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casimir forces exerted 
by epsilon‑near‑zero hyperbolic 
materials
igor S. nefedov1 & J. Miguel Rubi2*

The Casimir force exerted on a gold dipolar nanoparticle by a finite-thickness slab of the natural 
hyperbolic material namely, the ortorhombic crystalline modification of boron nitride, is investigated. 
the main contribution to the force originates from the tM‑polarized waves, for frequencies at 
which the parallel and perpendicular components of the dielectric tensor reach minimal values. 
These frequencies differ from those corresponding to the Lorentzian resonances for the permittivity 
components. We show that when the slab is made of an isotropic epsilon‑near‑zero absorbing material 
the force on the nanoparticle is larger than that induced by a hyperbolic material, for similar values of 
the characteristic parameters. This fact makes these materials optimal in the use of Casimir’s forces for 
nanotechnology applications.

The presence of electromagnetic fluctuations is the origin of important phenomena such as thermal emission, 
radiative heat transfer, van der Waals interactions, Casimir effect and van der Waals (contact-free) friction 
between  bodies1 which play an important role in the behavior of matter at very short distances with important 
implications in nanoscience and nanotechnology. That is why the study of such fluctuations is currently the 
subject of numerous investigations.

One of the most intriguing effects confirming the foundations of the quantum field theory was predicted 
by H. Casimir in  19482 and was referred  in3 to as “the driving force from nothing”. In the same year, H. Casimir 
and D. Polder proposed a theory for dipole interactions taking into accound retardation  effects4. Experimental 
confirmation of the existence of Casimir forces was carried out M.J. Sparnaay in  19585. The theory of the Casimir 
forces for real materials at finite temperatures was proposed by E.M.  Lifshitz6 and the general theory of Van-
der-Waals forces was developed by Dzyaloshinskii, Lifshith and  Pitaevskii7. It was subsequently shown that the 
presence of a liquid in between the two interacting bodies may induce a change in the sign of the force that may 
become repulsive instead of attractive. The methods used to compute Casimir forces and the value of the force 
for different geommetries has been reviewed  in8–12.

Futher progress in the study of the Casimir effect and in the Van-der-Waals forces was due to the discovery 
of new materials such as metamaterials, and to investigations on how micro- and nanoparticles interact with 
electromagnetic fields. A theory of the Casimir forces under non-equilibrium conditions, for example when the 
objects are at different temperatures was also developed. These results have been reviewed  in12.

In the last decade, a number of papers on Casimir forces in hyperbolic metamaterials (HMMs) on the basis 
of arrays of metal nanowires were published. Metamaterials have shown to be very useful in near-field radiative 
 transfer13,14 and in other areas of fluctuation electrodynamics due to the fact that they exhibit stricking properties 
such as a high density of modes and an ability to support propagating waves with very large wave-vectors. This 
effect is due to an increase of the density of evanescent fields of plasmonic modes within the gap.

Casimir forces (attractive and repulsive) can act at large  distances15,16 due to the fact that HMMs may support 
propagating rather than evanescent waves at large values of the transverse component of the wave vector. The 
forces are not only perpendicular but also parallel to the surface of the  material17. Conservative lateral forces 
induced by corrugations of the surface are local acting only within one of the corrugation periods and a conse-
quence, they can only exert local lateral displacements. On the contrary, non-conservative lateral forces as the 
ones induced by fluctuating currents in an anisotropic HMM (boron nitride) can move a particle persistently 
along a flat homogeneous  boundary20. The lateral movement of anisotropic particles along a surface was analyzed 
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 in18. The motion, however, ceases when the particle adopts an orientation for which its energy is a minimum. 
Lateral Casimir forces can also cause particle  rotation19.

The interest in metamaterials with near-zero (NZ) parameters (refractive index, permittivity and perme-
ability) is due to the fact that structures made of these materials offer enormous possibilities for  applications21. 
Near-zero-index photonics is currently an area of rapid  growth22. Structures with near-zero parameters are: 
epsilon-near-zero (ENZ), ǫ ≈ 0 , mu-near-zero (MNZ), µ ≈ 0 , and epsilon-mu-near-zero (EMNZ)22. All of these 
cases exhibit a near-zero index of refraction: n = √

ǫµ ≈ 0.
Ziolkovski proposed zero index of refraction metamaterials for the decoupling of spatial and temporal vari-

ations of the  field23. This idea is based on the fact that the field in the region with near-zero parameters exhibits 
a static-like character even if it oscillates in time. Tunneling of electromagnetic waves through a narrow two-
dimensional channel filled with an ENZ material was predicted  in24. Near-zero-index media can enhance non-
linear  processes25,26, optical activity in one-dimensional epsilon-near-zero pseudochiral  metamaterials27, electric 
 levitation28 and other field-matter interaction processes.

In this article, we compute the Casimir force on a gold dipolar nanoparticle induced by a slab of an ǫ-near-
zero hyperbolic and isotropic material and show that its main contribution comes from the frequency domain 
where ǫ ≈ 0.

The article is organized as follows. In Section II, we introduce the model and analyze the different contribu-
tions to the radiative force on a gold particle close to a slab of an absorptive anisotropic material. In Section III, 
we present our results of the Casimir force and in Section IV we summarize our main conclusions.

the model
We consider a slab made of an absorptive anisotropic material which is infinite in the x- and y-directions and 
has thickness h in the z-direction. The anisotropy axis is directed along the z-axis. We will compute the Casimir 
forces acting on a gold nanoparticle placed nearby the slab. The relative permittivity tensor of the material has 
the diagonal form

where x0, y0, z0 are the coordinate unit vectors.
This particular geometry allows us to analyze separately the propagation of TM and TE waves in the slab. 

Let us consider the TM modes and find fields excited by point-like fluctuating currents within the slab in the 
frequency domain. For the tangential field components X(z) =

(

Ex(z), Hy(z)
)

 , excited by the fluctuating cur-
rents jx(z), jz(z) located within the absorptive layer 0 < z < h , the Maxwell equations reduce to the system of 
two ordinary differential equations:

with the matrix elements of [A] given by

where k0 and η = 120π Ohm are the wavenumber and wave impedance in vacuum, respectively. The components 
of the vector F(z) = (F1(z), F2(z)) are

The elementary bulk current source has the form: j(z) = j0(z
′)δ(z − z′).

The solution of Eq. (2) for points in the interval 0 < z < h  is34:

with [M(z)] = e[A]z the transfer matrix:

where kx and kz =
√

ǫ⊥(k
2
0 −

k2x
ǫ�
) are the transverse and normal components of the wave vector in the slab, 

respectively, and

is the transverse wave impedance for the TM mode.  The boundar y condit ions are: 
X2(0) = X1(0)/Z0, X2(h) = −X1/Z0 , where Z0 = η

√

(k20 − k2x)/k0 is the transverse wave impedance in vacuum. 

(1)ǫ = ǫ�z0z0 + ǫt(x0x0 + y0y0)

(2)
d

dz
X(z) = [A]X(z)+ F(z)

(3)
A11 = 0, A12 = iηk0

(

k0µ− k2x
k20ǫ�

)

A21 = i k0
η
ǫ⊥, A22 = 0,

(4)
F1(z) = η kx

k0ǫ�
jz(z) = ajz(z),

F2(z) = −jx(z).

(5)X(z) = e[A]zX(0)+
∫ z

0
e[A](z−τ)F(τ )dτ ,

(6)
M11(z) = cos kzz M12(z) = iZ sin kzz

M21(z) = i
Z sin kzz M22(z) = M11(z)

(7)Z = η
kz

k0ǫ⊥
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We can then express the tangential field components at the interface x = 0 , created by a current located at z′ in 
the form

where

The average values of the fluctuating currents vanish, only their correlations contribute to the energy flux. 
These correlations are given through the fluctuation-dissipation  theorem35. The ensemble-averaged correlator 
�E(ω, kx , z′)E∗(ω, kx , z′′)� in the plane z = 0 , for the kx mode, induced by fluctuating currents located within 
the slab, 0 < z′, z′′ < h , reads

where the correlation �E(ω, kx , z′)E∗(ω, kx , z′′)� is obtained through the fluctuation-dissipation  theorem35

with r = (x, z) and

the Planck’s oscillator energy. In Eq. (11), ǫ′′mn ≡ Im(ǫmn) , ǫ0 is the permittivity of vacuum, � the reduced Planck 
constant, T the temperature, and kB the Boltzmann constant.

We will consider radiative forces on a small nanoparticle in the dipole approximation. The dipolar force act-
ing on the particle can be written as

This formula was derived from the Maxwell stress tensor for the dipolar  particle36. In it, α is the polarizability 
of the particle given by

with r and ǫ its radius and permittivity, respectively, and σ = k0Im{α}/ǫ0.
The first term in (13), related to the gradient forces, causes attraction of the particle toward the slab interface 

due to the z-dependence of the fields through the factor e|kz0|z , for z < 0 . This term properly defines the Casimir 
or the van-der-Waals forces on a  nanoparticle1. The explicit expression for ∇|E|2 is

where f (z) = 1 , if |kx| < k0 , and f (z) = e2|kz0|z (z < 0) , if |kx| > k0
20. Only evanescent waves (|kx| > k0) con-

tribute to this force.
In the second contribution, the x- and z-component of the Poynting vector corresponds to pulling forces 

along the corresponding directions. The x-component of the Poynting vector integrated over kx is zero in the 
case of a symmetric geometry and different from zero in the asymmetric case, as shown  in20. At small |z|, the 
attractive gradient force is dominant whereas at larger |z| the dominant force is the repulsive force proportional 
to the z component of the Poynting vector. Very often, this contribution is considered as a part of the Casimir 
force. The third term in (13) does not contribute to radiative  forces20.

Using the fluctuation-dissipation theorem (11), and expression (15) and integrating over z, as done  in20 [see 
formulas (17)], we obtain

where we have defined the coefficients

(8)X1(0, z
′) = 1

�

∫ h
0

[

U(τ )jx0(z
′)+ V(τ )jz0(z

′)
]

δ(τ − z′) dτ
= 1

�

[

U(z′)jx0(z′)+ V(z′)jz0(z′)
]

,

(9)
� = M11(h)+M22(h)−M12(h)/Z0 −M21(h)Z0,
U(τ ) = iZ sin kz(h− τ)− Z0 cos kz(h− τ)

V(τ ) = η 1
k0ǫ�

[

i Z0Z sin kz(h− τ)− cos kz(h− τ)

]

.

(10)�E(ω, kx)E∗(ω, kx)� =
1

2

∫ h

0

∫ h

0
�E(ω, kx , z′)E∗(ω, kx , z

′′)� dz′dz′′,

(11)�jm(r,ω)j∗n(r
′,ω′)� =

4

π
ωǫ0ǫ

′′
mn(ω)δ(r − r′)δ(ω − ω′)�(ω,T),

(12)�(ω,T) = �ω

(

1

2
+

1

e�ω/(kBT) − 1

)

(13)
�F� =

1

4
Re{α}∇|E|2 + σ

1

2
Re

{

1

c
E ×H∗

}

+ σ
1

2
Re

{

i
ǫ0

k0
(E · ∇)E∗

}

(14)α = α0
1−iα0k

3
0/(6πǫ0)

, α0 = 4πǫ0r
3 ǫ−1
ǫ+2 ,

(15)∇|E(ω, kx , z)|2 = ∂
∂z f (z)

[

�ExE∗x � + �EzE∗z �
]

(16)�Fz(ω, kx)� =
4ωǫ0�(ω,T)

2π |�|2
[

D1ǫ
′′
xx + D2ǫ

′′
zz

]

,
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with

The non-conservative force, determined by the second term of (13), proportional to the Poynting vector, is 
negligible at small distances from the boundary of an absorptive medium.

The Casimir force exerted by the TM waves is obtained by integrating the force over kx and ω:

Results and discussion
Cubic, hexagonal, rhombohedral and orthorhombic cristalline forms of boron nitride exhibit hyperbolic dis-
persion in the infrared frequency  range29–32. As a particular case, we will consider the orthorhombic form. The 
components of the permittivity tensor are given by the Lorentz  model32:

where ωτ
�,⊥ and U�,⊥ are, respectively, the transverse phonon frequency and the oscillator strength of the lat-

tice vibration for the parallel and perpendicular polarizations, and Ŵ�,⊥ is the damping constant. The constants 
ǫ∞�,⊥ are the components of the permittivity tensor at frequencies ω that greatly exceed the phonon resonance 
frequency ωτ

�,⊥ . The values of the parameters of (20) used are: ǫ∞� = 2.7 , U� = 0.48 , ωτ
� = 1.435× 1014 rad/s, 

Ŵ� = 8.175× 1011 rad/s, ǫ∞⊥ = 5.2 , U⊥ = 2 , ωτ
⊥ = 2.588× 1014 rad/s, Ŵ⊥ = 1.29× 1012 rad/s. For these values 

of the parameters, the Lorentzian resonances of ǫ‖ and ǫ⊥ take place at frequencies ≈ 22.8 THz and ≈ 41.2 THz, 
respectively. In the vicinity of these resonances, the real parts of ǫ‖ and ǫ⊥ change their signs and the imaginary 
parts are very large. One can expect an increase of the Casimir forces near the ǫ⊥ resonance due to the singularity 
of 1/|�|2 if |ǫ⊥|2 → 0 . Similarly, an increase of the Casimir force per unit of frequency is expected near the ǫ‖ 
resonance when |V(τ )|2 increases due to the increase of |a|2 = |ηkx/(k0ǫ�)|2 , if ǫ� → 0 [see Eq. (9)].

Figure 1 illustrates the frequency dependence of Re(ǫ‖ ) and Im(ǫ‖ ) on the frequency range where the corre-
sponding permittivity component experiences the Lorentzian resonance. Because of the losses, |ǫ�|2 → 0 near the 
frequency 24.9 THz. Figure 2 shows similar dependencies for the perpendicular component of the permittivity. 
Here, we see that |ǫ⊥|2 → 0 near 48.5 THz.

As an example of particle, we consider a spherical gold nanoparticle whose complex permittivity ǫg in the 
infrared range is, according to the Drude model, given by

(17)
D1 = |Z|2S + |Z0|2C + 2Im(ZZ∗

0G)

D2 = |a|2
[

∣

∣

∣

Z0
Z

∣

∣

∣

2
S + C + 2Im

(

Z0
Z G

)

]

(18)
C =

∫ h
0 | cos [kz(h− τ)]|2d τ

S =
∫ h
0 | sin [kz(h− τ)]|2d τ

G =
∫ h
0 cos [k∗z (h− τ)] sin [kz(h− τ)]d τ .

(19)�Fz� =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
�Fz(ω, kx)�kx dkxdω.

(20)ǫ�,⊥ = ǫ∞�,⊥ +
U�,⊥(ω

τ
�,⊥)

2

(ωτ
�,⊥)

2 − ω2 − iωŴ�,⊥
,

Figure 1.  Re(ǫ‖ ) (black solid line), Im(ǫ‖ ) (red solid line), and 1/|ǫ�|2 (blue dashed line).
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where ωp = 1.367× 1016 rad/s and ωr = 10.5× 1013 rad/s are the plasma frequency and the damping frequency, 
respectively and ǫ∞ = 9.533. The radius of the particle is 10 nm.

As expected, the main contribution to the Casimir forces comes from the regions where |ǫ�| → 0 and 
|ǫ⊥| → 0 . Figs. 3 and 4 show the Casimir force per frequency unit in the vicinity of these frequencies. Oscilla-
tions in Fig. 4 are caused by the excitation of plasmon-polaritons in the vicinity of ǫ-near-zero  frequencies38,39. 
For hyperbolic materials |kz | becomes very large at frequencies ω < ω0 , where ǫ(ω0) ≈ 0 . At these frequencies 
in a finite-thickness slab exists a dense (countable in the lossless limit) spectrum of modes  (see40, Fig. 14) which 
manifest itself as the ‘fringes’ in Fig. 4.

Figure 5 shows the overall Casimir force. The lower integration limit over frequency is 10 THz since at smaller 
frequencies contributions to the Casimir force are very small. The upper limit corresponds to a frequency at the 
abscisa axis. The result of the integration increases dramatically in the frequency domains where |ǫ�| and |ǫ⊥| 
are minimal. The repulsive force due to the second term in (13) (proportional to the Poynting vector) is of order 
10−23 N. In the figure , we compare the Casimir forces exerted by the slab of hyperbolic material (boron nitride) 
to the ones obtained from a hypothetical isotropic material with permittivities ǫ = ǫ� and ǫ = ǫ⊥ . The greatest 
Casimir force is induced by the isotropic material with the permittivity undergoing the Lorentzian resonance 
for ǫ⊥ in boron nitride.

(21)ǫg = ǫ∞ −
ω2
p

ω2 + iωωr
,

Figure 2.  Re(ǫ⊥ ) (black solid line), Im(ǫ⊥ ) (red solid line), and 1/|ǫ⊥|2 (blue dashed line).

Figure 3.  The Casimir force per frequency unit versus frequency in the vicinity of the ǫ‖-near-zero region. 
h = 300 nm, T = 450 K, z = 100 nm.
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conclusions
In summary, we have shown that the main contributions to the Casimir forces on a dipolar particle results from 
the TM-polarized waves and takes place at regions where |ǫ�| and |ǫ⊥| are minimal which differ from the regions 
at which the Lorentzian resonances for the corresponding permittivity components take place. The leading con-
tribution comes from the |ǫ⊥|-near-zero region. Hyperbolicity itself (i.e. different signs of the parallel and the per-
pendicular components of the permittivity) does not guarantee a high force value, compared to the one obtained 
for an ǫ-near-zero isotropic absorbing material corresponding to the TE-waves and excluding the term with ǫ′′� .

Our result of the Casimir force differs from that obtained in the case that both objects are made of the same 
 HMM37 in which the force is much greater than that obtained between dielectric materials. This fact indicates 
that the nature of the materials and the frequency dependence of the permittivity could play a role in the value 
of the force. The effect of TE-waves in the Casimir force was also analyzed arriving at the conclusion that the 
force is three orders of magnitude smaller than the one resulting from the TM-waves.

The enhancement of the Casimir force found when ENZ hyperbolic materials are used shows that these 
materials could be advantageous for the use of Casimir’s forces in nanotechnology.

Received: 28 June 2020; Accepted: 14 September 2020

Figure 4.  Casimir force per frequency unit versus frequency in the vicinity of the ǫ⊥-near-zero region 
calculated for the thickness h = 400 nm (red), h = 300 nm (black), and h = 100 nm (blue). Dashed blue line 
shows the Casimir force per frequency unit calculated for an isotropic material with permittivity ǫ = ǫ⊥ , at 
h = 100 nm.

Figure 5.  The Casimir force [N] versus frequency calculated for boron nitride (black), for a material with 
permittivity ǫ = ǫ⊥ (red), and for a material with ǫ = ǫ� (blue).



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16831  | https://doi.org/10.1038/s41598-020-73995-0

www.nature.com/scientificreports/

References
 1. Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291 (2007).
 2. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. B 51, 793 (1948).
 3. Lambrecht, A. The Casimir effect: a force from nothing, Physics World, 29–32, Sept (2002).
 4. Casimir, H. B. G. & Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948).
 5. Sparnaay, M. J. Measurements of attractive forces between flat plates. Physica 24, 751–764 (1958).
 6. Lifshitz, E. M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956).
 7. Dzyaloshinskii, I. E., Lifshith, E. M. & Pitaevskii, L. P. General theory of Van-der-Waals forces. Sov. Phys. Uspekhi 73, 153–176 

(1961).
 8. Milton, K. A. The Casimir effect: recent controversies and progress. Top. Rev. J. Phys. A. 37, R209–R277 (2004).
 9. Parsegian, V. A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 

Cambridge, 2006).
 10. Lamoreaux, S. The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201–236 (2005).
 11. Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photon. 5, 211–221 (2011).
 12. Woods, L. M. et al. Material perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 88, 045003 (2016).
 13. Nefedov, I. S. & Simovski, C. R. Giant radiation heat transfer through the micron gaps. Phys. Rev. B 84, 195459 (2011).
 14. Biehs, S.-A., Tschikin, M. & Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. 

Lett. 109, 104301 (2012).
 15. Maslovski, S. I. & Silverinha, M. G. Ultralong-range Cazimir-Lifshitz forces mediated by nanowire materials. Phys. Rev. A 82, 

022511 (2010).
 16. Maslovski, S. I. & Silverinha, M. G. Mimicking Boyers Cazimir repulsion with a nanowire material. Phys. Rev. A 83, 022508 (2011).
 17. Klimchitskaya, G. L. Normal and lateral Casimir force: advances and prospects. J. of Physics: Conference Series 258, 012001 (2010).
 18. Müller, B. & Krüger, M. Anisotropic particles near surfaces: propulsion force and friction. Phys. Rev. A 93, 032511 (2016).
 19. Manjavacas, A. et al. Lateral Casimir force on a rotating particle near a planar surface. Phys. Rev. Lett. 118, 133605 (2017).
 20. Nefedov, I. S. & Rubi, J. M. Lateral-drag propulsion forces induced by anisotropy. Sci. Rep. 7(1), 6155 (2017).
 21. Liberal, I. & Engheta, N. The rise of near-zero-index technologies. Science 358, 1540–1541 (2017).
 22. Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photon. 11, 149–159 (2017).
 23. Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 

046608 (2004).
 24. Silveirinha, M. G. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ǫ-near-

zero materials. Phys. Rev. Lett. 97, 157403 (2006).
 25. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 

795 (2016).
 26. Caspani, L. et al. Enhanced nonlinear refractive index in ǫ-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).
 27. Rizza, C., Di Falco, A., Scalora, M. & Ciattoni, A. One-dimensional chirality: strong optical activity in epsilon-near-zero metama-

terials. Phys. Rev. Lett. 115, 057401 (2015).
 28. Rodriguez-Fortuo, F. J., Vakil, A. & Engheta, N. Electric levitation using ǫ-near-zero metamaterials. Phys. Rev. Lett. 112, 033902 

(2014).
 29. Chatzakis, I. et al. Strong confinement of optical fields using localized surface phonon polaritons in cubic boron nitride. Opt. Lett. 

43, 2177 (2018).
 30. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pureboron nitride. Nat. Mater. 17, 134 (2018).
 31. Ordin, S. V., Shapurin, B. N. & Fedorov, M. I. Normal lattice vibrations and the crystal structure of anisotropic modifications of 

boron nitride. Semiconductors 32, 924–932 (1998).
 32. S. G. Felinskyi, P. A. Korotkov, G. S. Felinskyi, LFNM**2011, 11-th International Conference on Laser and Fiber-Optical Network 

Modeling, 5–8 Sept., Kharkov, Ukraine, 1–3 (2011).
 33. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).
 34. Lancaster, P. Theory of Matrices (Academic Press, New York and London, 1969).
 35. Lifshitz, E. M. & Pitaevskii, L. P. Statistical Physics: Theory of the Condensed State (Pergamon, Oxford, 1980).
 36. Albaladejo, S., Marqués, M. I., Laroche, M. & Sáenz, J. J. Scattering forces from the curl of the spin angular momentum of a light 

field. Phys. Rev. Lett. 102, 113602 (2009).
 37. Song, G. et al. Casimir force between hyperbolic metamaterials. Phys. Rev. A 95, 023814 (2017).
 38. Vassant, S., Hugonin, J. P., Marquier, F. & Greffet, J. J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–7 (2012).
 39. Vassant, S., Hugonin, J. P. & Greffet, J. J. Quasi-confined ENZ mode in an anisotropic uniaxial thin slab. Opt. Express 27, 12317 

(2019).
 40. Boardman, A. D. et al. Waves in hyperbolic and double negative metamaterials including rogues and solitons. Nanotechnology 28, 

444001 (2017).

Acknowledgements
This article has been written with the support of “RUDN University Program 5-100” and MICIU of the Spanish 
Government under Grant No. PGC2018-098373-B-I00.

Author contributions
I.N. implemented derivation of formulas and calculations. J.M.R. assisted in the mathematical derivations and 
was responsible for the physical interpretation. The text of article was written by both authors.

competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.M.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16831  | https://doi.org/10.1038/s41598-020-73995-0

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Casimir forces exerted by epsilon-near-zero hyperbolic materials
	The model
	Results and discussion
	Conclusions
	References
	Acknowledgements


