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Similarity-based future common 
neighbors model for link prediction 
in complex networks
Shibao Li, Junwei Huang, Zhigang Zhang, Jianhang Liu, Tingpei Huang & Haihua Chen

Link prediction aims to predict the existence of unknown links via the network information. However, 
most similarity-based algorithms only utilize the current common neighbor information and cannot 
get high enough prediction accuracy in evolving networks. So this paper firstly defines the future 
common neighbors that can turn into the common neighbors in the future. To analyse whether the 
future common neighbors contribute to the current link prediction, we propose the similarity-based 
future common neighbors (SFCN) model for link prediction, which accurately locate all the future 
common neighbors besides the current common neighbors in networks and effectively measure their 
contributions. We also design and observe three MATLAB simulation experiments. The first experiment, 
which adjusts two parameter weights in the SFCN model, reveals that the future common neighbors 
make more contributions than the current common neighbors in complex networks. And two more 
experiments, which compares the SFCN model with eight algorithms in five networks, demonstrate 
that the SFCN model has higher accuracy and better performance robustness.

Many social, biological, and food-chain systems can be well described by networks, where nodes denote individ-
uals, biological elements, and so on, and links represent the relations between nodes. The complex networks has 
therefore become a popular focus of many branches of science. An attractive research topic is link prediction, 
whose purpose is to predict the possibility or necessity of forming links between unconnected node pairs via the 
information of complex networks1,2. Thus Link prediction can predict the existing yet unknown links (the missing 
links) and the links that may appear in the future (the future links)3,4. With the amount of data increasing nowa-
days, Link prediction plays a more crucial role in recommendation system, data mining, complex networks, and 
so on. For instance, in the protein-protein interaction network of Yeast, 80% of the molecular interactions are still 
unknown. Whether a link between two nodes exists must be demonstrated by field and/or laboratorial experi-
ments5. However, if the accurate prediction results are applied into the laboratorial experiments instead of blindly 
checking all possible interactions, the costs will be sharply reduced6. In the scientists cooperation network, link 
prediction helps to find the potential cooperation between scientists7,8. Besides, link prediction is also employed 
in recommending friends for online social networks9,10 and identifying spurious links in a noisy environment11,12.

Until now, many indexes for link prediction have been proposed. Generally, they are classified into three 
main models: models based on Markov chains13–15, models based on machine learning16,17 and models based on 
the similarity of topological structure1,18. Though the first two have high prediction accuracy in many networks, 
they don’t apply to the large-scale networks due to their high computational complexity. Nevertheless, models 
based on similarity can avoid such problems and easily obtain the information of networks. For instance, the 
Common Neighbor (CN) index, which is the most widely used index, just counts the number of common neigh-
bors between node pair. Newman19 used this quantity in the study of collaboration networks, showing a positive 
correlation between the number of common neighbors and the probability that two scientists will collaborate 
in the future. By taking into account the common neighbors number and the degrees of two nodes, Salton et 
al. pointed out the Salton index20; Leicht, Holme and Newman proposed the LHN index21. To characterize the 
topological similarity between reactants in the metabolic network, Ravasz E. and Somera A. L. et al. proposed 
the hub promoted index (HPI)22. HPI index insists that the links adjacent to hubs are likely to be assigned high 
scores since the denominator is determined by the common neighbors number and the lower degree. To measure 
with the opposite effect of hubs, Zhou and Lü et al. put forward the hub depressed index (HDI)23. Furthermore, 
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they proposed the resource allocation index (RA)23. Motivated by the resource allocation dynamics on complex 
networks, the RA index can effectively improve the accuracy by restraining the contributions of large-degree 
common neighbors. Additionally, Liu et al. proposed a Local Naive Bayes (LNB) model24, which insists that dif-
ferent common neighbors play different roles and make different contributions. Based on the LNB model, they 
improved the CN, RA and AA index. As the similarity indexes can predict links in networks, we can apply the 
similarity indexes to evaluate the evolving mechanisms for the evolving networks1.

Obviously, similarity-based algorithms for link prediction can predict the future links by using the current 
common neighbors information25. However, on above principles of the similarity indexes, some nodes, currently 
not common neighbors, can turn into the common neighbors in the future. More importantly, these nodes raise 
a series of new questions worth exploring. First of all, it is whether these nodes contribute to the current predic-
tion between node pair. Although the previous algorithms have proved that the current common neighbors can 
promote two nodes to connect, people still doubt whether nodes, which are currently not a common neighbor but 
can become a common neighbor in the future, are also helpful in the current link prediction. Second, if they do 
make contribution, then how we can locate these nodes and measure their contribution, simultaneously. Previous 
algorithms can easily count the number of the current common neighbors by only analyzing the network topol-
ogy. However, the nodes described above have not yet become the common neighbors, and they can get different 
topology structures when they are together with the node pairs and their surrounding nodes. These lead to the 
challenge of locating these nodes and measuring their contributions via a simple method.

To address the above problems clearly, firstly, we define nodes, which are currently not common neighbors 
but can turn into the common neighbors in the future, as the future common neighbors and divide them into 
three types according to their topology structure with other nodes. Second, we propose the similarity-based 
future common neighbors (SFCN) model for link prediction. The SFCN model accurately finds out all the future 
common neighbors, besides the current common neighbors. And simultaneously, it can also measure their con-
tributions by only using the existing similarity indexes. We also design and observe three MATLAB simulation 
experiments. First, we conduct a priori experiment on α and β in FWFB network. The results provide strong evi-
dence that the future common neighbors have more positive contribution than the common neighbors in com-
plex networks. Second, by comparing the SFCN model with eight similarity-based algorithms in five networks, 
we find that the SFCN model has higher prediction accuracy from the whole perspective. Third, the experiments, 
where we change the ratio of the training set to the probe set in five networks, also demonstrates that the SFCN 
model has better performance robustness. So, the proposed SFCN model has higher accuracy and performance 
robustness than popular algorithms, and the future common neighbors is necessary to be considered for link 
prediction in evolving networks.

Results
Network and problem description.  A network can be represented by an undirected network G(V, E) 
without self-connections and multiple links between node pair. In G(V, E), V is the set of nodes, and E is the set 
of links. Then |V| represents the quantity of nodes in V. Define the fully connected network as U that contains 
(|V|(|V| − 1))/2 links. So, U-E is the set of the nonexistent links. To evaluate the prediction accuracy of algorithms, 
we divide the observed link set E into the training set ET and the probe set EP randomly. ET is the known infor-
mation while EP is the unknown information. Obviously, E = EP ∪ ET, and φ = EP ∩ ET. Accurately detecting the 
missing links or the future links from U-E is the purpose of link prediction. Give the link between node pair (x, y)  
in U a score (sx,y), which is calculated by the link prediction algorithm. All the nonexistent links are sorted in 
descending order according to their scores, and the links at the top are most likely to exist.

The future common neighbors.  Most similarity-based algorithms for link prediction predict the future 
links by using the current common neighbors. However, on the prediction principles of the above similarity 
indexes, some nodes, which are currently not common neighbors, can turn into the common neighbors in the 
future. To analyze whether such nodes are factors that contribute to the current prediction between node pair, 
and in order to accurately locate these nodes to measure their contribution, we define them as the future common 
neighbors and propose the similarity-based future common neighbors model for link prediction in evolving 
networks.

The future common neighbors are nodes that are currently not the common neighbors but can turn into the 
common neighbors in the future on the principle of the similarity index. According to their topology with other 
nodes, the future common neighbors are divided into three types shown in Fig. 1, where x and y are the target 
node pair for link prediction. The first future common neighbor, like node i in Fig. 1(a), has a direct link with 
x while no direct link with y. Currently, the similarity score between i and y is si,y. According to the prediction 
principle of the similarity algorithm, i and y may form a link in the future (the greater the si,y, the greater the prob-
ability of forming a link). Therefore, i has connected with y and turn into the common neighbor between x and 
y in a future time. The second future common neighbor, like i in Fig. 1(b), has direct link with y while no direct 
link with x. The third future common neighbors does not connect with both x and y, seen node i in Fig. 1(c). 
According to the existing similarity indexes for link prediction, if sx,i and si,y are great enough, i are will form links 
with both x and y. Thus, the i in Fig. 1(c) are also a common neighbor between x and y in a future time.

Similarity-based future common neighbors model.  Combining the future common neighbors topol-
ogy with the similarity-based indexes, this paper designs the similarity-based future common neighbors model. 
The model is to accurately find out all the future common neighbors in complex networks and effectively measure 
their contributions.

Taking the chaotic network in Fig. 2 as an example, for node i (i = 1, 2, 3, …, |V|), we assume that sx i
C

,
2 is a sim-

ilarity score between x and i, and sx i
C

,
2 is calculated by any classical similarity-based algorithms that we mark as C2. 
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Therefore, sx i
C

,
2 also symbolizes the possibility of forming a link between x and i on the principle of C2 when the 

network is evolving. We make ri,y indicate whether i and y are connected (ri,y = 1 if i and y are connected, other-
wise ri,y = 0), which can be obtained from the observed networks. Similarly, si y

C
,

2 is a similarity score between i and 
y calculated by algorithms C2; rx,i represents whether x and i are connected.

The SFCN model identifies the above three types of the future common neighbors from chaotic network by 
employing their topological rules. (1) i is the first type of the future common neighbor only when ⋅ ≠s r 0x i

C
i y,

2
, . It 

is necessary to note that we set =s 0x i
C

,
2  and ri,y = 0 when i = x or i = y in order to keep non self-connections. (2) 

The rest rules can be deduced by analogy, i is the second type of the future common neighbor if ⋅ ≠r s 0x i i y
C

, ,
2 . (3) 

And i is the third type of the future common neighbor if and only if ⋅ ≠s s 0x i
C

i y
C

,
2

,
2 .

Figure 1.  Three types of the future common neighbors.

Figure 2.  The process of identifying the future common neighbors from the chaotic network. The yellow nodes 
are the future common neighbors between x and y.
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To accumulate the contributions of the future common neighbors, which meet the above rules, we construct 
four vectors for x and y in eqs 1, 2, 3, 4.

Γ = − + r r r( 0 0), (1)x x x x xx ,1 , 1 , 1

Γ = − + r r r( ) ( 0 0) , (2)
T

y y y y y
T

y 1, 1, 1,

= − + s s sS ( 0 0), (3)x
C

x x
C

x x
C

x
C2

,1
2

, 1
2

, 1
2

= − + s s sS( ) ( 0 0) , (4)
T

y
C

y y
C

y y
C T

y
C2

1,
2

1,
2

1,
2

where the superscript T denotes matrix transposition, and the black highlighted parts are the row vectors or col-
umn vectors. Γx stores the connections of x to all nodes. Sx

C2 stores the similarity scores of x to all nodes. Similarly, 
(Γy)T stores the connections of y to all nodes. And ( )S

T
y
C2  stores the similarity scores between y and all other 

nodes.
Therefore, we get the similarity-based future common neighbors model as eq. 5:

∑

α β

α β

Γ Γ= ⋅ + ⋅


 ⋅ + ⋅ + ⋅




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where sx y
C

,
1  is the similarity score between x and y, and sx y

C
,
1  is calculated by any similarity algorithm that we tempo-

rarily mark as C1. C1 and C2 are two similarity algorithms, and they can be the same or different. The two free 
parameters, α and β, is to adjust the contributions of the current common neighbors and the future common 
neighbors, respectively. When α ≠ 0 and β = 0, the model only considers the current common neighbors contri-
butions. When α = 0 and β ≠ 0, the model only considers the future common neighbors contributions. Both C1 
and C2 are the. A special case, when both C1 and C2 are represented by CN algorithm and only the first class of 
the future common neighbors are considered, the model degenerates into the LP index. In a word, the SFCN 
model, employed in evolving networks, takes into account the contributions of the future common neighbors 
besides the current common neighbors.

Example 1.  This section gives an example of how to find the future common neighbors between node pair 
and how to measure the contributions of three future common neighbors. Suppose C1 and C2 are the LHN and 
RA algorithms, respectively. Take the network in Fig. 2 as an example and treat nodes (1, 3) as the target node pair 
(x, y). Then we can get four vectors:

Γ = (0 1 0 1 0 0 0 0 0 0), (6)1

Γ =( ) (0 1 0 0 1 0 0 0 0 0) , (7)T T
3

=






S 0 0 0 0 1

5
0 1
5
1
5
0 1
5

,
(8)1

C2

= .S( ) (0 0 0 1
6

0 1
6

0 1
6

1
6

1
6

) (9)
T T

3
C2

From the calculation process (eq. 10), it is easy to observe that only node 4 is the first type of the future com-
mon neighbors. And the contribution of node 4 to (1, 3) is β⋅1

6
.

∑Γ ⋅ = ⋅ = ⋅ = .
=

| |

r s r sS( ) ( ) 1
6 (10)

T

i

V

i i
C C

1 3
C2

1
1, ,3

2
1,4 4,3

2

We can also observe that only node 5 is the second type of the future common neighbors from the eq. 11:

∑Γ⋅ = ⋅ = ⋅ = .
=

| |

s r r sS ( ) ( ) 1
5 (11)

T

i

V

i
C

i
C

1
C2

3
1
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,3 1,5 5,3
2

At last, we can check out that 8 and 10 are the third type of the future common neighbors through eq. 12:

∑⋅ = ⋅ = ⋅ + ⋅ = .
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| |
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Therefore, the contribution of the future common neighbors is β β⋅ + + = ⋅( )1
6

1
5

1
15

13
30

.

Evaluation Metrics.  In the Experiments, we introduce two standard metrics to quantify the prediction accu-
racy: the AUC26 (area under the receiver operating characteristic curve) and precision27. The AUC evaluate the 
algorithms performance according to the whole list. The AUC is comprehended as the probability that a link 
randomly chosen from set ET has a much higher score than a link randomly chosen from nonexistent link U-E. In 
the n times independent comparisons, we select a link from ET and U-E respectively. Define their similarity scores 
as S1 and S2. When S1 > S2, set n′ = n′ + 1; when S1  = S2, set n″ = n″ + 1 (n′ and n″ are initialed as 0, n = n′ + n″). 
So, the AUC can be defined as eq. 13:

= ′ + . ″ .n n nAUC ( 0 5 )/ (13)

Different from the AUC, precision focuses on the links with top ranks or highest scores. It is the ratio of cor-
rect links recovered out of the top L links in the candidate list generated by each link predictor. Assume Lr links 
are accurately predicted among the top-L links. Then the precision can be defined as eq. 14:

= .
L
L

Precision (14)
r

Datasets of real networks.  In order to compare the prediction accuracy of the SFCN model with the eight 
mainstream indexes mentioned in this paper, we do MATLAB simulation experiments in five real networks: the 
network of scientific communication (NS)28, the US political blogs network (PB)29, the protein interaction net-
work (Yeast)30, the neural network of C.elegans (CE)31, the food web network of florida bay (FWFB)32. All datasets 
of the five networks can be seen in the electronic supplementary material. The basic features of those networks 
are summarized in Table 1.

The metrics that characterize the networks can be seen in the caption of Table 1. We find that NS, PB and CE 
have similar characteristics, including the high clustering coefficient. Nevertheless, for FWFB network, the rela-
tion between predator and prey makes the network have a larger average degree and a shorter average distance 
between node pair.

Existing similarity indexes based on topological structure.  Here, we introduce eight mainstream 
similarity indexes to compare with the SFCN model.

•	 CN. Let Γx be the set of neighbors of x. The CN index proposes that node pair (x, y) are more likely to connect 
if they have more common neighbors, namely:

∩= Γ Γ .s (15)x y
CN

x y,

•	 Salton20. It is defined as:

∩
=

|Γ Γ |
s

k k
,

(16)
x y
Salton x y

x y
,

where k x is the degree of node x.
•	 RA23. The RA index assumes each transmitter has a unit of resource and will equally distributed to all its 

neighbors, concluded as:

∑ ∩= .∈Γ Γs
k
1

(17)
x y
RA

z
z

, x y

•	 HPI22. It is defined as:

∩
=

|Γ Γ |
.s

k kmin { , } (18)
x y
HPI x y

x y
,

Networks |V| |E| <d> <k> <H> <C> <r>

CE 297 2148 2.46 14.4646 1.8008 0.3079 −0.163

FWFB 128 2075 1.78 32.4219 1.2370 0.3346 −0.112

NS 379 914 4.93 4.82 1.66 0.798 −0.082

PB 1222 16714 2.74 27.3552 2.9707 0.3600 −0.221

Yeast 2375 11693 5.09 9.8467 3.4756 0.3883 0.454

Table 1.  Details of networks. |V| and |E| are the number of nodes and links, respectively. <d> is the average 
shortest distance between node pairs. <k> is the average degree, and <H> denotes the degree heterogeneity. 
<C> represents the clustering coefficient. <r> is the assortative coefficient.
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•	 HDI23. It is defined as:

∩
=

|Γ Γ |
.s

k kmax { , } (19)
x y
HDI x y

x y
,

•	 Leicht-Holme-Newman index (LHN)21. The LHN index is defined as:

∩
=

Γ Γ
.s

k k (20)
x y
LHN x y

x y
,

•	 LNBRA24. The LNBRA index is an improvement in RA index based on the LNB model, defined as:

∑
∩

η= +
∈Γ Γ

s
k

R1 (log log ),
(21)

x y
LNBRA

z z
z, 2 2

x y

where η and R z are defined as:

η =
| | | | −

| |
−

V V
E

( 1)
2

1,
(22)T

=
+
+

Δ

∇
R

N
N

1
1

,
(23)

z
z

z

where N Δz and N ▽z are respectively the numbers of connected and disconnected node pairs which have a 
common neighbor z.

•	 Local Path (LP)33. This index considers the number of different orders, defined as:

Figure 3.  AUC sensitivity analysis of the SFCN model in FWFB network. X-axis is the α value that is taken 
from 0 to 15 at intervals of 3. Y-axis is the β value that is taken from 0 to 2 at intervals of 0.4.
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AUC CE FWFB NS PB Yeast

CN 0.846 0.616 0.989 0.925 0.917

SFCN-CN-RA 0.876 0.659 0.989 0.939 0.971

Salton 0.802 0.532 0.984 0.880 0.914

SFCN-Salton-HDI 0.851 0.793 0.984 0.937 0.974

RA 0.871 0.598 0.977 0.927 0.924

SFCN-RA-HDI 0.872 0.794 0.991 0.938 0.975

LP 0.861 0.633 0.980 0.938 0.971

SFCN-LP-RA 0.872 0.666 0.990 0.942 0.978

HPI 0.804 0.528 0.979 0.855 0.912

SFCN-HPI-HPI 0.811 0.762 0.985 0.901 0.972

SFCN-HPI-RA 0.865 0.790 0.989 0.945 0.974

HDI 0.775 0.527 0.980 0.873 0.914

SFCN-HDI-HDI 0.849 0.782 0.985 0.935 0.976

SFCN-HDI-RA 0.889 0.795 0.990 0.947 0.977

LNBRA 0.863 0.659 0.980 0.928 0.920

SFCN-LNBRA-RA 0.883 0.796 0.993 0.949 0.977

SFCN-LNBRA-HDI 0.881 0.809 0.992 0.942 0.975

SFCN-LNBRA-LHN 0.878 0.843 0.989 0.941 0.975

LHN 0.725 0.390 0.974 0.766 0.906

SFCN-LHN-LHN 0.810 0.891 0.983 0.891 0.974

SFCN-LHN-RA 0.876 0.797 0.992 0.947 0.977

SFCN-LHN-LP 0.806 0.704 0.974 0.928 0.961

SFCN-LHN-HDI 0.839 0.798 0.984 0.936 0.976

Table 2.  There are the prediction accuracy results, measured by AUC, of classic indexes and corresponding 
algorithms based on the SFCN model in five real networks.

Precision CE FWFB NS PB Yeast

CN 0.198 0.094 0.396 0.460 0.678

SFCN-CN-RA 0.202 0.108 0.404 0.464 0.766

Salton 0.012 0.008 0.290 0.000 0.024

SFCN-Salton-HDI 0.012 0.010 0.260 0.000 0.032

RA 0.124 0.094 0.564 0.256 0.520

SFCN-RA-HDI 0.130 0.098 0.566 0.278 0.440

LP 0.124 0.112 0.312 0.400 0.654

SFCN-LP-RA 0.140 0.112 0.324 0.410 0.696

HPI 0.026 0.068 0.556 0.224 0.860

SFCN-HPI-HPI 0.036 0.388 0.192 0.224 0.868

SFCN-HPI-RA 0.116 0.382 0.162 0.566 0.896

HDI 0.032 0.008 0.310 0.002 0.030

SFCN-HDI-HDI 0.086 0.360 0.320 0.516 0.900

SFCN-HDI-RA 0.106 0.360 0.294 0.590 0.882

LNBRA 0.131 0.162 0.544 0.252 0.586

SFCN-LNBRA-RA 0.136 0.166 0.554 0.250 0.580

SFCN-LNBRA-HDI 0.130 0.164 0.564 0.278 0.602

SFCN-LNBRA-LHN 0.132 0.154 0.580 0.260 0.586

LHN 0.000 0.014 0.138 0.000 0.010

SFCN-LHN-LHN 0.000 0.026 0.138 0.000 0.014

SFCN-LHN-RA 0.000 0.014 0.138 0.000 0.012

SFCN-LHN-LP 0.000 0.020 0.138 0.000 0.012

SFCN-LHN-HD 0.000 0.018 0.140 0.000 0.010

Table 3.  There are the prediction accuracy results, measured by precision (top-100), of classic indexes and 
corresponding algorithms based on the SFCN model in five real networks.
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α= + ⋅s A A( ) ( ) , (24)x y
LP

x y x y,
2

,
3

,

where α is an adjustable parameter and A is the adjacency matrix of network. (Ai)x,y represents the quantity that 
the order length is equal to i between x and y.

Experiments and performance analysis.  In this section, we do three experiments and make correspond-
ing analysis for three purposes. In the first and second experiments, the ET contains 90% of links, while the 
remaining 10% of links constitute the EP. In addition, all the following results are returned with the average over 
100 independent experiments.

For the first experiment, to verify whether the contribution of the future common neighbors is necessary, we 
conducted priori experiments on α and β in FWFB network. Step 1, since the training set (ET) is known, we divide 
ET into the sub-training set (ET1) and the sub-probe set (EP1) to learn the values of α and β in step 2. Step 2, we apply 
the SFCN model to the sub-training set in order to obtain the similarity scores of the sub-probe set and get the AUC 
that varies with α and β. In this way, it is easy to select the numerical values of α and β with high AUC for the SFCN 
model. The experimental results are shown in Fig. 3. Before that, it is necessary to consider the two limit problems. 
When α = 0, the current common neighbors in the SFCN model do not make any contribution, and only the future 
common neighbors make contributions. When β = 0, there are only contribution from the current common neigh-
bors, and the future common neighbors do not make any contributions for link prediction. We can get two results 
from the Fig. 3. First, the AUC when β = 0 is much lower than that when β≠0. Second, the SFCN model can obtain 
highest AUC when α and β are adjust to a suitable value. For example, for the SFCN-CN-RA, SFCN-Salton-HDI, 
and SFCN-LNBRA-LHN algorithms, we should set α smaller and β larger to get a higher prediction accuracy in 
FWFB network. These two results illustrate the important contribution of the future common neighbors.

Therefore, in the second and the third experiments later, we set α = 9 and β = 1, which meet the above condition.
The second experiment is to compare the SFCN model with other eight similarity-based indexes, including 

the CN, HDI, HPI, LP, RA, Salton, LNBRA and LHN index. The prediction results of AUC and precision are 
listed in Tables 2 and 3 for details, respectively. Most comparative experiments, in the Table 2, clearly demonstrate 
that the SFCN model has the best or close to the best AUC, especially in the FWFB and Yeast networks. Taking 

Figure 4.  The AUC of different algorithms with different ratio of training sets to probe sets in real networks. 
X-axis is the ratio, and Y-axis is the each algorithm.
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the FWFB network as an example for analysis, we can see that there are 2075 links but only 128 nodes from the 
Table 1. And the average degree is as high as 32.422 while the average aggregation coefficient is low to 0.3346, 
which indicate that there are many random connections and high obscure similarity between the clusters in the 
FWFB network. These are the reasons why all nodes in the FWFB network have the tendency to gather and form 
some unknown clusters with the network evolving. The SFCN model takes into account the network evolution 
tendency via the principle of similarity index. In detail, the model has greatly improved the AUC in FWFB net-
work by regarding the future common neighbors as the evolution direction. Moreover, Table 3 demonstrates that 
90% of the precision results, predicted based on the SFCN model, are equal to or higher than that predicted based 
their original algorithm. For example, the precision results of the SFCN-HDI-RA algorithm are much higher than 
those of the original HDI algorithm in most network, because the contributions of the future common neighbors 
are taken into account.

Finally, in order to explore the robustness, we change the ratio of training set to probe set in the third experi-
ment. The lower the ratio, the more links information that should be predicted34. That is to say, there are less num-
ber of the known connected links and more number of the unknown links when the ratio is small. It is obviously 
to obtain two results from the Fig. 4. On the one hand, when the ratio is the same, the algorithms based on SFCN 
model have higher prediction accuracy results (measured by AUC) than their corresponding original algorithms. 
For instance, the SFCN-LHN-RA, SFCN-LHN-LP and SFCN-LHN-HDI algorithms have higher AUC compared 
with the original LHN algorithms when the ratio is the same. On the other hand, even when the ratio is low, the 
algorithms based on SFCN model still get high AUC, which indicates that the SFCN model has higher stability. 
Therefore, the SFCN model has better performance in prediction accuracy and stability even when there is few 
links information.

Discussion
Exploring what factors can provide a positive impact on link prediction is an important and challenging problem. 
In this paper, we firstly discover the existence of the future common neighbors, which are classified into three 
types according to their topological structure with other nodes. Then, to investigate whether the future common 
neighbors can make positive contribution for current link prediction, we propose the similarity-based future 
common neighbors model (SFCN), which accurately locates all the future common neighbors and effectively 
measure their contributions in complex networks, besides the current common neighbors.

We design three simulation experiments via the MATLAB for three different purposes. First, we conduct 
priori experiments on α and β in FWFB network. The results provide strong evidence that the future common 
neighbors can make great contribution than current common neighbors in complex networks. In the second 
experiments, we compare the SFCN model with eight algorithms in five networks, finding that the SFCN model 
has higher prediction accuracy, especially the AUC in the FWFB and Yeast networks. Third, in order to verify 
whether the SFCN model can get great accuracy when the known link information is little, we change the ratio 
of the training set to the probe set in five networks. And the experiment results show that the SFCN model has 
better performance robustness, even when the ratio is low to 0.45, compared with eight similarity-based algo-
rithms. Therefore, the proposed SFCN model has higher accuracy and performance robustness than popular 
similarity-based algorithms, and the future common neighbors make more positive contribution than the current 
common neighbors that is widely used nowadays.

Some extensions of this work deserve further exploration. One is that we are limited to the current common 
neighbors and the future common neighbors in evolving networks. It is meaningful to research the contribution 
of the future nodes and the future links. For example, current path-based algorithms only consider the contribu-
tion of the existing paths currently, so it is significative to further exploit whether and how much the future paths, 
which are not existing currently but will exist after once prediction, can make a positive impact on current link 
prediction.

Methods
Algorithm of the SFCN model for link prediction.  The adjacency matrix E is a sparse matrix of the 
complex network. And the pseudocode of the SFCN model is presented in algorithm 1.

Algorithm 1.  Algorithm of the proposed SFCN framework.
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Complexity analysis.  This part give a simple complexity analysis of the proposed SFCN model. The most 
time-consuming part occurs in computing the contribution of the future common neighbors. The time cost of 
(Sy

C2) is O(|V||V|), and the time cost of (Sx
C2) is O(|V||V|). Thus the total time cost of the future common neighbors 

is 3⋅O(|V||V||V|). Since complex network can be simplified as an sparse matrix, the final computational complex-
ity is much less than 3⋅O(|V||V||V|).
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