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Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China

Epilepsy is a common chronic neurological disease that manifests as recurrent seizures.
The incidence and prevalence of epilepsy in women are slightly lower than those in men.
Polycystic ovary syndrome (PCOS), a reproductive endocrine system disease, is a
complication that women with epilepsy are susceptible to, and its total prevalence is
8%–13% in the female population and sometimes as high as 26% in female epilepsy
patients. The rate of PCOS increased markedly in female patients who chose valproate
(VPA), to 1.95 times higher than that of other drugs. In addition, patients receiving other
anti-seizure medications (ASMs), such as lamotrigine (LTG), oxcarbazepine (OXC), and
carbamazepine (CBZ), also have reproductive endocrine abnormalities. Some scholars
believe that the increase in incidence is related not only to epilepsy itself but also to ASMs.
Epileptiform discharges can affect the activity of the pulse generator and then interfere with
the reproductive endocrine system by breaking the balance of the hypothalamic–pituitary–
ovarian (HPO) axis. ASMs may also cause PCOS-like disorders of the reproductive
endocrine system through the HPO axis. Moreover, other factors such as hormone
metabolism and related signalling pathways also play a role in it.

Keywords: epilepsy, sodium valproate, polycystic ovary syndrome, female, hypothalamic-pituitary-ovarian axis
1 INTRODUCTION

In recent years, the incidence of epilepsy in China has been on the rise. According to
epidemiological surveys, epilepsy affects 70 million people worldwide (1, 2) and approximately
10 million people in China (3); the incidence in females is slightly lower than that in males (4), and
1.3 million females with epilepsy in the United States are in the fertile stage (2). Epilepsy requires
long-term treatment, mainly oral anti-epileptic drugs, but their chronic use will produce certain
adverse effects on some organ systems (5). In recent years, disorders of the reproductive endocrine
metabolism system, such as polycystic ovary syndrome (PCOS), have attracted extensive attention
from researchers (6). The prevalence of PCOS varies in different studies due to the different
diagnostic criteria and to ethnic differences, ranging from 8% to 13% in the general population (7),
but the incidence in patients with epilepsy is approximately 3.1%–20% (8) and is sometimes as high
as 26% (9). PCOS is found in approximately 10%–25% of women with epilepsy (WWE) (10) and
causes infertility in those who are at the reproductive stage (11). The main clinical features include
hyperandrogenemia (HA), chronic anovulation, polycystic ovary (PCO), insulin resistance (IR)/
hyperinsulinemia, obesity, dyslipidemia, and other metabolic changes. Some scholars believe that
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the reason women suffer from both PCOS and epilepsy is related
to epilepsy (12), and some scholars believe that it at least, in part,
results from the effects of anti-seizure medications (ASMs),
especially valproate (VPA) (13, 14); hence, most scholars
believe that the emergence of PCOS in patients with epilepsy is
not only related to epilepsy but also to ASMs (10, 15, 16), as they
could affect reproductive health and secretion abnormalities
through the hypothalamic–pituitary–ovarian (HPO) axis. The
occurrence of epilepsy and the pharmacological action of the
anti-epileptic drug VPA can target some substrates and affect
hormone levels, causing disorders of the reproductive endocrine
and metabolic systems, including the limbic system, liver,
hypothalamus, pituitary, ovary, and adipose tissue (17). This
article aimed to review the progress of research on how epilepsy,
VPA, or other ASMs affect the development of PCOS in WWE
through the HPO axis. At the same time, it also introduces other
possible mechanisms that cause the occurrence of PCOS. It is
hoped to be favorable for clinical neurologists and obstetricians
to prevent and treat this disease.
2 THE CORE MECHANISM OF PCOS IS
RELATED TO THE ABNORMAL HPO AXIS

PCOS is a prominent reproductive endocrine disorder in women
of childbearing age (7, 10, 18), affecting 6%–10% (19, 20), and is
related to genetic factors, environmental factors, and some other
causes, such as the use of ASMs, epilepsy, and obesity; it is thus a
multifactorial disease (18, 21, 22). This syndrome can cause HA,
PCO, ovulation disorders (ODs), elevated levels of luteinizing
hormone (LH), and an imbalance in the ratio of luteinizing
hormone to follicle stimulating hormone (LH/FSH); some
pat ients a lso have metabol ic changes such as IR/
hyperinsulinemia, obesity, and dyslipidemia. Currently, the
pathogenesis of PCOS is not yet completely understood and is
still under continuous research, but a number of studies have
suggested that HPO axis dysfunction, elevated androgen, IR/
hyperinsulinemia, elevated LH/FSH ratio, obesity, oxidative
stress, and impaired negative feedback regulation of steroid
hormones can all promote the occurrence and development of
PCOS (11, 21, 23–25). The core mechanism is the abnormal
function of the HPO axis. The hypothalamus pulse generator
regulates the pulse release of gonadotropin-releasing hormone
(GnRH) neurons, which act on the pituitary gland and regulate
the secretion of LH and FSH. The latter acts on the ovaries to
stimulate follicular growth and produce estradiol so as to
effectively coordinate the function of the HPO axis (26–29).
The hormones released by the pituitary and ovary can also
negatively regulate the secretion of hormones in the
hypothalamus–pituitary system and maintain the homeostasis
of the reproductive endocrine system. Since there are no
receptors for gonadal hormone and gonadotropin in GnRH
neuron cells, the negative feedback regulation mechanism of
androgens and estradiol on the hypothalamus is attributed to
neurotransmitters and neuropeptides (30–32). When some
factors cause the release of GnRH, it will promote the secretion
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of pituitary hormones, including the increase of the level of LH
and the increase of LH/FSH, which in turn increase androgen
secretion in the ovary. Androgens can affect the negative
feedback regulation of estrogen, causing polycystic changes in
the ovary and ODs. Finally, it leads to PCOS (25, 33). The cause
of PCOS is not clear, and the clinical manifestations are also
diverse. At present, the disease cannot be cured, and
symptomatic treatment is the main focus. Adjustments in
lifestyle, as the first-line treatment, include dieting, exercise, or
weight loss, followed by drug treatment, which needs to be
individualized. Clomiphene and letrozole can be chosen to
induce ovulation, metformin to improve IR, and oral
contraceptives and spironolactone to reduce androgen levels
(11, 18, 21, 34, 35). In addition, there are also studies
suggesting that sex hormone binding globulins (SHBGs) can
serve as indicators and therapeutic targets for hyperandrogenism
in patients with PCOS (36, 37).
3 RELATED RESEARCH WORKS ON
EPILEPSY AND PCOS

Epilepsy is a chronic and recurrent disease caused by the highly
synchronized abnormal discharge of brain neurons, especially
those closely related to the limbic system, such as the
hippocampus and amygdala. Reproductive endocrine
abnormalities are common in female patients with epilepsy,
including hyperandrogenemia, ODs, PCO morphology, PCOS,
and menstrual disorders (10, 12, 16). The brain mainly regulates
and controls the HPO system and affects the release of hormones
at all levels of the hypothalamus–pituitary–gonad axis through
nerves and the neuroendocrine system (22). That a certain
connection may exist between epilepsy and PCOS was first
proposed in 1984 (12). Recently, in a clinical study, WWE
were more inclined (52.3%) to develop PCOS than women
without epilepsy (18.3%) (10). In addition, a few other studies
pertaining to reproductive endocrine disorders in patients with
epilepsy have also confirmed that epilepsy could increase the
hazards of reproductive endocrine disorders in WWE (16,
38, 39).

In the hypothalamus, there is a key structure, namely, the
GnRH pulse generator, that can affect the activity of GnRH
neurons, regulate the pulsatile release of GnRH, and affect the
reproductive endocrine system through the HPO axis (22). In the
hypothalamus, the area producing, secreting, and regulating
GnRH receives a wide range of straight connections from the
cerebral hemispheres, in particular the temporolimbic structure,
the most prominent of which is the amygdala (38, 40–42). The
amygdala is generally divided into two areas whose functions are
different in some aspects, namely, the medial cortical nucleus
group and the basolateral nucleus group. The medial cortical
nucleus group stimulates the release of GnRH in the
hypothalamus, while the basolateral nucleus group inhibits the
release of GnRH in the hypothalamus (40, 42). Therefore, due to
the close anatomical relationship and the extensive and direct
fiber connection between the limbic system and the
December 2021 | Volume 12 | Article 787854
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hypothalamus, the epileptiform discharges will act on some
hypothalamic structures that produce, secrete, and regulate
GnRH, such as the arcuate nucleus and paraventricular
nucleus, to increase the frequency or amplitude of the GnRH
pulse (10, 43), which in turn enhances the LH pulse release and
increases the LH/FSH ratio (44). This causes abnormalities in the
hormone secretion levels in the HPO axis, eventually resulting in
the occurrence of PCOS; consequently, reproductive endocrine
dyscrasia in patients with epilepsy could be reasonably
expected (38).

The contents of GnRH in the hypothalamus on both sides are
different, and it is much more abundant on the right side than on
the left side (45). The laterality of epilepsy is an important factor
affecting reproductive endocrine disorders in WWE (38, 46). A
close connection exists between left temporal lobe epilepsy (TLE)
and higher pulse frequency GnRH secretion, which in turn is
associated with higher LH/FSH ratio and serum testosterone
levels (38). In addition, a few researchers believe that the left TLE
is closely connected with the occurrence of PCOS (38, 43), while
a close connection exists between right TLE and lower GnRH
pulse frequency, which could reduce the levels of LH and
estradiol, which are characteristic of HA (46). A recent animal
study has discovered that in a TLE model established with the
injection of kainic acid (KA), all mice injected with KA had
increased excitability of GnRH neurons (47). So far, research
works on the effects of epilepsy on GnRH neurons have been
limited to animal models, and data on humans are not available.
We still do not know whether epilepsy directly affects the
function of GnRH neurons or indirectly through other
mediators. In addition, as seizure patterns are known to
change with the reproductive cycle, it is not clear whether the
effects of epilepsy on GnRH neurons change with women’s
reproductive cycles.

The incidence of PCOS was associated with age at onset of
seizures (younger than 16 years), but not with seizure type or
seizure frequency (16). However, it has been suggested that
PCOS is more common in focal epilepsy, especially TLE (12,
38). Some studies have shown that abnormalities such as HA or
PCOS are more likely to occur in patients with idiopathic
generalized epilepsy than in patients with site-related epilepsy
(15). The inconsistent results of these studies may be related to
the following factors: 1) the sample size of the study; 2)
differences in the clinical characteristics of the patients, such as
age of the patients, age of onset, and other factors; and 3) the
different diagnostic criteria for HA/PCOS. But, in general,
patients with TLE are indeed a high-risk group of PCOS. On
the one hand, since TLE is a common type of epilepsy in women
of childbearing age, a large number of PCOS studies have focused
on patients with TLE. On the other hand, it is attributed to the
close anatomical connection and the extensive and direct fiber
connection between the temporolimbic structure and the
hypothalamus (Figure 1).

As is known, the epileptic seizures in patients are often
accompanied by the change of neurotransmitter level. The
imbalance between the excitatory neurotransmitter and
inhibitory neurotransmitter leads to an abnormal neuron
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discharge, which is an important pathogenesis of epilepsy,
mainly including g-aminobutyric acid (GABA), dopamine
(DA), norepinephrine (NE), and 5-hydroxytryptamine (5-HT).
These neurotransmitters inhibit seizures; when a seizure occurs,
their levels will decrease in the central nervous system. On the
other hand, glutamate (Glu) and acetylcholine induce seizures;
when a seizure occurs, their levels will increase in the central
nervous system (48). At the same time, neurotransmitter changes
can regulate the excitability of GnRH neurons (49, 50). GnRH
neurons in the hypothalamus are the ultimate common pathway
of the central reproductive regulation system, and their
migration, changes in synaptic plasticity, and secretion are
precisely regulated by many signaling molecules, among which
is GABA (51). Some people believe that when GABA binds to the
A receptor, it depolarizes GnRH neurons and stimulates the
secretion of GnRH. Others believe that it will hyperpolarize
GnRH neurons and inhibit GnRH secretion. In general, it mainly
promotes the secretion of GnRH (52–54). Differences in the
results may be related to the physiological stage of the body and
the delay of GABA receptor signal transition. The exact
mechanism is not yet clear (55). GABA and Glu participate in
the negative feedback regulation of sex hormones (30, 32). When
their levels are abnormal, they can alter the synaptic inputs or
discharge rates of GnRH neurons and then promote GnRH
neurons to release GnRH (56, 57). Glu may regulate the
excitability of GnRH neurons and promote the secretion of
GnRH when it binds to corresponding receptors. The receptors
for Glu include ionotropic receptors [N-methyl-D-aspartate
receptor (NMDAR), AMPA receptor (AMPAR), and kainic
acid receptor (KAR)] and metabotropic receptors (mGluRs)
(58). These receptors seem to be expressed in GnRH neurons.
Dopamine can inhibit the excitability of GnRH neurons by
acting on D1 and D2 receptors or affecting GABA/Glu
postsynaptic currents (49, 59), which is consistent with
previous research findings. Epileptiform discharge may also
make women susceptible to PCOS through the depletion of
dopamine in the brain. Dopamine can reduce the secretion of
LH from the pituitary gland and can also act on the median bulge
to inhibi t GnRH secret ion (12) . The effect of 5-
hydroxytryptamine (5-HT) on GnRH neurons is biphasic. The
activation of the 5-HT2A receptor increases GnRH neuronal
activity through the PKC (protein kinase C) pathway and
promotes the release of GnRH, while the activation of the 5-
HT1A receptor causes GnRH neurons to be hyperpolarized and
inhibits GnRH secretion through adenylate cyclase (60). NE acts
on the A1 and B receptors of GnRH neurons, mainly inhibiting
the hormone release of GnRH neurons (61). Therefore, based on
the relationship between neurotransmitters and GnRH neurons,
the neurotransmitter in patients with epilepsy may cause
reproductive endocrine dysfunction through the HPO axis at
the hypothalamic level.

Besides, the level of prolactin (PRL) will increase in patients
with epilepsy, so epilepsy could disrupt the hormone secretion
balance of the HPO system by affecting the negative feedback of
PRL (62). In short, epilepsy can affect the HPO axis through
abnormal discharge, change the level of the central nervous
December 2021 | Volume 12 | Article 787854
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system neurotransmitter, and change the level of PRL, leading to
PCOS or other reproductive endocrine disorders in patients.
4 THE EFFECT OF ASMS ON PCOS

ASMs have experienced so many years of development, and
third-generation drugs have been on the market. However, the
association between these drugs and PCOS is gradually
increasing. In addition to VPA, the relevance between other
ASMs and PCOS has attracted more and more attention. We will
explain it from two aspects: VPA and other ASMs.

4.1 VPA Affects the Reproductive
Endocrine System
VPA is a traditional anti-epileptic drug. It is mainly used to treat
idiopathic generalized epilepsy and can also be used to treat focal
epilepsy (63). Due to its teratogenicity, cognitive development
impairment, and autism risks (63–65), its use in women of
childbearing age is strictly regulated, but is sometimes inevitable
Frontiers in Endocrinology | www.frontiersin.org 4
(66, 67). Recently, a single-center cohort study reported that
almost one-third of WWE were receiving VPA treatment, and
most of them were of childbearing age (67). However, a meta-
analysis showed that the incidence of PCOS in female patients
who choose VPA was significantly increased, and its incidence was
1.95 times higher than that of other drugs (68). It also exerts an
enormous function in controlling epilepsy, mainly through the
following mechanisms: 1) enhancing the effect of the inhibitory
neurotransmitter GABA as a GABA activator and 2) blocking the
voltage-gated sodium channels and T-type calcium channels (69).
The main substrates are the liver and the HPO axis, causing
abnormal levels of sex hormones (70, 71). Several research works
have indicated that the occurrence of reproductive endocrine
disorders in patients taking VPA increased significantly (5, 10,
72–74), especially in patients who started using VPA while
younger than 20 years, indicating that the reproductive
endocrine function of young WWE is more likely to be affected
by VPA (74, 75). However, some studies have found that VPA
treatment has no serious impact on reproductive endocrine
function and that it is safe to use (76). Therefore, there may be
FIGURE 1 | Regarding the mechanism of polycystic ovary syndrome (PCOS) in temporal lobe epilepsy (TLE), epileptiform discharges toward the hypothalamus interfere
with the activity of the gonadotropin-releasing hormone (GnRH) pulse generator and neurotransmitters affect the excitability of GnRH neurons to enhance the frequency of
GnRH secretion, which in turn leads to an increase in luteinizing hormone (LH) secretion and an increase in the ratio of LH/follicle stimulating hormone (FSH). Laterality
(more common in left TLE) and other factors, such as age at seizure onset, type of epilepsy, and activity of epilepsy, are all involved in PCOS.
December 2021 | Volume 12 | Article 787854
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some controversies with respect to the adverse influence of VPA
on the reproductive endocrine system, and a large number of
samples are needed for extensive research. However, consensus
has been basically reached on the adverse effects of VPA on the
reproductive endocrine system. How VPA affects the occurrence
and development of hyperandrogenemia, ODs, polycystic ovaries,
IR, and weight gain is not yet fully understood; hence, research
and exploration are still ongoing.

4.1.1 Does VPA Affect PCOS Through the HPO Axis?
Because patients treated with VPA are prone to reproductive
endocrine dysfunction, there must be a correlation between VPA
and the HPO axis. Firstly, VPA can lead to an increase in GABA
content in the brain, which stimulates the secretion of GnRH.
Secondly, VPA, as a histone deacetylase inhibitor, may inhibit the
transcription of the GnRH1 gene in the hypothalamus and promote
changes in the plasticity of GnRH neurons (77). This effect can also
reverse the differentiation of LH and FSH cells into PRL cells,
resulting in abnormal sex hormone levels and destruction of the
hypothalamic–pituitary–gonadal (HPG) axis (78). Thirdly, the
increased level of leptin and the decreased level of adiponectin in
patients treated with VPA (79–82) and their receptors were
expressed in the hypothalamus and pituitary (83). Leptin can
indirectly regulate the excitability of GnRH neurons through
kisspeptin neurons and other interneurons and promote the
release of GnRH (84). Adiponectin inhibits GnRH secretion by
activating the AMP kinase pathway (83). Consequently, VPA can
also cause reproductive and endocrine abnormalities through leptin
and adiponectin. Finally, patients treated with VPA have elevated
insulin levels, which regulate GnRH secretion at the hypothalamus
level while binding to the corresponding receptor (85). Of course,
abnormal sex hormone levels such as androgen and estrogen will
also affect the HPO axis. Animal studies have confirmed that VPA
may affect the differentiation of GnRH neurons and the activation of
GnRH pulse generators by increasing the concentration of GABA in
the central nervous system (86, 87). Therefore, in conclusion, VPA
may disrupt the balance of the HPO axis by regulating GnRH
secretion at the hypothalamic level through a variety of
mechanisms, leading to the occurrence of PCOS or other
reproductive endocrine abnormalities in women.

4.1.2 Other Possible Mechanisms of HA
Caused by VPA
The most basic and main clinical feature of PCOS is elevated
androgen levels, and approximately 80% of women with elevated
androgen levels are diagnosed with PCOS (88), including
biochemical or clinical androgen elevations. A serum level
exceeding 4.2 nmol/L (10 mg/L) indicates hyperandrogenism
(76). When androgen is elevated, the clinical manifestations are
hirsutism and acne. The elevated androgens mainly include
testosterone and androstenedione (A4) (89). To date, several
articles have reported that WWE taking VPA have elevated
androgen, hirsutism, or acanthosis (5, 14, 16, 72, 73, 76, 90).

The suggested mechanisms of the VPA-induced androgen level
elevation include the following: 1) insulin resistance and weight gain
are commonly associated with VPA treatment (6, 16, 81, 82). VPA
can also directly impact pancreatic islet B cells to promote the
Frontiers in Endocrinology | www.frontiersin.org 5
secretion of insulin (91). The combined action of the three causes
hyperinsulinemia, and then excessive insulin acts on the liver to
hinder the synthesis of SHBGs (92, 93), which can increase the free
testosterone level and inhibit the production of insulin-like growth
factor 1 binding protein (IGFBP-1) (92). It was found to increase the
availability of insulin-like growth factor 1 (IGF-1). Insulin and IGF-
1 are the main extraovarian factors that regulate the synthesis of
steroids (89), which can act on ovarian sheath cells to increase
androgen synthesis, mainly enhancing LH-induced androgen
secretion while having a less obvious effect on basic androgen
production (94, 95). 2) VPA is a liver enzyme inhibitor that can
reduce the metabolism of androgens in the liver and increase the
androgen levels (76, 96) 3). VPA is a histone deacetylase inhibitor
that affects chromatin modification by inducing histone acetylation
(97, 98) and then potentiates androgen biosynthesis by promoting
CYP11 and CYP17 gene expressions, encoding the P450 enzyme
that participates in the conversion of cholesterol to androgen in
human ovarian theca cells (99). VPA also inhibits the expression of
the CYP19 gene encoding P450 aromatase in human follicular cells.
Therefore, VPA reduces the conversion of androgens to oestradiol,
but its inhibition of CYP19 only occurs in FSH-stimulated cells and
cells with higher concentrations (100, 101). 4) Studies have found
that the plasma levels of carbamazepine epoxide were higher when
used in combination with VPA than when used alone, suggesting
that VPA can inhibit the activity of epoxidation hydrolase (102,
103), which may also be involved in the conversion of androgens to
oestrogens (104, 105). 5) The combined action of insulin and LH
will significantly increase the expression of the CYP17 gene in
human ovarian theca cells to promote the synthesis of
androstenedione (95, 106). 6) Some studies have shown that the
production of steroids could be altered by VPA in adrenal cells due
to its effect on cholesterol in the mitochondrial intima (107), so the
increased androgen levels in patients may be partly from the adrenal
gland (75). In addition, in mammals, insulin may enhance the
frequency and amplitude of GnRH and LH pulsatile release by
upregulating the expression of the GnRH gene (108) (Figure 2).

4.1.3 The Possible Mechanism of Ovulation Disorder
and Polycystic Ovary Induced by VPA
Several studies have also verified that PCO formation, increased LH
levels, or increased LH/FSH ratio and menstrual disorders are
commonly seen in patients treated with VPA (12, 16, 72, 73).
Furthermore, an animal experiment showed that, compared with
those of the control group, the quantity of follicles was significantly
reduced, the atretic follicles were increased, and the ovary also
showed multiple cystic follicles in the VPA group (109). The
reported rate of polycystic ovaries in WWE is as high as 40%
(110). The LH peak is necessary for ovulation. FSH promotes the
development and maturation of follicles. When FSH decreases, it
will affect the production, development, and maturation of follicles,
leading to obstacles in follicular maturation, and no dominant
follicle is selected. The LH level is normal or increased, but the
LH peak cannot be formed, leading to failure of ovulation (40). A
large number of follicles are atresic, and immature follicles that lack
an antrum exist in the ovaries in the form of cysts (40, 46). The high
androgen level in patients also affects the development and
maturation of follicles (111). In addition, after treatment with
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VPA, the secretion of TGF-b1 in the follicle decreases (109), and the
TGF-b superfamily exerts an indispensable effect in regulating the
formation and development of follicles (112). In addition, some
scholars proposed that VPA can participate in the process of
apoptosis of ovarian cells by enhancing the level of the apoptotic
hormone testosterone and activating the caspase-3-dependent
apoptosis signaling pathway (100).

Menstrual disorders are a clinical manifestation of ODs and
abnormal levels of sex hormones. A large number of reports have
reported an increase in the incidence of menstrual disorders in
patients with epilepsy or VPA treatment. The incidence of
epilepsy in women is about 20%–35%, and even as high as
48% (39, 113–115). It can manifest as irregular menstrual cycles,
oligomenorrhea, polymenorrhea, and even amenorrhea (5, 15,
39). Menstrual disorders are related to the age of onset (39), and
they are more common in obese patients or those with IR (5).
Moreover, the development of abnormal menstruation is not
significantly related to the type of seizures, the duration of
continuous use of VPA, and the dose of VPA (14, 116).

4.1.4 The Possible Mechanism of IR/
Hyperinsulinemia Caused by VPA
Under normal circumstances, insulin acts on the liver, fat cells,
and skeletal muscles to maintain glucose homeostasis.
Frontiers in Endocrinology | www.frontiersin.org 6
The concept of IR refers to the reduction of insulin sensitivity
due to various reasons, which can hinder the uptake and
utilization of glucose; the body compensatively secretes too
much insulin to maintain stable blood glucose levels. Among
women with PCOS, the prevalence of IR is 44%–85% (117).
Leptin, a hormone mainly derived from adipose tissue,
participates in the regulation process of glucose, adipose, and
energy metabolism, so it is able to indirectly regulate insulin
sensitivity by reducing food intake and increasing energy
consumption (79, 118). Adiponectin is a protein derived from
fat cells that has an important regulatory effect on the insulin
concentrations and glucose balance, regulating insulin sensitivity
through a variety of mechanisms (79). Insulin resistance or
increased insulin levels (5, 80–82, 119), increased leptin levels
(79, 80), and decreased adiponectin levels (79, 82, 119, 120) have
been reported in VPA subjects in a number of studies.

The mechanism of VPA-induced IR or hyperinsulinemia has yet
to be confirmed, but the following are potentialmechanisms: 1)VPA
is a short-chain and branched-chain fatty acid that can compete with
free fatty acids (FFAs) for binding to albumin, increasing the
availability of FFAs (121), and FFAs can induce IR via the insulin
signaling pathway (82, 122). 2)VPA inhibits the B-oxidation of FFAs
(123),whichmaybe related tocarnitinedeficiency (124).Theamount
of FFAs affects insulin and glycemic responses (125). 3) VPA is
FIGURE 2 | The mechanism of valproate (VPA) leading to increased level of androgen. 1.1 VPA can lead to hyperinsulinemia by inducing insulin resistance (IR) and
weight gain and directly acting on pancreatic islet B cells, and then excessive insulin could hinder the synthesis of sex hormone binding globulin (SHBG) to elevate
the level of androgen. 1.2 Insulin inhibits the production of insulin-like growth factor 1 binding protein (IGFBP-1) and increases the availability of (IGF-1). Insulin and
IGF-1 increase the synthesis of androgen. 2 VPA can reduce the metabolism of androgens in the liver and increase androgen levels. 3.1 VPA potentiates androgen
biosynthesis by promoting CYP11 and CYP17 gene expressions, encoding the P450 enzyme that participates in the conversion of cholesterol to androgen. 3.2 VPA
also inhibits the expression of the CYP19 gene encoding P450 aromatase to reduce the conversion of androgens to estradiol. 4 VPA can inhibit the activity of
epoxidation hydrolase, which may also be involved in the conversion of androgens to estrogens.
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related to obesity, as there is a close connection between obesity and
IR, andobesepatients havehigher IR levels (119, 126).This effectmay
be involved in thehighFFAlevels andadipocytokines (127).4)Due to
its involvement in leptin and adiponectin signaling, the reduction of
adiponectin is significantly related to IR (119, 128, 129), which can
enhance insulin sensitivity by increasing fatty acid oxidation and
inhibiting liver glucose production (82). High leptin levels are closely
related to IR (80, 129). 5) Some researchers believe that VPA will
injure the liver and affect themetabolismof insulin in the liver, which
can bring about an increase in insulin concentrations (81, 130). 6)
There are also studies that have found that long-termuse ofVPA can
increase the levels of oxidative stress markers, such as
malondialdehyde and myeloperoxidase (MPO) (79, 81, 91), and
oxidative stress influences IR through insulin receptor signaling
pathways, such as the p38 MAPK (mitogen-activated protein
kinase) signaling pathway, and eventually reduces the expression of
glucose transporter 4 (GLUT-4) (127, 131). In addition, excessive
Frontiers in Endocrinology | www.frontiersin.org 7
androgen was positively correlated with IR in PCOS patients (132),
and exposure to VPA can attenuate ATP-sensitive potassium (K-
ATP) channel currents, which can then regulate the membrane
potential of B cells, leading to increased insulin secretion (133). 7)
VPAcandirectly act onpancreaticBcells to increase insulin secretion
(91). 8) Some researchers believe that VPA will injure the liver and
affect themetabolismof insulin in the liver, which can bring about an
increase in insulin concentrations (81, 130). 9) It may be related to
SHBGs, but this needs to be verified, and it has an impact on the level
of IR by regulating the PI3K/AKT signaling pathway. Its reduction
contributes to the development of IR (93) (Figure 3).

4.2 Do Other ASMs Cause PCOS Through
the HPO Axis?
4.2.1 Levetiracetam
Research has shown that PCOS, oligomenorrhea, and excessive
androgen increased in patients taking levetiracetam (LEV), and
FIGURE 3 | The mechanism of insulin resistance or hyperinsulinemia caused by valproate (VPA). 1 VPA can compete with free fatty acids (FFAs) for binding to
albumin to increase the availability of FFAs, which can induce insulin resistance (IR) through the insulin signaling pathway. 2 VPA elevates the level of androgen by
inhibiting the B-oxidation of FFAs. 3 Obesity promotes the occurrence of IR. 4 High leptin levels are closely related to IR. 5 The reduction of adiponectin is
significantly related to IR. 6 VPA hinders oxidative stress, which can influence IR through the p38 MAPK signaling pathway and reduce the expression of glucose
transporter 4 (GLUT-4). 7 VPA can attenuate K-ATP channel currents, which can then regulate the membrane potential of B cells, leading to increased insulin
secretion. 8 VPA can directly act on pancreatic B cells to increase insulin secretion. 9 VPA could affect the metabolism of insulin in the liver, which can bring about an
increase in insulin concentrations. 10 Refers to the level of sex hormone binding globulin (SHBG), which has an impact on the level of IR by regulating the PI3K/AKT
signaling pathway.
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the proportions are 44%, 20%, and 24% respectively (134). LEV
may also affect the HPG axis of female rats (135). This is
consistent with the findings in male patients showing that LEV
monotherapy may lead to changes in reproductive indicators
through the hypothalamic–pituitary–testicular system (136). At
present, the exact mechanism of the anti-epileptic effect of LEV is
still unclear. It can bind to the synaptic vesicle protein SV2A in
the brain and affect the SV2A–GABAergic system (137, 138).
Therefore, LEV can also affect the HPO axis through GABA.

4.2.2 Carbamazepine and Oxcarbazepine
Carbamazepine (CBZ) and oxcarbazepine (OXC) are thefirst-line or
second-line alternatives for focal epilepsy and primary generalized
tonic–clonic seizures (139). Patients with long-term CBZ treatment
may showdecreased levels of E2 anddehydroepiandrosterone sulfate
(DHEA-S), increased levels of SHBGs, andmenstrual disorders (140,
141). Part of the reason for these abnormalities may be the direct
inhibition of the function of the hypothalamic–pituitary axis (141).
The incidence of PCO inwomen treatedwithOXC is as high as 60%,
and there will also be abnormal levels of dehydroepiandrosterone,
testosterone, and SHBGs (142, 143). OXC can stimulate the GnRH
neurons to releaseGnRH, thereby promoting the pituitary gland and
testicles to secrete and release large amounts of FSH, LH, and
testosterone (144).

4.2.3 Phenytoin
Studies have shown that phenytoin (PHT) treatment adversely
affected the HPG axis, induced the limbic system neurons to
undergo apoptosis (145), increased the GABA levels, and
induced the proliferation of GABA receptors. Therefore, PHT
may affect the HPO axis by destroying neurons in the limbic
system and GABA.

4.2.4 Topiramate and Gabapentin
Topiramate (TPM) and gabapentin (CAS) treatment can
interfere with sex hormone levels and also affect the
GABAergic system and GnRH neuronal–glia plasticity (146).
Therefore, TPM and gabapentin could destroy the completion of
the HPG axis and cause reproductive dysfunctions through
GABA or directly affect GnRH neurons.

4.2.5 Lamotrigine
There is almost no adverse effect on female reproductive
function, and it can even reverse the abnormal reproductive
Frontiers in Endocrinology | www.frontiersin.org 8
endocrine function caused by VPA, so lamotrigine (LTG) could
be used as an alternative to VPA treatment (5, 147).

In short, after reviewing a large number of previous studies, it
was found that there are only a few studies on the effects of
traditional anti-seizure medications except VPA on the
reproductive endocrine system of female patients, and the
research on new anti-seizure medications lags behind. Their
effect on reproductive endocrine is partly attributed to the liver
enzyme-inducing properties of ASMs. For example, drugs with
liver enzyme induction include PHT and CBZ, which can
increase the levels of SHBGs and decrease the levels of
testosterone (148). As a result, the HPO axis is affected by
negative feedback, GABA, or other mechanisms. However,
whether most drugs affect reproductive endocrine function
through the HPO axis and how they affect the HPO axis
remain to be further studied and determined (Table 1).
5 CONCLUSION

PCOS-like reproductive endocrine disorder is a common
complication in patients with epilepsy. Part of the reason is
that the limbic system, a site closely related to epilepsy, has
extensive and direct contact with the hypothalamus, so
abnormal discharges can cause reproductive endocrine
disorders through the HPO axis. Another reason is that, in
view of the complex connections between neurotransmitters
and epilepsy and GnRH neurons, abnormal levels of
neurotransmitters may also cause reproductive endocrine
disorders through the HPO axis. Consequently, VPA
regulates the function of the HPO axis by affecting the
GABA levels, leptin and adiponectin levels, insulin levels,
and protein modifications. It can also affect reproductive
endocrine metabolism by regulating signal pathways,
affecting hormone metabolism, and other factors. Besides,
some ASMs may affect the HPO axis through the negative
feedback mechanism of sex hormones and GABA. Traditional
anti-seizure drugs seem to have varying degrees of influence
on the HPO axis. ASMs may be safer than traditional drugs,
and their reproductive endocrine effects have not been
extensively studied. In addition, the effects of epilepsy and
anti-epileptic drugs on reproductive endocrine function vary
with factors such as the type of epilepsy, the age at onset of
seizures, the age when treatment was initiated, and the types
TABLE 1 | The influence of anti-seizure medications (ASMs) on the hypothalamic–pituitary–ovarian (HPO) axis (5, 14, 16, 72, 134, 140, 142, 143).

ASMs GnRH LH A E2 SHBG Related mechanism

VPA NA ↑ ↑ ↓ NA GABA levels, leptin and adiponectin levels, insulin levels, and protein modifications
LEV NA NA ↑ NA NA GABA negative feedback
CBZ NA NA ↓ NA ↑ Liver enzymes!SHBG androgen!negative feedback pathway
OXC NA NA ↓ NA NA GnRH neuron
PHT ↓ ↓ ↓ NA ↑ Liver enzymes!SHBG androgen!negative feedback pathway (limbic system neuron apoptosis/GABA)
ASMs, anti-seizure medications; GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; SHBG, sex hormone binding globulin; VPA, valproate; LEV, levetiracetam; CBZ,
carbamazepine; OXC, oxcarbazepine; PHT, phenytoin; NA, not available.
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of ASMs used. Patients with epilepsy are prone to
reproductive endocrine disorders, especially obese patients
or patients using VPA. Therefore, BMI, menstrual cycle, and
sex hormone level changes should be checked regularly. In
addition, those under the age of 20 years who start medication
are also at high risk of reproductive endocrine disorders,
especially female patients. Therefore, this part of the
population must use medication carefully and must be
closely monitored for reproductive function; new anti-
seizure medications can be used as an alternative treatment,
if necessary.
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