,Π)
∂ξ2 → 2, G(ξ, Π)→ 0, θ(ξ, Π)→ 0 as ξ → ∞.

(21)

To check the working method of the temporal analysis of the time-independent
Agrawal hybrid nanofluid flow outcome F(ξ) = F0(ξ) , G(ξ) = G0(ξ) and θ(ξ) = θ0(ξ) sat-
isfy the two-point problem (11) to (13), we write (see Weidman et al. [50], and Chu et al. [51]):

F(ξ, Π) = F0(ξ) + e−ΣΠ f (ξ), G(ξ, Π) = G0(ξ) + e−ΣΠg(ξ), θ(ξ, Π) = θ0(ξ) + e−ΣΠq(ξ) (22)

Here, the notation Σ is an unknown eigenvalue parameter, and functions f (ξ), g(ξ) and
q(ξ) are comparatively small to F0(ξ),G0(ξ) and θ0(ξ), respectively. Plugging Equation (22)
into Equations (18)–(20) along with the boundary conditions (21), the following linear eigen-
value problem is obtained:

µhn f /µ f

ρhn f /ρ f
f ′′′ + 2

(
F0 f ′′ + F0

′′ f − F0
′ f ′+ αAgG0

)
+ Σ f ′ = 0 (23)
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µhn f /µ f

ρhn f /ρ f
g′′ + 2

(
F0g′ + G0

′ f − G0 f ′ − gF0
)
+ Σg = 0 (24)

1
Pr
(
ρcp
)

n f /
(
ρcp
)

f

(
kn f /k f +

4
3

Rd

)
q′′ + 2

(
F0q′+ θ0

′ f
)
+ Σq = 0 (25)

and the BCs (21) becomes{
f ′(0) = δ1 f ′′ (0), f (0) = 0, g(0) = 0, q(0) = δ2q′(0)
f ′′ (ξ)→ 0, g(ξ)→ 0, q(ξ)→ 0 as ξ → ∞.

(26)

Solving the linear eigenvalue problems (23–25) one observes an infinite number of
eigenvalues Σ1 < Σ2 < Σ3 . . .. If we found the Σ (smallest eigenvalue) positive, then the
flow is stable and if Σ negative then the flow is unstable.

4. Numerical Procedure of the Considered Scheme

In this segment of the paper, we showed the mathematical technique of the studied nu-
merical scheme in comprehensive form, as well as the accuracy of the code for the supplied
flow problem. The modified similarity set of ordinary differential Equations (11)–(13) along
with the border condition (14) are formed in the extremely nonlinear form, which is quite
difficult to solve analytically after applying the similarity variables (9). As a result, these
aforementioned numbers of highlighted equations are solved approximately by employing
a finite difference scheme, which is known as asbvp4c. This package is a legitimate built-in
code for MATLAB software (MATLAB R2020b) that is based on the three-stage Lobatto
IIIA formula and was well-described in detail by Shampine et al. [52] and Khan et al. [53].
According to these available articles, the set of higher-order similarity equations were
converted into a first-order set of ODEs by incorporating new symbols or notations. To
continue our working process of the scheme, let the variables are:

F = D1, F′ = D2, F′′ = D3, G = D4, G′ = D5, θ = D6, θ′ = D7 (27)

Now applying the Equation (27) into Equations (11)–(13) with the subject BCs (14), we get
the following set of ODEs in the first-order form, which can be written as follows:

d
dξ



D1
D2
D3
D4
D5
D6
D7


=



D2
D3
ρhn f /ρ f
µhn f /µ f

(
D2

2 − 2D1D3 − αAD4
2)

D5
ρhn f /ρ f
µhn f /µ f

(2D4D2 − 2D1D5)

D7
Pr(ρcp)hn f /(ρcp) f

(khbn f /kb f +(4/3)Rd)
(−2D1D7)


(28)

with appropriate ICs are{
D1(0) = S, D2(0) = λ + δ1D3(0), D4(0) = 1, D6(0) = 1 + δ1D7(0),
D3(ξ)→ 2, D4(ξ)→ 0, D6(ξ)→ 0 at ξ → ∞.

(29)

In ongoing to this process of the problem, we recommended here the essential early
estimates at the specific mesh point to grip the system of first-order dimensional forms
of Equation (28) with the subjected proper ICs (29), respectively. The mesh size ∆ξ in ξ,
and the thickness of the boundary layer ξ∞ have to be adjusted for dissimilar values of the
influential constraints to endure the certain goal of accuracy. This problem has two distinct
branch solutions. Therefore, the guess for the solution branch of upper is straightforward,
while the solution branch of lower required an appropriate guess, which is quite hard to
find out but trying until to satisfy the far-field BCs.
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Validation of the Dual Solutions Code

To check the validation, confirmation or accuracy of the given numerical scheme, a
comparison was constructed and shown in this subsection of the work. Table 2 highlights
the comparison of wall drag force in the radial direction for several values of αA (without
the impact of hybrid nanoparticles, stretching/shrinking parameter, radiation parameter,
velocity and temperature slip parameters, and mass flux parameter) with published work
of Lok et al. [54]. From this table, we have established that the existing work is completely
mapping with exceptional accuracy along with the subject available reported work for the
outcome of the first branch solution. Therefore, it revealed an outstanding agreement or
sound and give exceptional power to catch or discover the unavailable outcomes using the
considered scheme.

Table 2. Comparison of F′′ (0) with Lok et al. [54] for different values of αA when φ1 = φ2 = S =

δ1 = δ2 = 0, and λ = 0.

αA Present Results Lok et al. [54]

0.0 2.0000000 2.00000
25.0 6.8191539 6.81915
100.0 17.055614 17.05561
225.0 30.488228 30.48822
400.0 46.443400 46.44340
625.0 64.560920 64.56092
900.0 84.604186 84.60416

∞ - -

5. Analysis of Results

The similarity equations contained distinct controlling parameters like radiation pa-
rameter Rd, rotating disk parameter αA, velocity slip parameter δ1, stretching/shrinking
parameter λ, mass suction parameter S, temperature slip parameter δ2, and the hybrid
nanoparticles φ1 and φ2. For the persistence of the code simulations, we guaranteed the
following range values of the selected distinguished constraints like 0.0 < Rd < 5.0, 0.0 <
αA ≤ 0.5, 0.01 < δ1 < 2.0, 0.0 < δ2 < 2.0, 0.0 < S < 5.0, −5.0 < λ < 2.0,0.02 < φ1 < 0.04
and 0.02 < φ2 < 0.04, whereas, the Prandtl number Pr = 6.2. Furthermore, the conse-
quence of these selected comprised parameters on the wall drag forces along the radial
and azimuthal directions, eigenvalues, and heat transfer of the hybrid (Cu-Al2O3/water)
nanoparticles for the two distinct (first and second) branch solutionsversus λ are portrayed
in Figures 2–11, respectively, whereas the Tables 3 and 4 are also prepared for the computa-
tional values of the gradients for several distinct values of the pertinent included influential
parameters. More accurately, the numerical values of the wall drag forces along the radial
and azimuthal directions for the sundry values of αA, S, δ1, φ1 and φ2 are constructed in
Table 3 when λ = −1.4 (shrinking sheet), Rd = 1.5 and δ2 = 0.5. Meanwhile, Table 4
exhibitions the heat transfer numerical values for the enormous distinct varying values
of αA, S, δ1,Rd,δ2, φ1 and φ2 when λ = −1.4 (shrinking sheet)and Pr = 6.2. Tables 5–7 are
prepared to compute values of normal nanofluid, and pure fluid as well as the presence
and absence of slip factors. From the outcome of the tables, it is observed that the friction
factor in the radial direction and heat transfer enriches for the first and second branch
solutions with higher values of αA,S, φ1 and φ2. Meanwhile, the friction factor reduces
in both branches with higher values of S but it is decreases and increases with hybrid
nanoparticles and then increases and reduces in the first and second branch solution with
αA. Moreover, the wall drag force in the radial direction and heat transfer rises for the first
branch and decline for the second branch with larger values of δ2 whereas the shear stress
along the azimuthal direction abruptly shrinkages for both branches. Besides, the heat
transfer decays and develops for the first and second branch outcomes with superior values
of δ2 and Rd, respectively. Physically, the fluid particles captivate additional heat transfer
by booming the parameter Rd as a consequence, the Nusselt number upsurges. Moreover,
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the shear stress and heat transfer rate uplift as the velocity slip as well as temperature
slip parameters enhance. Furthermore, with the presence of hybrid nanofluids, the heat
transfer enhances further. Therefore, the performance of the cooling will be efficient for the
inclusion of hybrid nanoparticles. Furthermore, the heat transfers and the magnitude of
the friction factors in the radial and azimuthal directions in the stable branch are higher for
the nanofluid as compared to the working base fluid.
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Table 3. Values of shear stress along radial and azimuthal directions for several values of selected
parameters when λ = −1.4 (shrinking sheet), Rd = 1.5 and δ2 = 0.5.

φ1,φ2 S αA δ1

µhnf

µf
F”(0) αA

−1 µhnf

µf
G
′
(0)

Upper Solution Lower Solution Upper Solution Lower Solution

0.024 0.5 0.025 0.05 5.2107 0.4136 −59.1003 619.7336

0.025 5.2508 0.4187 −59.6113 623.8548

0.026 5.2908 0.4237 −60.1223 627.9888

0.024 0.4 0.025 0.05 3.1207 0.1921 −23.5746 629.9871

0.45 4.4412 0.3076 −47.2809 625.8405

0.5 5.2107 0.4136 −59.1003 619.7336

0.024 0.5 0.025 0.05 5.2107 0.4136 −59.1003 619.7336

0.030 5.2131 0.4466 −49.2660 466.9891

0.035 5.2154 0.4764 −42.2415 367.3144

0.024 0.5 0.025 0.01 4.5402 0.4132 −42.2035 630.2588

0.05 5.2107 0.4136 −59.1003 619.7336

0.09 5.5504 1.4286 −71.7705 28.1480

Table 4. Values of heat transfer rate for several values of selected parameters when λ = −1.4
(shrinking sheet) and Pr = 6.2.

φ1,φ2 S αA δ2 Rd δ1
−(

khnf

kf
+

4
3

Rd)θ
′
(0)

Upper Solution Lower Solution

0.024 0.5 0.025 0.5 1.5 0.05 3.1184 0.0491

0.025 3.1238 0.0508

0.026 3.1292 0.0524

0.025 0.4 0.025 0.5 1.5 0.05 2.3547 0.0091

0.45 2.8656 0.0220

0.5 3.1184 0.0491

0.024 0.5 0.025 0.5 1.5 0.05 3.1184 0.0491

0.030 3.1186 0.0551

0.035 3.1189 0.0611

0.024 0.5 0.025 0.5 1.5 0.05 3.1184 0.0491

0.6 2.8374 0.0490

0.7 2.6028 0.0489

0.025 0.5 0.025 0.5 1.5 0.05 3.1184 0.0491

2.0 3.5381 0.1147

2.5 3.9345 0.2087

0.025 0.5 0.025 0.5 1.5 0.01 2.8740 0.0458

0.05 3.1184 0.0491

0.09 3.2840 1.6669
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Table 5. Values of shear stress along radial direction for several values of selected parameters when
λ = −1.1 (shrinking sheet), δ1 = 0, φ2 = 0, δ2 = 0 and Rd = 1.5.

S αA

µhnf

µf
F”(0)(φ1=0.024)

µhnf

µf
F”(0)(φ1=0.0)

Upper Solution Lower Solution Upper Solution Lower Solution

0.35 0.025 3.0531 1.1752 2.8623 −0.5605

0.40 - 3.6671 0.9540 3.4362 −0.4564

0.45 - 4.2147 0.8049 3.9479 −0.3589

0.40 0.025 3.6671 0.9540 3.4362 −0.4564

- 0.030 3.6695 0.9529 3.4384 −0.4923

- 0.035 3.6719 0.2255 3.4407 −0.5260

Table 6. Values of shear stress along azimuthal direction for several values of selected parameters
when λ = −1.1 (shrinking sheet), δ1 = 0, φ2 = 0, δ2 = 0 and Rd = 1.5.

S αA
αA
−1 µhnf

µf
G
′
(0)(φ1=0.024) αA

−1 µhnf

µf
G
′
(0)(φ1=0.0)

Upper Solution Lower Solution Upper Solution Lower Solution

0.35 0.025 −31.7047 12.7473 −29.6897 −431.9075

0.40 - −41.0618 24.5273 −38.4247 −437.2524

0.45 - −48.6870 36.2003 −45.5458 −441.5778

0.40 0.025 −41.0618 24.5273 −38.4247 −437.2524

- 0.030 −34.2330 20.6380 −32.0345 −335.3745

- 0.035 −29.3552 16.7707 −27.4700 −268.1761

Table 7. Values of heat transfer rate for several values of selected parameters when λ = −1.1
(shrinking sheet), Pr = 6.2, δ1 = 0, δ2 = 0 and φ2 = 0.

S αA Rd

−(
khnf

kf
+

4
3

Rd)θ
′
(0)(φ1=0.024) −(

khnf

kf
+

4
3

Rd)θ
′
(0)

Upper
Solution

Lower
Solution

Upper
Solution

Lower
Solution

0.35 0.025 1.5 3.9657 1.6691 3.9295 9.9077× 10−5

0.40 - - 4.8073 1.5008 4.7742 4.0460× 10−4

0.45 - - 5.5618 1.4256 5.5323 0.0014

0.40 0.025 1.5 4.8073 1.5008 4.7742 4.0460× 10−4

- 0.30 - 4.8084 1.4925 4.7752 3.1873× 10−4

- 0.35 - 4.8095 0.0306 4.7763 2.5452× 10−4

0.40 0.025 1.5 4.8073 1.5008 4.7742 4.0460× 10−4

- - 2.0 5.2159 1.7736 5.1827 0.0028

- - 2.5 5.6173 2.0387 5.5847 0.0105

The deviations of the rotating disk parameter αA on the wall drag forces along the
radial and the azimuthal directions and heat transfer −

(
khn f /k f + (4/3)Rd

)
θ′(0) of the

hybrid (Cu-Al2O3/water) nanoparticles for the two distinct (first and second) branch
solutions against λ are bounded in Figures 2–4, respectively. From the graphs, we have
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observed that the wall drag force in the radial direction and rate of heat transfer upsurge
for the first outcome and reduces for the second outcome with improving values of the
parameter αA, while the trend of the shear stress in the azimuthal direction continuously
progresses for both distinct branch outcomes. Physically, the deceleration of velocity in
the azimuthal direction is due to the fact of higher values of the rotating disk parameter
which gets moderately transmitted to the upcoming adjacent fluid layers. As a result,
the wall drag force in the azimuthal direction elevates. The branch of first outcomes is
continuously smooth and no breaking exists for higher αA (see Figures 2–4) while the line
was breaking at some finite values of λ0 of λ due to the rotating disk parameter. Further,
the first and second branch outcome was constructed in these graphs owing to larger αA
for the phenomena of stretching and shrinking parameter. In other words, the nonunique
outcomes were possible to find for the case of λ < 0 and λ > 0, whereas the outcome
was unique for λ = λC and no solution was accessible to found for λ < λC. For higher
values of αA, the following three distinct critical points are obtained and were written in
each window of Figures 2–4, respectively. These points are also emphasized in the zoom
window of the pictures by a sequence number such as 1, 2, and 3, while it is also spotted
by the solid black balls. For mounting values of αA, the absolute values of the bifurcation
points elevate, which shows that the trend of the separation of the boundary layer declines.

Figures 5–7 elucidate the influence of S on the wall drag forces along the radial and
azimuthal directions and heat transport of the hybrid nanomaterials for the two individual
(first and second) branch solutions against λ, respectively. The wall drag force in the
radial direction enlarges for the first outcome and declines in the unstable outcome owing
to the higher impacts of S. Physically, an improvement in S conveys the flow of hybrid
nanoparticles near the surface of the rotating disk which can bring velocity profile down,
and consequently, the drag coefficient along with the radial direction upsurges. On the
other hand, the −

(
khn f /k f + (4/3)Rd

)
θ′(0) develops in both solution branches for the

higher consequences of the parameter S while the wall drag force along with the azimuthal
directions abruptly declines for both branches and escalates near the bifurcation points
for the unstable branch outcomes with S. Moreover, the second branch results of the key
physical quantities of interest are breaking or disconnected through some finite values of λ0
of λ when the values of S is increasing. The gap in the first solution curves is finer as related
to the distance in the second solution curves for the distinct selected values of S. With the
variant values of S, we have perceived the following bifurcation values −1.47182, −1.98727
and −2.57303, respectively. From these critical points, it is seen that higher values of S the
solution domain expands faster towards the larger negative values of λ and therefore, the
magnitude of the bifurcation values is also boosted up.

Furthermore, the power of the velocity slip parameter δ1 on the wall drag forces
along the radial and azimuthal directions and heat transfer of the hybrid nanoparticles
are depicted in Figures 8–10, respectively. The wall drag force in the radial direction and
heat transfer enrich for the first solution and moderates for the second outcome due to the
augmentation δ1, while the trend of the wall drag force in the radial direction is completely
changed only in the case of stretching for both branches with higher values of δ1 (see
Figure 8). Generally, in the phenomenon of Maxwell slip BCs, the speed of the disk and
the fluid particles are not the same at the disk surface which depreciates the fluid speed
and generates a reduction in the velocity profile as a conclusion, the wall drag force in the
relevant radial direction escalates. Alternatively, the wall drag force along the azimuthal
direction decelerates for both branches of outcome with superior impacts of δ1 while the
tendency or behavior of the flow near the bifurcation values for the second branch rises
owing to the increment in δ1. In addition, the impacts of the velocity slip parameter δ1 on
the gradients are very small, and therefore we can zoom a specific part of the graphs to
show the difference between the first curves and second curves. The zooming portion of the
graphs also comprised the associated bifurcation values for the corresponding values of δ1,
which can also highlight in these figures by positions 1, 2, and 3 respectively. Similarly, here
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the second branch outcome breaks at some specific point against the stretching/shrinking
parameter for the larger values of δ1 due to the non-rotating disk parameter.

Finally, Figure 11 exposes the smallest eigenvalues of Σ for the numerous values of
the stretchable/shrinkable parameter λ. From the constructed graph, the negative value
of Σ specifies an initial growth of disturbance, and the flow is an unstable mode. On
the other hand, the flow is said to be in a stable mode when the value of Σ are positive
which creates the initial decay of disturbance. In addition, we can noticed that the value of
Σ tends to zero either from the lower branch or the upper branch solution as the values of
λ are approaching, λC. This shows that the transitions from positive (stable) to negative
(unstable) of Σ occur at the turning points.

6. Conclusions

In this idea of the manuscript, we studied the impact of Smoluchowski temperature
and Maxwell velocity slip boundary conditions on thermal radiative axisymmetric rota-
tional stagnation-point flow induced by hybrid (Cu-Al2O3/water) nanoparticles impinging
on a porous stretchable/shrinkable rotating disk with heat transfer analysis. The similar-
ity Equations (11)–(13) along with BCs (14) were reduced from the governing PDEs via
exercising the pertinent self-similarity variables. The obtained set of similarity equations
comprised distinct dimensionless controlling parameters. Therefore, the multiple outcomes
for various involved influential parameters on engineering physical quantities of interest
for the first and second branch outcomes were demonstrated through various dissimilar
graphs and as well as in a tabular form. The main findings of the considered simulations
are summarized as follows:
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The wall drag force coefficient in the radial direction and heat transfer upsurges for
the branch of the first outcome and reduces for the branch of the second outcome
owing to higher values of αA. However, the shear stress along the azimuthal direction
elevates for both branches with αA, while the trends or behaviors are inverted near
the bifurcation values for the branch of second solution curves.
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Improvement in the mass suction parameter S displays an enhancement in the heat
transfer, but the reduction in the shear stress along the azimuthal direction for both
solution branches while the wall drag force in the radial direction rises for the first
branch and declines for the second branch curves.
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The heat transfer develops with radiation parameter for both solution branches, while
shrinkages due to the temperature slip parameter δ2.
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The shear stress along the radial direction upturns for the first solution and drops
for the second solution with an enhancement in δ1, while the wall drag force in the
azimuthal direction diminished for both solution branches, but heat transfer upsurges
for the first branch and decays for the second branch with higher values of δ1.
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An improvement in the heat transfer is also remarked with the larger impacts of
hybrid nanoparticles. On the other hand, the shear stress in the radial direction
augments for the first branch and reduces for the second branch with a development
in the hybrid nanoparticles, but the impact of the parameter is contrary for the shear
stress in the azimuthal direction.
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Due to the temporal stability analysis, the lower branch solution is unstable while the
upper branch solution is physically stable.
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Nomenclature

(r, θ, z) Cylindrical coordinate system (m)
w0 Constant mass flux velocity (m/s)
T∞ Constant ambient temperature (K)
P Pressure (Kg/m. s2)
k Thermal conductivity (W/(m. K))
qr Radiative heat flux
Pr Prandtl number
T Temperature of the fluid (K)
cp Specific heat at constant pressure (J/Kg. K)
F(ξ), G(ξ) Dimensionless velocity stream function
Tw Constant surface temperature (K)
S Mass suction parameter
vw Rotating velocity of the disk (m/s)
Rd Radiation parameter
uw Surface velocity of the disk (m/s)
Nur Local Nusselt number
ue, ve, we Free-stream velocities (m/s)
C f r Skin friction coefficient along the radial direction
a Constant parameter having units (m. s)−1

C f θ Skin friction coefficient along the azimuthal direction
(u, v, w) Velocity components (m/s)
Rer Local Reynolds number
Greek Symbols
α Thermal diffusivity (m2/s)
υ f Kinematic viscosity (m2/s)
αA Rotating disk parameter
σv Tangential momentum accommodation coefficient
λ0 Coefficient of the main free path
θ(ξ) Dimensionless temperature
σT Thermal accommodation coefficient
ω Constant angular velocity (m/s)
γ Specific heat ratio
λ Stretching/Shrinking parameter
σ∗ Stefan-Boltzmann constant (W/(m2. K4))
µ Absolute viscosity (N. s/m2)
ξ Pseudo-similarity variable
ρ Density (kg/m3)
k∗ Mean absorption constant
ψ Stream function
δ1 Velocity slip parameter
φ Solid volume fraction of nanoparticles
δ2 Temperature slip parameter
Acronyms
Cu Copper
PDEs Partial differential equations
H2O Water
ODEs Ordinary differential equations
bvp4c Boundary value problem of the fourth order
Al2O3 Alumina
2D, 3D Two and three-dimensional
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BCs Boundary conditions
N-S Navier-Stokes equation
ICs Initial conditions
Subscripts
hn f Hybrid nanofluid
1,2 Hybrid nanoparticles (Cu and Al2O3)
f Working base fluid
w Wall boundary condition
∞ Far-field condition
Superscript
′ Derivative with respect to ξ
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