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LSD1 is essential for oocyte meiotic progression
by regulating CDC25B expression in mice
Jeesun Kim1,2, Anup Kumar Singh1,2, Yoko Takata1, Kevin Lin1, Jianjun Shen1, Yue Lu1,2, Marc A. Kerenyi3,

Stuart H. Orkin3,4 & Taiping Chen1,2

Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce

the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by

CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling

pathways regulating CDK1 activity are well defined, the functional significance of epigenetic

changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates

histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic

progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption

of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes

fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B,

a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and

also contributes to subsequent spindle and chromosomal defects. Our findings uncover a

functional link between LSD1 and the major signalling pathway governing meiotic progression.

DOI: 10.1038/ncomms10116 OPEN

1 Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville,
Texas 78957, USA. 2 Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, Texas
78957, USA. 3 Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical
School, 450 Brookline Avenue, Boston, Massachusetts 02115, USA. 4 Howard Hughes Medical Institute, Harvard Medical School, 450 Brookline Avenue,
Boston, Massachusetts 02115, USA. Correspondence and requests for materials should be addressed to T.C. (email: tchen2@mdanderson.org).

NATURE COMMUNICATIONS | 6:10116 | DOI: 10.1038/ncomms10116 | www.nature.com/naturecommunications 1

mailto:tchen2@mdanderson.org
http://www.nature.com/naturecommunications


M
eiosis is a specialized cell cycle that occurs in sexually
reproducing organisms. This process, which consists of
two successive cell divisions, meiosis I and meiosis II,

after a single round of DNA replication, halves the chromosome
compliment in gametes. In most mammals, meiosis is initiated in
female germ cells during fetal life, but the process is arrested at
prophase of meiosis I (prophase I) around the time of birth. Even
though oocytes grow significantly in size during folliculogenesis,
prophase I arrest remains in effect until puberty when luteinizing
hormone (LH) induces resumption of meiosis1,2. Oocytes
arrested at prophase I have an intact nuclear envelope known
as the germinal vesicle (GV). GV breakdown (GVBD) marks
resumption of meiosis and, after proceeding through metaphase I,
anaphase I and telophase I, the oocyte extrudes the first polar
body, which marks the completion of meiosis I. Then, the oocyte
directly enters meiosis II and becomes arrested for a second time
at metaphase II (MII) before being released at ovulation.
Resumption and completion of meiosis II occur following
fertilization.

A major regulator of meiotic progression is the maturation-
promoting factor (MPF), a complex consisting of the
cyclin-dependent kinase 1 (CDK1, also known as CDC2) and a
regulatory subunit cyclin B1 (refs 3,4). CDK1 is inactivated when
it is phosphorylated on Thr14 and Tyr15. In mouse oocytes, the
WEE2 (formerly WEE1B) kinase and the CDC25B phosphatase
mediate CDK1 phosphorylation and dephosphorylation,
respectively4. In the follicular environment, oocytes maintain
high levels of cyclic adenosine monophosphate (cAMP), which
activates protein kinase A (PKA) that in turn phosphorylates
WEE2 and CDC25B, resulting in WEE2 activation and CDC25B
cytoplasmic retention5–7. The combined effect maintains low
levels of CDK1 activity required for sustaining prophase I arrest.
The preovulatory LH surge leads to a significant decrease in
oocyte cAMP, which triggers meiotic resumption by alleviating
phosphorylation of WEE2 and CDC25B. Genetic studies have
demonstrated that CDC25B is essential for CDK1 activation and
the resumption of meiosis in mice8. During meiosis, CDC25B
levels show marked fluctuations9,10, suggesting that proper
regulation of CDC25B expression is important for meiotic
progression. How CDC25B expression is regulated during
meiosis is not well understood.

Meiotic progression is accompanied by epigenetic changes. For
example, histone H3 and H4 are globally deacetylated during
meiotic maturation, and H3 Lys4 (H3K4) and Lys9 (H3K9)
methylation exhibit dynamic changes during early stages of
meiosis11–13. Conceptually, epigenetic events may ensure the
appropriate expression of genes involved in meiosis, contribute to
chromosome integrity and chromosome dynamics associated
with meiotic progression, and prepare the genome for gene
expression in the embryo14. However, little is known about the
functional significance of epigenetic changes, the key epigenetic
factors regulating these changes, and the crosstalk between
epigenetic regulation and the signalling pathways involved in
oocyte meiotic progression.

Lysine-specific demethylase 1 (LSD1), also known as lysine (K)
demethylase 1A (KDM1A), was the first lysine-specific demethy-
lase identified15. It is an evolutionarily conserved enzyme, specific
for mono- and di-methyl marks on H3K4 and/or H3K9
(H3K4me1/2 and/or H3K9me1/2), that plays crucial roles in
the germ line of multiple organisms16. In Drosophila, the LSD1
ortholog Su(var)3-3 (also known as dLSD1), a suppressor of
heterochromatic silencing, demethylates H3K4 and is essential for
fertility in both male and female. Its loss leads to a complete
absence of oocytes in female flies and severe defects in
spermatogenesis in male flies17,18. In Caenorhabditis elegans,
disruption of the Lsd1 ortholog spr-5 leads to progressive male

and female sterility over many generations, resulting from failure
to erase H3K4me2 in primordial germ cells19. In mammals, there
are two LSD1 family members, LSD1 and LSD2 (also known as
KDM1B). They primarily demethylate H3K4 (refs 15,20),
although LSD1 has also been shown to demethylate H3K9
when associated with androgen receptor21. LSD2 is specifically
expressed in growing oocytes in mice and plays an essential role
in the establishment of maternal DNA methylation imprints20.
LSD1, which is widely expressed during development and in
somatic tissues, is essential for mouse embryogenesis22,23, and its
role in the germ line has not been explored.

Here we present evidence that LSD1 controls global H3K4me2
levels in oocytes and is essential for fertility of female mice.
Conditional deletion of Lsd1 in growing oocytes substantially
compromises the capacity to sustain prophase I arrest, largely due
to upregulation of CDC25B. Lsd1-null oocytes also exhibit
increased DNA damage, derepression of retrotransposons,
spindle and chromosomal defects, and aneuploidy, with the
majority undergoing apoptosis before the completion of meiosis I.
Our results thus demonstrate that LSD1 plays an essential role in
the regulation of CDC25B expression and chromatin structure in
mammalian oocytes.

Results
LSD1 controls global H3K4me2 in developing oocytes. To
explore whether LSD1 may play a role in the female germ line, we
first examined its expression pattern during oocyte development.
Immunohistochemical (IHC) analysis of paraffin-embedded
sections of ovaries revealed that LSD1 was highly expressed in the
nuclei of oocytes of all preantral (primordial, primary, and
secondary) follicles (Fig. 1a). However, on the formation of
follicular antra, when oocytes acquire meiotic competence
(that is, the ability to resume meiosis), LSD1 levels in oocytes
drastically decreased and often became undetectable shortly
afterwards (Fig. 1a). Although it is unclear how LSD1 levels are
regulated in oocytes, the data suggested a potential role for LSD1
during meiotic progression.

To assess the role of LSD1 in the female germ line, we decided
to delete Lsd1 in oocytes. Because LSD1 deficiency results in early
embryonic lethality22,23, we used the Cre-loxP technology to
disrupt Lsd1 by crossing mice bearing the Lsd1fl conditional
allele24 with Zp3-Cre transgenic mice, which expresses the
Cre recombinase exclusively in growing oocytes25 (Supple-
mentary Fig. 1a). Lsd1fl/fl/Zp3-Creþ female mice were used
as the experimental group, and for simplicity, they will be
referred to as Lsd1 knockout (KO) mice hereafter. Mice
of the other genotypes (Lsd1fl/þ /Zp3-Cre� , Lsd1fl/fl/Zp3-Cre� ,
Lsd1fl/þ /Zp3-Creþ ) produced from the breeding scheme
exhibited no overt phenotypes, and Lsd1fl/þ /Zp3-Cre� female
mice were used as the control group. Genotypes were determined
by PCR (Supplementary Fig. 1b). IHC analysis of Lsd1 KO
ovarian sections revealed that LSD1 was absent in all growing and
fully grown oocytes (although it was detected in some
non-growing oocytes of primordial follicles, consistent with the
timing of Zp3-Cre expression), whereas LSD1 levels were not
altered in granulosa cells (Fig. 1a). Western blot analysis
confirmed the absence of LSD1 in GV oocytes (see Fig. 3a) and
no alterations in LSD1 levels in granulosa cells, as well as in
various somatic tissues, from Lsd1 KO mice (Supplementary
Fig. 1c). Thus, Zp3-Cre-mediated deletion was oocyte specific and
the deletion efficiency was apparently 100%, as reported
previously25.

LSD1 has been shown to erase mono- and di-methyl marks on
H3K4 and H3K9 (refs 15,21). To assess the impact of LSD1
depletion on these histone marks in oocytes, we performed IHC
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analysis using ovarian sections. As shown in Fig. 1b, Lsd1 KO
oocytes had substantially elevated H3K4me2 levels, as compared
with control oocytes, at all developmental stages, with the
exception of non-growing oocytes of primordial follicles (when
Lsd1 deletion had not occurred). In contrast, H3K4me1,
H3K9me1, and H3K9me2 showed comparable levels in Lsd1
KO and control oocytes (Supplementary Fig. 2a). Thus, LSD1
mainly demethylates H3K4me2 in oocytes. The observation that
oocytes at the antral follicle stage, which normally has little LSD1
(Fig. 1a), also exhibited H3K4me2 elevation with Lsd1 deletion
suggested that the H3K4 hypermethylation state that occurred in
preantral oocytes persisted to later stages.

Various histone marks often influence each other and show
coordinated changes. We therefore examined several other
histone marks that have been well characterized in oocytes26.
Consistent with the notion that H3K4me2 correlates with open
chromatin, the levels of acetylation at H3K9 (H3K9ac) and
H3K27 (H3K27ac) were elevated in Lsd1 KO oocytes
(Supplementary Fig. 2b). In contrast, phosphorylation at H3
Ser10 (H3S10ph) and H3 Ser28 (H3S28ph), which are present
and absent in GV oocytes, respectively26, exhibited no alterations
in the absence of LSD1 (Supplementary Fig. 2c).

LSD1 depletion results in precocious meiotic resumption.
Lsd1 KO females were capable of mating with wild-type males,
as evidenced by the presence of vaginal plugs. However, none of
them produced offspring, whereas littermate control mice had
normal numbers of pups (Supplementary Fig. 3a), indicating
that maternal LSD1 is essential for fertility. To determine the
cause(s) of infertility, Lsd1 KO females were superovulated and

mated with wild-type males, and embryos were collected at
various time points during preimplantation development. While
no embryos were recovered from most Lsd1 KO mice, small
numbers (o3) of zygotes were occasionally observed, which
apparently could not develop to the two-cell stage
(Supplementary Fig. 3b). We next asked whether LSD1
deficiency affected oocyte development. When primed by
pregnant mare’s serum gonadotropin (PMSG) at 4–6 weeks of
age, Lsd1 KO and control mice produced comparable numbers
of morphologically normal GV oocytes. However, significantly
fewer MII oocytes were recovered from superovulated Lsd1 KO
mice, as compared with control mice (Supplementary Fig. 3b).
These observations suggested that LSD1 is not essential for
oocyte growth, but may be important for meiotic maturation
after GVBD.

To investigate how LSD1 loss affects oocyte maturation, we
compared the follicular development in control and Lsd1 KO
mice. Ovaries from 1-month-old KO mice exhibited no obvious
abnormalities in morphology and histology, with follicles at
different stages, as well as corpus lutea (Supplementary Fig. 4). At
2 months of age, KO ovaries were moderately larger than control
ovaries, with the presence of more advanced-stage follicles,
suggesting that oocyte development was accelerated in the
absence of LSD1. Afterwards, control ovaries continued to grow
and, by 6 months of age, had reached much larger sizes with
many fully grown oocytes. In contrast, Lsd1 KO ovaries exhibited
no obvious changes in size between 2 and 6 months and, by 6
months, ovarian follicles had been largely depleted (Fig. 2a).
These observations suggested that LSD1 loss led to accelerated
depletion of the oocyte pool, consistent with a premature ovarian
aging phenotype.
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Figure 1 | LSD1 regulates global H3K4me2 in growing oocytes. (a) Immunohistochemical (IHC) analysis showing the levels of LSD1 in oocytes of

primordial, primary, secondary and antral follicles. Ovaries from 6-week-old control and Lsd1 KO mice were stained with anti-LSD1 and then counterstained

with haematoxylin. The nuclei of oocytes are indicated by arrows. (b) IHC analysis of H3K4me2 in developing oocytes of control and Lsd1 KO mice. Scale

bars, 25mm.
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Prophase I arrest is important for sustaining the oocyte
pool27,28. To determine whether the premature ovarian aging
phenotype was due to meiosis defects, we assessed the impact of
LSD1 depletion on meiotic progression. Fully grown GV oocytes,
when removed from their follicular environment, undergo
spontaneous meiotic resumption29, which can be reversibly
inhibited by cAMP phosphodiesterase inhibitors such as
3-isobutyl-1-methylxanthine (IBMX). Following 20 h of culture
in IBMX-containing medium, the vast majority (B90%) of
oocytes isolated from control mice remained arrested at prophase
I with intact GV, whereas only B60% of Lsd1 KO oocytes were at
prophase I, B20% had undergone GVBD and another B20%
were fragmented (Fig. 2b). We also compared the kinetics
of GVBD in the absence of IBMX. GV oocytes collected in

IMBX-containing medium were washed extensively before
culturing. As shown in Fig. 2c, Lsd1 KO oocytes underwent
GVBD substantially more rapidly, with GVBD rates reaching
B75% in 1 h (as opposed to B30% in control oocytes) and nearly
100% in 2–3 h (as opposed to 60–80% in control oocytes). Taken
together, these results indicated that the capacity of oocytes
to sustain prophase I arrest was compromised in the absence
of LSD1.

CDC25B upregulation contributes to meiotic defects. Meiotic
resumption is controlled by the activity of MPF, consisting of
CDK1 and cyclin B1 (refs 3,4). We therefore asked whether LSD1
loss affected the expression and/or activity of CDK1 and cyclin
B1. Western blot analysis revealed that GV oocytes from Lsd1 KO
mice had normal levels of CDK1 and cyclin B1, but significantly
reduced phosphorylation of CDK1 at Tyr15, compared to control
GV oocytes (Fig. 3a). Because Tyr15 phosphorylation leads to
inhibition of CDK1 activity5,30, our results indicated that MPF
was abnormally activated in Lsd1 KO oocytes. To determine the
contribution of CDK1 activation to the observed meiotic
phenotype, we tested the effect of roscovitine, a CDK1
inhibitor, on GVBD rates in oocytes cultured in the absence of
IBMX. As shown in Fig. 3b, roscovitine prevented the enhanced
GVBD rates in Lsd1 KO oocytes, thus confirming that CDK1
activation was responsible for precocious meiotic resumption
caused by LSD1 depletion.

LSD1 plays an important role in the regulation of gene
expression15,22,31–33. It is likely that the meiosis phenotype of
Lsd1 KO oocytes resulted from aberrant expression of essential
genes. We therefore compared the transcriptomes of Lsd1 KO
and control GV oocytes by high-throughput RNA sequencing
(RNA-seq) analysis. Using twofold change as a cutoff
(FDR¼ 0.01), 367 genes were upregulated and 252 genes were
downregulated in Lsd1 KO oocytes (Supplementary Fig. 5a).
Consistent with the notion that LSD1 mainly represses gene
expression, more genes were upregulated than downregulated in
Lsd1 KO oocytes (Supplementary Fig. 5a), and upregulated genes
exhibited higher fold changes than downregulated genes
(Supplementary Fig. 5b). Gene ontology (GO) term analysis of
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Figure 2 | LSD1 depletion in oocytes results in precocious meiotic

resumption. (a) Haematoxylin and eosin (H&E) staining of ovarian

sections. Shown are representative images of ovaries from 2-month- and

6-month-old control and Lsd1 KO mice. Scale bars, 1 mm. (b) Fully grown

GV oocytes isolated from ovaries were cultured in the presence of 200mM

IBMX for 20 h and classified as being GV arrested (based on the presence

of germinal vesicle; grey bar), GVBD-MI (based on the absence of both

germinal vesicle and polar body; white bar), MII (based on the presence of a

polar body; black bar) or fragmented (yellow bar). The average proportion

of oocytes at each stage from three experiments is plotted as a percentage

of the total (left). Examples of GV, GVBD-MI, MII and fragmented oocytes

are shown (right). Scale bars, 50mm. (c) Fully grown GV oocytes were

collected in M2 medium containing IBMX and, following IBMX washout, the

oocytes were cultured in the absence of IBMX and examined hourly to

determine GVBD rates. The data at each time point represent the
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of CDK1. (a) Western blot analysis of LSD1, phospho-Tyr15-CDK1
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the misregulated genes revealed enrichment of pathways
implicated in cell viability, embryonic development and repro-
ductive system development, among others (Supplementary
Fig. 5c). Notably, among the upregulated genes was Cdc25b
(Supplementary Fig. 5d), which encodes a dual-specificity
phosphatase that is essential for meiotic resumption by
dephosphorylating and activating CDK1 (refs 8,34). In
agreement with the RNA-seq results, quantitative reverse
transcription PCR (qRT–PCR) and western blot analyses
confirmed the increases in Cdc25b transcript (B2.7-fold) and

protein (B2.5-fold) levels in Lsd1 KO oocytes, whereas the
transcript level of Wee2, which encodes a kinase that antagonizes
CDC25B by phosphorylating and inactivating CDK1 (refs 5,30),
was not altered (Fig. 4a,b). IHC and immunofluorescence (IF)
analyses provided further evidence for CDC25B upregulation in
Lsd1 KO oocytes (Fig. 4c–e).

To determine whether excess CDC25B was responsible for
precocious meiotic resumption, we assessed the impact of
CDC25B inhibition. When Lsd1 KO GV oocytes were cultured
in the presence of BN82002, a CDC25 phosphatase inhibitor, the
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Figure 4 | Upregulation of CDC25B contributes to precocious meiotic resumption. (a) Quantitative RT–PCR analysis of Lsd1, Cdc25b and Wee2 transcripts

in control and Lsd1 KO GV oocytes. Data are presented as the mean±s.e.m. from three experiments. Statistical comparisons of values were made using

multiple t-test. **Po0.01; ***Po0.001. (b) Western blot analysis of LSD1, CDC25B and a-tubulin (loading control) proteins in control and Lsd1 KO GV

oocytes. Each lane contained 100 GV oocytes. Band intensities were quantified with the ImageJ software and normalized to the a-tubulin signal. Full blots

are provided in Supplementary Fig. 10. (c) IHC analysis of ovaries from control and Lsd1 KO mice showing the levels of CDC25B in oocytes of follicles. The

arrowhead indicates CDC25B accumulation in the nucleus of an Lsd1 KO oocyte. Scale bars, 25mm. (d,e) Immunofluorescence (IF) analysis of CDC25B

in GV oocytes. (d) Representative images of control and Lsd1 KO oocytes stained with anti-CDC25B (green) and DAPI (blue). Scale bars, 40mm.

(e) Quantification of fluorescence intensity of CDC25B. 20 control and 28 Lsd1 KO oocytes were analysed, respectively, and the data are presented as the

mean±s.e.m.. Statistical comparisons of values were made using unpaired t-test. **Po0.01. (f) Fully grown GV oocytes collected from Lsd1 KO and control

mice were cultured for 6 h in IBMX-containing medium with or without the CDC25 phosphatase inhibitor BN82002 (BN), as indicated, and then analysed

by immunoblotting with antibodies against LSD1, pY15-CDK1 and a-tubulin (loading control). Each lane contained 100 oocytes. Full blots are provided in

Supplementary Fig. 11. (g) Control and Lsd1 KO GV oocytes were cultured for 20 h in IBMX-containing medium with or without BN82002 (BN), as indicated,

and the numbers of GV arrested (grey bar), MI (white bar), MII (black bar) and fragmented (yellow bar) oocytes were counted. The average proportion of

oocytes at each stage from three experiments is plotted as a percentage of the total.
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level of CDK1 phosphorylation (pY15-CDK1) was greatly
restored, whereas the pY15-CDK1 level in control GV oocytes
was not affected by BN82002, likely because CDK1 was already
highly phosphorylated in these oocytes (Fig. 4f). Consistent with
the restoration of CDK1 phosphorylation in BN82002-treated KO
oocytes, enhanced GVBD was largely prevented (Fig. 4g).
Collectively, our results supported the idea that precocious
meiotic resumption in Lsd1 KO oocytes was due to abnormal
activation of CDK1, as a result of elevated CDC25B levels.

Most Lsd1 KO oocytes undergo apoptosis during meiosis I. The
defect in sustaining prophase I arrest could contribute to, but not
completely explain, the infertile phenotype of Lsd1 KO female
mice. The fact that KO mice produced relatively normal number
of GV oocytes but substantially fewer MII oocytes (Supple-
mentary Fig. 3b) suggested a major meiotic block
following GVBD. We set out to determine whether LSD1 loss
affected meiotic progression. After superovulation, the vast
majority (B80%) of oocytes collected from the oviducts of con-
trol mice had a clear polar body (arrested at the MII stage),
whereas only a small fraction (B25%) of Lsd1 KO oocytes did.
Rather, a large fraction (B50%) of KO oocytes was fragmented
(Fig. 5a,b). These fragmented oocytes exhibited features of
apoptosis, including cytoplasm condensation, membrane protu-
berances and membrane-enclosed vesicles (Fig. 5a). Indeed,
cleaved caspase-3, an indicator of apoptosis, was readily
detected in oocytes collected from the oviducts of superovulated
Lsd1 KO mice (Fig. 5c). Furthermore, terminal deoxynucleotidyl

transferase dUTP nick end labelling (TUNEL) assays revealed
significantly more TUNEL-positive oocytes in Lsd1 KO ovaries, as
compared with their control counterparts (Supplementary
Fig. 6a,b). Notably, most fragmented oocytes lacked an obvious
polar body (Fig. 5a). Taken together, these results suggested that
although Lsd1 KO oocytes readily underwent GVBD and
resumed meiosis, many of them failed to complete meiosis I and
underwent apoptosis.

To confirm the timing of meiotic defects, GV oocytes were
cultured in maturation medium and meiotic stages were
determined by staining the spindles (a-tubulin) and DNA
(DAPI). After 12 h of culture, B80% of control oocytes
proceeded to the MII stage, as expected. In contrast, the majority
(B65%) of Lsd1 KO oocytes failed to extrude the first polar body
and was arrested at various phases of meiosis I, and only B26%
completed meiosis I (Fig. 5d). These results further indicated that
most Lsd1 KO oocytes experienced a meiotic block before the
completion of meiosis I.

To address whether LSD1 loss simply caused a delay in meiotic
maturation, we cultured GV oocytes for 48 h. As shown in Fig. 5e,
a large fraction (440%) of Lsd1 KO oocytes underwent
fragmentation following prolonged culture. Collectively, our
results indicated that LSD1 loss ultimately led to oocyte apoptosis,
mostly at meiosis I, which likely accounts for the significant
reduction in MII oocytes (Supplementary Fig. 3b).

While prolonged meiotic arrest could lead to oocyte apoptosis,
dysregulation of genes involved in cell survival could also have
contributed to the phenotype. Although Lsd1 KO GV oocytes
were morphologically normal, RNA-seq analysis revealed that
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MI, and MII oocytes (mean±s.e.m. from three experiments). Statistical comparisons of values were made using multiple t-test. **Po0.01; ***Po0.001.

(e) GV oocytes were cultured in maturation medium for 48 h, and the percentages of fragmented oocytes are shown (mean±s.e.m. from three

experiments). Statistical comparisons of values were made using unpaired t-test. ***Po0.001. (f) Quantitative RT–PCR analysis of Lsd1, Bcl2, Bax and Bik

transcripts in GV oocytes from control and Lsd1 KO mice. Data are presented as the mean±s.e.m. from three experiments. Statistical comparisons of values

were made using multiple t-test. *Po0.05; **Po0.01; ***Po0.001.
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differentially expressed genes included those involved in cell
death and apoptosis (Supplementary Fig. 5c). qRT–PCR analysis
confirmed that Lsd1 KO GV oocytes indeed had an increased
abundance of the proapoptotic transcripts Bax and Bik
and a decreased abundance of the antiapoptotic transcript
Bcl-2 (Fig. 5f). Thus, Lsd1 KO oocytes were likely prone to
apoptosis.

Lsd1 KO oocytes exhibit chromosome defects. To further
characterize the meiotic defects, we cultured GV oocytes in
maturation medium for 6 h and carefully examined the spindle
and chromosome structures. While most control oocytes pro-
ceeded through meiosis I normally, Lsd1 KO oocytes frequently
harboured abnormal spindles with misaligned and lagging chro-
mosomes. Among all KO oocytes examined, B40% had clear
abnormalities in spindle organization and B75% exhibited
obvious defects in chromosome congression, alignment and/or
segregation (Fig. 6a,b). We also examined kinetochore-micro-
tubule attachment by double immunostaining with
anti-a-tubulin (microtubule) and CREST antisera35, which stain
centromeres, where kinetochores assemble. Consistent with the
spindle and chromosomal abnormalities described above,
kinetochores and microtubules were frequently dissociated in
Lsd1 KO oocytes (Supplementary Fig. 7).

CDC25B has been implicated in spindle formation during
mitosis and meiosis36,37. IF analysis revealed that CDC25B was
accumulated in the spindle apparatus of oocytes at MI and MII
stages (Supplementary Fig. 8), consistent with previous
reports9,10. We therefore asked whether increased CDC25B
levels in Lsd1 KO oocytes contributed to the spindle
abnormalities during meiosis. When Lsd1 KO GV oocytes were
cultured in the presence of the CDC25 inhibitor BN82002, the
frequencies of abnormal spindle and chromosomal defects were
significantly decreased, although the defects were not fully
prevented (Fig. 6c). These results suggested that CDC25B
accumulation partly contributed to the spindle and
chromosomal abnormalities observed in Lsd1 KO oocytes,
although we cannot completely rule out the possibility that the
partial effect was due to incomplete inhibition of CDC25B by
BN82002 (Fig. 4f).

A previous report showed that disruption of the H3K4
methyltransferase gene Prdm9 (also known as Meisetz) in mice
results in infertility in both sexes due to severe impairment of the
double-strand break (DSB) repair pathway12, suggesting that
maintenance of appropriate H3K4 methylation levels is important
for genome integrity in germ cells. LSD1 depletion in oocytes led
to a substantial increase in global H3K4me2 (Fig. 1b), which may
cause genomic instability. We measured DNA DSBs in GV
oocytes by the presence of phosphorylated histone H2AX
(g-H2AX) and found that the number of DSBs in Lsd1 KO
oocytes was substantially elevated compared with control oocytes
(Fig. 6d,e). LSD1 depletion also led to increased levels of
transcripts for some retrotransposons, including intracisternal A
particles (IAP) and long interspersed nuclear element-1 (Line-1;
Fig. 6f), suggesting that LSD1 is required for their suppression in
oocytes. Retrotransposon derepression may have contributed to
the increased DNA damage observed in Lsd1 KO oocytes, as
retrotransposon activation and DSBs are often correlated38. The
causal relationship between chromosome abnormalities and
aberrant spindle structures remains to be determined. It has
been well established that chromosome integrity and dynamics
and spindle formation depend on each other during meiosis39,40.
Given that some oocytes exhibited chromosome defects without
obvious spindle aberrations in Lsd1 KO oocytes (Fig. 6a,b), it is
tempting to speculate that both abnormal spindles and DNA

damage contributed to the chromosome defects, which likely
played an important part in inducing meiotic block.

Lsd1 KO MII oocytes are mostly aneuploid and unfertilizable.
Although most Lsd1 KO oocytes experienced a meiotic block and
underwent apoptosis during meiosis I, some of them completed
meiosis I and developed to the MII stage (Fig. 5a–d). However, IF
analysis revealed that the majority (B70%) of Lsd1 KO MII
oocytes had chromosome defects and a substantial fraction
(B30%) also exhibited abnormal spindle organization (Fig. 7a,b),
similar to KO oocytes at meiosis I (Fig. 6a,b). Conceivably, mis-
alignment and missegregation events during meiosis I could cause
aneuploidy, which is a major cause of infertility39,41. Indeed, Lsd1
KO MII oocytes showed a markedly increased aneuploidy rate
(480%), relative to MII oocytes from control mice (B20%)
(Fig. 7c).

We assessed the developmental competence of Lsd1 KO MII
oocytes that were morphologically ‘normal’ by parthenogenetic
activation42. Following strontium chloride exposure, control MII
oocytes were efficiently activated, as evidenced by the formation
of pronuclei. In contrast, most Lsd1 KO MII oocytes failed to
form pronuclei (Fig. 8a,b), suggesting that most Lsd1 KO MII
oocytes could not be fertilized. To further assess the fertilizability
of Lsd1 KO oocytes, we derived MII oocytes by culturing GV
oocytes and performed in vitro fertilization experiments. After
24 h of culture, over 80% of control GV oocytes developed to MII
oocytes, B60% of which were successfully fertilized by wild-type
sperm, judged by pronuclear formation, whereas only B30% of
Lsd1 KO GV oocytes matured to the MII stage and considerable
fractions were arrested at MI or fragmented, and the fertilization
rate (among all MII oocytes) was o10% (Fig. 8c–e). To
determine whether inhibition of CDC25B could improve oocyte
maturation and fertilization rates, Lsd1 KO GV oocytes were
matured in the presence of the CDC25 phosphatase inhibitor
BN82002 and then inseminated. While BN82002 markedly
facilitated Lsd1 KO oocyte maturation (B60% developed to
MII stage), the fertilization rate was not improved (Fig. 8c–e).
Thus, even though a small number of Lsd1 KO oocytes developed
to MII oocytes, they were mostly unfertilizable, likely due to
severe chromosomal defects.

Discussion
Progression of meiosis is controlled by unique gene expression
programs and involves marked chromatin remodelling. Epige-
netic mechanisms, such as posttranslational modifications of
histones, play crucial roles in gene expression and chromatin
structure. While progress has been made in documenting changes
in histone modifications during meiosis14, the functional
significance of these changes and the key epigenetic regulators
involved in meiosis (especially during female germ cell
development) are poorly understood. In this study, we
demonstrate that LSD1 controls global H3K4me2 levels in
mouse oocytes and regulates the expression of CDC25B, a key
component of the signalling pathway that governs meiotic
progression. We provide evidence that upregulation of CDC25B
in Lsd1-null oocytes, which leads to activation of CDK1, is largely
responsible for precocious resumption of meiosis. Even though
Lsd1-null oocytes readily undergo GVBD, they frequently exhibit
spindle and chromosomal defects, with most of them being
arrested at meiosis I and undergoing apoptosis. The small
numbers of oocytes that survive and develop to the MII stage also
exhibit high frequencies of chromosomal aberrations and
aneuploidy, making these oocytes mostly unfertilizable. Our
data suggest that upregulation of CDC25B partially contributes to
the spindle and chromosomal abnormalities. Other consequences
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of LSD1 loss and H3K4me2 elevation, including derepression of
retrotransposons, DNA damage, defects in chromosome
dynamics, and dyregulation of other genes, likely also play
important roles in chromosomal defects and apoptosis (Fig. 9).

It is well established that CDC25B activation plays a critical role
in meiotic resumption7,8,34. In addition to its activity, CDC25B
levels fluctuate during meiotic maturation. Specifically, CDC25B
level is relatively low in GV oocytes, exhibits an elevation at GVBD,
and is substantially reduced at metaphase I9,10. These observations
suggest that regulation of CDC25B expression is an important
mechanism that controls the timing of meiotic resumption.

Although the regulatory mechanisms controlling CDC25B levels
are not well understood, enhanced translation and protein
degradation have been implicated in the dynamic changes of
CDC25B levels at GVBD and metaphase I, respectively9. Our
results indicate that LSD1 plays an essential role in keeping
CDC25B below a threshold level in growing oocytes to maintain
prophase I arrest. The drastic decrease of LSD1 in oocytes at the
antral follicle stage, when meiotic competence is acquired, likely
contributes to the accumulation of CDC25B required to induce
meiotic resumption. Because loss of LSD1 results in increases in
both Cdc25b transcript and protein, LSD1 likely represses
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Cdc25b transcription. While the paucity of material makes it
difficult to assess whether the Cdc25b gene is a direct target of
LSD1 in oocytes, chromatin immunoprecipitation followed
by high-throughput sequencing (ChIP-seq) analysis of embryonic
stem cells has revealed LSD1 binding at the promoter region
of Cdc25b43,44, suggesting direct regulation of Cdc25b transcription
by LSD1.

Normally, once meiotic resumption is induced, CDC25B level
quickly decreases, likely due to proteasome-mediated degrada-
tion9. However, in Lsd1-null oocytes, high levels of CDC25B
persists throughout all stages of meiosis, suggesting that CDC25B
degradation may also be impaired. Interestingly, RNA-seq and
qRT–PCR analyses reveal that Cdh1 is downregulated in
Lsd1-null oocytes. CDH1 (also known as FZR) is a cofactor of
the anaphase-promoting complex/cyclosome (APC/C), an E3
ubiquitin ligase that targets specific substrates, including cyclin B1
and CDC25B, for degradation45,46. Despite the marked activation
of CDK1 and reduced CDH1 levels, we did not observe any
pronounced increase in cyclin B1 levels in Lsd1-null oocytes
(Fig. 3a). Nevertheless, it is possible that decreased APC/C
activity, as a result of CDH1 reduction, has contributed to the
failure to degrade CDC25B after GVBD. Given the enrichment of
CDC25B in the spindle apparatus during meiosis (Supplementary
Fig. 8) and the previous reports implicating the involvement of
CDC25B in spindle formation during mitosis and meiosis36,37,
failure to degrade CDC25B after GVBD may have played a role in
spindle aberrations observed in Lsd1-null oocytes. Consistent
with this notion, treatment of Lsd1-null oocytes with a CDC25
inhibitor partially rescues the spindle and chromosomal defects
and facilitates meiotic maturation (Figs 6c and 8c,d).

In addition to regulating gene expression, LSD1 is likely a key
factor that regulates chromatin structure. We show that depletion
of LSD1 in oocytes results in a substantial increase in global
H3K4me2 (Fig. 1b) and concomitantly, increased histone
acetylation (Supplementary Fig. 2b), implying a generally
open chromatin state. While chromatin condensation (to form

chromosomes) occurs at GVBD in Lsd1-null oocytes, the
chromosomes may not be completely normal and thus may
affect subsequent meiotic progression. The open chromatin state
likely has also contributed to increased DNA damage and
derepression of retrotransposons observed in Lsd1-null oocytes.

Methods
Mice. Experimental mice were maintained on a mixed C57BL/6 and 129 back-
ground. They were used in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory animals, with Institutional Care
and Use Committee-approved protocols at The University of Texas MD
Anderson Cancer Center (MDACC). Lsd1fl/fl/Zp3-Creþ (Lsd1 KO) mice and
Lsd1fl/þ /Zp3-Cre� (control) littermates were produced by crossing mice bearing
the Lsd1fl allele24 with Zp3-Cre transgenic mice (Supplementary Fig. 2a). Mice were
genotyped by PCR using genomic tail DNA (Supplementary Fig. 2b). All primers
used for genotyping and other applications are listed in Supplementary Table 1.

Oocyte maturation and parthenogenetic activation. Fully grown GV oocytes
were obtained from the ovaries of 4–6-week-old female mice 48 h after intraper-
itoneal injection of 5 IU of PMSG (Sigma). Ovaries were placed in a Petri dish with
prewarmed (37 �C) M2 medium (Invitrogen) supplemented with IBMX (Sigma)
so as to prevent oocytes from undergoing GVBD. GV oocytes were released by
puncturing antral follicles with a fine needle on the stage of a dissecting
microscope. To obtain MII oocytes, 5 IU of human chorionic gonadotrophin
(hCG, Sigma) was administered 48 h after PMSG injection. Mice were euthanized
16 h after hCG injection, and oocytes were collected from the oviducts and released
into a hyaluronidase/M2 solution for removal of the cumulus cells. For in vitro
maturation, oocytes were washed and cultured in IBMX-free M16 medium
(Millipore) for various periods of time at 37 �C in 5% CO2 atmosphere.
Parthenogenetic activation of MII oocytes was achieved by exposing oocytes
into Ca2þ -free media containing 10 mM strontium chloride (SrCl2, Sigma)
for 7 h (ref. 42).

In vitro fertilization. Epididymis was dissected into prewarmed (37 �C) human
tubal fluid (HTF). Four microlitre of fresh sperm were added to a 200-ml HTF drop
covered with mineral oil and capacitated for 2 h in the incubator before adding
oocytes. The oocytes were added directly to the sperm suspension and incubated
for 7 h at 37 �C, 5% CO2 in HTF.

Embryo collection. Mice were superovulated and fertilized by wild-type males,
and checked for the presence of vaginal plugs. E0.5 embryos (zygotes) were
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collected from the oviducts and released into a hyaluronidase/M2 solution
for dissociation. E1.5 (2-cell) embryos were flushed out of the infundibula
of the oviducts, and E3.5 embryos (blastocysts) were flushed out of
the uteri.

Histological analysis. Ovaries were collected and fixed in formalin overnight,
processed, and embedded in paraffin by the Pathology Core Services Facility at
MDACC using standard protocols. Ovaries were serially sectioned at 5 mm
and stained with hematoxylin and eosine (H&E) or with periodic acid-Schiff
(PAS)-haematoxylin. IHC was performed using standard protocols. The antibodies
used are listed in Supplementary Table 2.

Immunofluorescence. Oocytes were fixed in 4% paraformaldehyde in PBS for
30 min at room temperature and permeabilized for 15 min in 0.1% Triton X-100
in PBS at room temperature. Antibody staining was performed using standard
protocols. The antibodies used are listed in Supplementary Table 2.

Western blot analysis. Hundred to 150 oocytes were collected, washed
in PBS containing 1% polyvinylpyrrolidine (PVP) and frozen in SDS sample buffer.
Western blot was performed using standard protocols. The antibodies used are
listed in Supplementary Table 2.

Chromosome spreads. Oocytes were placed in hypotonic solution (1% sodium
citrate) for 20 min and fixed by methanol: glacial acetic acid (3:1). Chromosome
spreads were visualized with Giemsa staining.

Quantitative RT–PCR. Total RNA was extracted from oocytes using the PicoPure
RNA Isolation Kit (Life Technologies) according to the manufacturer’s instruction,
followed by reverse transcription (RT) using Superscript RT kit (Bio-Rad) to
generate cDNA libraries. Quantitative RT–PCR was performed using iTaq
Universal SYBR Green Supermix with ABI 7900 Real-Time PCR system
(Applied Biosystems) using primers for the following genes and retrotransposons:
Lsd1 (NM_133872), Cdc25b (NM_001111075), Wee2 (NM_201370), Bcl2
(NM_009741), Bax (NM_007527), Bik (NM_007546), IAP, Line-1, MLV,
and MTA. The primers used for quantitative RT–PCR analyses are listed in
Supplementary Table 1.

RNA-seq analysis. For RNA-seq analysis, three biological replicates were
prepared for each genotype. Each sample, which contained 100 GV oocytes
collected from 2–3 mice, was lysed directly in 1 ml of prelude direct lysis buffer
(Nugen). RNA was then subject to amplification using the ovation RNA-seq system
v2 (Nugen). Amplified cDNA was fragmented using Covaris and paired-end
libraries were then constructed using the TruSeq RNA Sample Preparation Kit v2
(Illumina) starting from end repair. The libraries were sequenced using a 2� 76
bases paired end protocol on the Illumina HiSeq 2000 instrument, generating
20–27 million pairs of reads per sample. Each pair of reads represents a cDNA
fragment from the library. The reads were mapped to mouse genome (mm9) by
TopHat2 (ref. 47). The overall mapping rate is 60–90%. The number of fragments
in each known gene from RefSeq database48 (downloaded from UCSC Genome
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Browser) was enumerated using htseq-count from HTSeq package (version 0.5.3p9,
http://www-huber.embl.de/users/anders/HTSeq/). The differential expression
between conditions was statistically accessed by R/Bioconductor package DESeq49.
Genes with false discovery rater0.01 and fold change Z2 were called significant.
Gene clustering and heatmap were done by Cluster 3.0 and TreeView. GO analysis
was performed using Ingenuity Pathway Analysis (IPA) software.

Statistical analysis. Data were collected from at least three independent experi-
ments unless otherwise specified. Values were analysed by one-way ANOVA,
unpaired t-test or multiple t-test, and Po0.05 was considered statistically sig-
nificant. The P values for GO analysis were calculated using the right-tailed Fisher’s
Exact Test by IPA.
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