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Abstract: Unstructured, ad libitum drinking may predispose some athletes to start exercise already
slightly hypohydrated (decreased body water). The impact of pre-exercise mild hypohydration on
subsequent swimming performance is still unknown. Hence, the goal of this study was to examine its
effect on peak force production on the starting block and 100 m front crawl swimming performance
in competitive university-level swimmers. At least one hour after having been passively exposed to
heat where a body mass loss of 1.5% was induced or euhydration (normal body water) maintained,
nine participants (age: 22 ± 2 years) underwent an assessment of their peak force production
on the starting block and 100 m front crawl performance. One hour following hypohydration,
rectal temperature had returned to baseline in each condition. Urine osmolality and specific gravity
were higher (p < 0.05) with hypohydration than euhydration (995 ± 65 vs. 428 ± 345 mOsmol/kg;
1.027 ± 0.003 vs. 1.016 ± 0.007 g/mL) prior to exercise testing, as was perceived thirst. Swimming
performance (p = 0.86) and peak force production (p = 0.72) on the starting block did not differ
between the hypohydration and euhydrated condition (63.00 ± 4.26 vs. 63.09 ± 4.52 s; 1322 ± 236
vs. 1315 ± 230 N). The current results indicate that mild hypohydration, which may occur with ad
libitum drinking, does not impede peak force production on the starting block and 100 m front crawl
performance in university-level competitive swimmers. Planned drinking is not required prior to
such an event.
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1. Introduction

Swimming has been on the program of the Summer Olympic Games since the first edition of
the Games in 1896 [1] and is an extremely popular sport throughout the world. Among all events,
the 100 m front crawl is often considered to represent the blue-ribbon race in competitive swimming.
At the present moment, the 100 m front crawl long-course world record is 46.91 s, with the second and
third place finishers trailing by only 0.21 and 0.34 s, respectively. The fourth place finisher missed
the first and third place of the podium by only 0.36 and 0.02 s, respectively [2]. This event requires a
combination of muscle power and strength to produce a high take-off horizontal velocity at the starting
block, which plays a critical role in 100 m swimming performance [3,4], and muscle anaerobic capacity
and endurance to maintain a high swimming velocity throughout the distance [5–7].
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It is generally not the habit of athletes to structure their intake of fluid before exercise, and ad
libitum drinking may occasionally cause hypohydration (decreased body water) prior to exercising [8,9].
Competitive adolescent [10,11], as well as adult [12,13] swimmers have been demonstrated to report to
the training pool for a training session already hypohydrated, based on urinary markers of hydration,
i.e., with a urine specific gravity (USG) ≥ 1.02 g/mL or urine osmolality (Uosm) ≥ 700 mOsmol/kg [14].
Although unknown, these observations suggest that some competitive swimmers may also engage
in a competition hypohydration. Moreover, it is not a rare occurrence that swimmers compete in
multiple events during a swimming contest. The excitement of the day combined with the multiple
cool-downs, warm-ups and changing periods may provide insufficient time to reverse hypohydration,
putting the athlete under a situation where he/she may participate in more than one swimming event
hypohydrated. Therefore, the impact of pre-exercise hypohydration in swimmers is not to be mitigated
and requires attention.

The impact of hypohydration on high-intensity muscle performance has been mostly examined
during land-based exercise. [15,16]. Two studies have looked into the effect of drinking on repeated
50 or 100 m swimming performances during a regular training session. Whereas Taimura et al. [17]
showed that drinking water during training improves swimming performance, compared with no fluid
intake, Briars et al. [18] did not. No study has yet examined the impact of pre-exercise hypohydration
on a single distance event recognized by the International Swimming Federation (FINA).

In a meta-analysis, Savoie et al. [16] reported that hypohydration of on average 3% body mass
decreases anaerobic power and strength by 6%, as well as muscle endurance by 8%. Jones et al. [19]
demonstrated that hypohydration of 3% body mass reduces upper-body 30 s Wingate performance
by 7%, compared with euhydration (normal body water). A potential limitation of those studies is
that most produced hypohydration levels >2% body mass, which are unlikely to be representative
of the true state of hypohydration in which an athlete may enter a training session or competition.
Indeed, it is reasonable to assume that athletes would not let themselves reach a relatively strong
and persistent thirst sensation prior to training or a competition [20,21], and this threshold usually
sets in at a hypohydration level ≥2% body mass [22]. A state of hypohydration of 1.5% body mass,
which is higher than the normal daily variation in body water (i.e., ≤1% [23]), yet lower than the
thirst threshold, may represent a reasonable and realistic hypohydration level encountered by athletes
during free-living conditions while drinking ad libitum.

Given the substantial impact that hypohydration may have on muscle performance vs. the tight
margins of time for podium exclusion, understanding the degree to which hypohydration could
impact a swimmer’s performance is essential for the athletes, coaches and sports dietitian looking
for optimal race preparation and performance. Therefore, the aim of this study was to examine the
effect of mild hypohydration (equivalent to 1.5% body mass loss) on 100 m front crawl performance
and starting block peak force production in university-level competitive swimmers. We hypothesized
that 100 m front crawl performance and starting block peak force production would be impaired by
mild hypohydration.

2. Materials and Methods

2.1. Participants

Healthy swimmers (7 men and 2 women) from the University of Sherbrooke swimming team
participated in this study, which was approved by the University of Sherbrooke Institutional Review
Board. All experimental procedures were explained, and the participants provided written informed
consent before the preliminary visit. The participants’ physical, physiological, anthropometric and
training characteristics are presented in Table 1.
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Table 1. Physical, physiological, anthropometric and training characteristics of participants.

Characteristics Mean ± SD

Age (year) 22 ± 2

Height (cm) 174 ± 6

Body mass (kg) 71 ± 9

Fat mass (%) 18 ± 8

Body mass index (kg/m2) 23.5 ± 2.4

Lean mass (%) 82 ± 8

Lower limb lean mass (kg) 21 ± 3

Resting systolic blood pressure (mmHg) 123 ± 9

Resting diastolic blood pressure (mmHg) 71 ± 8

Resting heart rate (beats/min) 68 ± 11

Training experience (year) 10 ± 3

Training volume (h/week) 17 ± 7

Personal best on 100 m front crawl (long-course) (s) 60.4 ± 3.4

Ratio of personal best time/world record time 1.29 ± 0.07

SD: standard deviation.

2.2. Experimental Design

After a preliminary visit, participants took part in: (1) three familiarization trials (every three
days); and (2) two experiments (spaced by seven to ten days), which consisted of blocks of passive heat
exposure to induce a dehydration of 1.5% body mass through sweat loss, followed by a 1 h passive
recovery period and then a testing session to evaluate, first, the force produced by the lower limbs on
the starting block and, second, the 100 m front crawl performance. Both the familiarization trials and
experiments always started at the same time of day in the afternoon (1:00 pm). Hydration conditions
were evaluated using a randomized, crossover and counterbalanced study design. Women underwent
the experiments during the follicular phase of their menstrual cycle, i.e., the period ranging from the
first day of menstruation + the following 13 days.

2.3. Preliminary Visit

During the preliminary visit, participants’ physiological, physical, training and anthropometric
characteristics were assessed. Training characteristics were determined with a questionnaire.
Post-void body mass was measured to the nearest 20 g using an electronic balance (BX-300+,
Atron Systems, West Caldwell, NJ, USA) and height using a wall stadiometer. Both fat mass and
lean mass (LM) were assessed with dual-energy X-ray absorptiometry (Lunar Prodigy, GE Healthcare,
Madison, WI, USA). After a period of 3 min of seated rest, resting heart rate and blood pressure were
measured using an automatic sphygmomanometer (Welch Allyn, Skaneateles, NY, USA).

2.4. Familiarization Trials

These trials were performed to familiarize the participants with all the experimental procedures
and to reduce any learning effect that usually becomes negligible after two familiarization trials [24].
A third familiarization trial was performed to calculate the coefficient of variation (CV) of the different
performance tests between the second and third familiarization trial. For each of the familiarization
trial, participants first underwent a standardized 30 min warm-up period, then three jumps on the
force plate each interspaced by a 2 min recovery period and, finally, after a last a 2 min recovery period,
the 100 m front crawl.
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2.5. Pre-Experimental Procedures

Participants kept and filled out a fluid and diet log over the 24 h prior to the first familiarization
trial and then replicated it over the last 24 h prior to the remaining familiarization trials and experiments.
Participants consumed 250 mL of water 60 min prior to bedtime, which was standardized prior to all
familiarization trials and experiments. The same amount of water was also consumed 60 min prior to
all familiarization trials and experiments. Participants were allowed to consume caffeine-containing
products to prevent withdrawal-associated symptoms; however, the amount consumed within
participants was always similar prior to the familiarization trials and testing periods. Consumption of
dietary supplements and strength training were forbidden for 48 h prior to all familiarization trials
and experiments. Throughout the study period, participants were asked to keep their normal training
routine, except during the last 8 h prior to the familiarization trials and experiments, where they were
requested to refrain from training.

2.6. Experimental Procedures

2.6.1. Arrival at the Laboratory

At arrival, participants provided a urine sample (for USG and Uosm analyses), and their post-void
body mass was taken with only their competitive swimsuit on. The mass of the swimsuit was then
subtracted to obtain a baseline body mass. This body mass was taken as the nude, baseline, euhydrated
body mass from which a 1.5% hypohydration level was calculated. They then inserted a telemetric
probe (CorTemp, HQ Inc, Palmetto, FL, USA) just passed the anal sphincter [25]. Before entering the
environmental chamber, maintained at 45 ◦C and 20% relative humidity (RH), and while wearing only
a swimsuit, rectal temperature was measured, and participants were asked to provide their perceptions
of thirst [26] and heat stress [27].

2.6.2. Heat Exposure and Hypohydration

Body mass loss was induced by passive sweating, while alternating between blocks of 25 min of
seated heat exposure and 2 min recovery blocks outside the environmental chamber (~20–21 ◦C
and 30% RH), until participants had accumulated a loss of body mass of 1.5%. A passive,
not active dehydration technique was chosen to not induce any muscle fatigue prior to exercise,
thereby maximizing the validity of the performance outcomes. Moreover, in comparison to active
dehydration, passive dehydration reduces the release of metabolic water into the body water pools,
thereby enabling obtaining a tighter relationship between body mass loss and body water loss.
Induction of hypohydration the evening before the experiments was ruled out to not disrupt athletes’
sleeping quality because of thirst. Water restriction only the day before the experiments was deemed
not to be an effective strategy due to the difficulty in effectively controlling hypohydration level [28].

While inside the environmental chamber, measurements of rectal temperature, perceived thirst
and heat stress were taken at min 24 of each block. During the recovery blocks, participants voided
their bladder and dried themselves with a dry-clean towel, and measurements of body mass were
taken with participants wearing their swimsuit only. Body mass was always corrected for the mass
of the swimsuit. However, a pilot study showed that swimsuits retained an insignificant amount
of moisture during the heat exposure periods. Shortly (2 min) after re-entering the environmental
chamber, participants received an amount of water (provided at 35 ◦C) equivalent to that lost through
sweat (euhydration condition only) and urine (euhydration and hypohydration conditions) during
the preceding heat exposure block and recovery period. If no urine was produced, participants in the
hypohydration condition were allowed to rinse their mouth (to reduce dry mouth and thirst sensation)
with 25 mL of water.
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2.6.3. Recovery Period

Following heat exposure, participants remained seated for 60 min in a room held at ~20–21 ◦C with
30% RH. This passive recovery period aimed to decrease core temperature to values comparable to their
individual baseline level. At the end of the recovery period, participants voided their bladder, collected
a midstream urine sample, were weighed and had their rectal temperature measured. They were then
provided water in an amount equivalent to their accumulated body mass loss during the recovery
period, to restore euhydration or the 1.5% body mass loss.

Following the recovery period, participants moved to the swimming pool, which was ~200 m
away from the laboratory, and then completed a standardized warm-up consisting of 15 min of dry land
stretching and dynamic exercises followed by 15 min of exercises in the water where participants made
laps while controlling their own speed (total volume of 800 m performed at low- to high-intensity).
Following the warm-up, participants voided their bladder, collected a midstream urine sample,
were weighed, had their rectal temperature measured, removed the rectal telemetric probe and then,
after 2 min of recovery, underwent measurements of their force produced on the starting block followed,
after 2 min of additional rest, by the 100 m front crawl.

2.7. Measurements

Urine specific gravity was determined using a digital refractometer (PAL-10S, Atago, Bellevue,
WA, USA) and Uosm with the freezing point depression technique (Micro Osmometer, Osmette,
Precision Systems Inc., Natick, MA, USA). The force produced on the starting block was measured
with an AMTI portable force plate [29] (OR6-6-1000, Watertown, MA, USA) calibrated before each
experiment, which was then fitted and adapted to the starting block to keep the standard height from
the water (0.7 m) and inclination (10º). The forces recorded by the force plate were first transformed
to correct for the force plate inclination. Then, the peak resultant force (PFres) was calculated
using the vertical (Fver) and horizontal (Fhor) components as indicated in West et al. [4], using the
following equation:

PFres =
√(

Fhor2 + Fver2
)
, (1)

Participants used a rear-weighted kick start position. The 100 m front crawl was carried out
in the first swimming lane of a 50 m swimming pool. Water temperature was maintained at 28 ◦C.
The performance times were obtained in accordance with FINA regulations by averaging the times
measured by three timekeepers, which were placed immediately beside the starting block to have an
unobstructed view of the wall. The start signal was given by a qualified official, in accordance with
FINA regulations, as follows: (1) on the whistle, swimmers climbed on the starting block; (2) the starter
sent the command “Take your marks”; (3) the swimmers positioned themselves and kept a stationary
position; (4) the starter called the starting signal “Go”.

3. Statistical Analysis

Normally distributed data (assessed with a Shapiro–Wilk test) were analyzed using either paired
t-tests, one way repeated measures analysis of variance (ANOVA) or two way (condition × time)
repeated measures ANOVA. In cases where sphericity was violated, Greenhouse–Geisser corrections
were applied. A Wilcoxon signed ranks test, using the asymptotic test to calculate significance, were used
for abnormally distributed data. Because not all participants could produce urine at all collection points,
urine-related variables were analyzed using a linear mixed-effects model. When statistically significant
time or interaction effects were detected, multiple pairwise comparisons were performed and corrected
with the false discovery rate procedure. An intraclass correlation coefficient was measured to assess
inter-rater reliability for the 100 m front crawl performance time. With nine participants, the probability
to detect a statistically significant condition effect for the 100 m front crawl performance was 80%,
based on a typical error of measurement of 0.3 s (corresponding to that measured between the second
and third familiarization trial) and a minimal difference between conditions of 0.45 s (corresponding to



Sports 2020, 8, 133 6 of 12

1.5 times the typical error of measurement). Statistical analyses were performed using the IBM SPSS
Statistics software (Version 21, New York, Armonk, NY, USA). The threshold for statistical significance
was set at 95% (α ≤ 0.05). Results are presented as means ± the standard deviation (SD).

4. Results

4.1. Participants’ Hydration Status at Arrival to the Laboratory

Participants were adequately and similarly hydrated before each experiment, as supported by
the lack of difference in USG (1.016 ± 0.004 vs. 1.016 ± 0.004 g/mL, p = 0.63), Uosm (507 ± 180 vs.
503 ± 192 mOsmol/kg, p = 0.91), urine production (219 ± 18 vs. 218 ± 27 mL, p = 0.91) and body mass
(71.2 ± 8.2 vs. 71.3 ± 8.9 kg, p = 0.65) between the euhydrated and hypohydrated condition.

4.2. Heat Exposure Duration and Hydration Status

The time to achieve the targeted loss of body mass, which takes into account the recovery
periods, was 99 ± 13 min and 102 ± 22 min (p = 0.68) for the euhydrated and hypohydrated condition,
respectively. Figure 1 shows the changes in USG (A) and Uosm (B) throughout the experiments, and as
expected, a time, condition and interaction effect (all p < 0.01) was observed for both variables. Prior to
starting the testing periods, USG was 1.016 ± 0.007 g/mL and Uosm 428 ± 345 mOsmol/kg with the
euhydrated condition, compared to 1.027 ± 0.003 g/mL (p < 0.01) and 995 ± 65 mOsmol/kg (p < 0.01)
with the hypohydrated condition, respectively.
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4.3. Rectal Temperature

The changes in rectal temperature during the experiments are illustrated in Figure 2. There was a
condition (p = 0.02) and time (p < 0.01), but no interaction (p = 0.87) effect between hydration conditions.
Following the 1 h recovery period, rectal temperature had returned to baseline for both hydration
conditions (p = 0.91).
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4.4. Perceived Thirst and Heat Stress

Perceived thirst and heat stress data are reported in Table 2. A time (p < 0.01), condition (p < 0.01)
and interaction (p = 0.04) effect was observed in the change in perceived thirst between hydration
conditions. Following heat exposure (p = 0.04) and prior to testing (p = 0.03), perceived thirst was
higher while hypohydrated than euhydrated. On the other hand, a time (p < 0.01), but no condition or
interaction effect was observed between hydration conditions for perceived heat stress.

Table 2. Perceived thirst and perceived heat stress immediately before heat exposure, after heat
exposure, post-heat exposure and prior to testing while being euhydrated and hypohydrated. Values
are means ± SD.

Variables (AU) Hydration Conditions Time-Period

Pre-HE Post-HE 1 h Post-HE Pre-testing

Perceived thirst
Euhydrated 3.3 ± 0.9 4.7 ± 2.3 2.9 ± 1.6 3.9 ± 1.5 *¶&

Hypohydrated 3.3 ± 1.0 6.4 ± 1.5 6.1 ± 1.2 5.1 ± 1.6

Perceived heat stress
Euhydrated 3.9 ± 1.3 5.1 ± 1.4 2.8 ± 0.9 3.1 ± 1.1 *

Hypohydrated 3.6 ± 0.8 5.5 ± 1.2 3.3 ± 0.7 3.3 ± 1.0

*: time effect; ¶: condition effect; &: interaction effect. AU: arbitrary units; Pre-HE: pre-heat exposure; Post-HE:
post-heat exposure.

4.5. 100 m Front Crawl

There was no order effect (p = 0.52) in performance. The inter-rater reliability for the 100 m
front crawl time measurement was perfect at r = 1.00. There was no difference in 100 m front crawl
performance between the euhydrated (63.09 ± 4.52 s) and hypohydrated (63.00 ± 4.26 s) condition
(p = 0.86), as demonstrated in Figure 3. The day-to-day CV for the 100 m front crawl performance was
0.38%, whereas the percent change in performance between conditions was 0.13 ± 2.15%.
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Figure 3. Performance during the 100 m front crawl for the euhydrated and hypohydrated condition.
Horizontal lines represent individual changes in performance. Vertical columns represent mean
performances with SD.

4.6. Peak Force Produced on the Starting Block

No order effect was observed for this variable (p = 0.61). Figure 4 demonstrates the impact of
hydration conditions on the absolute peak force produced on the starting block. No difference was
observed between conditions whether force production was corrected (hypohydration: 62.9 ± 9.4;
euhydration: 62.6 ± 8.8 N/kg LM) or not (hypohydration: 1322 ± 236; euhydration: 1315 ± 230 N)
(both p = 0.72) for lower limb LM. Correcting for pre-testing body mass level did not change the
outcome either (p = 0.24). The day-to-day CV for absolute peak force produced on the starting block
was 3.8%, whereas a difference of only 0.38 ± 3.6% was observed between hydration conditions for
peak force production.
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condition. Horizontal lines represent individual changes in performance. Vertical columns represent
mean performances with SD.
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5. Discussion

This study examined the impact of mild hypohydration (1.5% body mass) on 100 m front crawl
performance and peak muscle force production on the starting block in university-level competitive
swimmers, and to the best of our knowledge, this is the first study to examine the effect of hypohydration
on performance within this context. From a statistical perspective, none of the performance-related
outcomes were shown to be negatively impacted by hypohydration. Moreover, as the changes in
100 m front crawl performance and peak muscle force production on the starting block between
conditions were within the expected normal daily variation, it is unlikely from a practical standpoint
that hypohydration would hinder these performance parameters.

Mild hypohydration can develop insidiously in an individual drinking ad libitum due to a
slight mismatch between fluid intake and fluid losses through sweat, urine and respiration. In turn,
blood hypertonicity will enhance ADH production, resulting in an increased urine solute concentration.
Urine osmolality and specific gravity measured immediately prior to the testing period indicated that
swimmers were indeed hypohydrated. The magnitude of urinary solute concentration compared
favorably well with that observed by Adams et al. [10] and Arnaoutis et al. [11] in adolescent swimmers
reporting to the pool for a training session. Hence, our dehydration protocol was successful in
reproducing the mild hypohydration level that could develop under daily free-living conditions
in swimmers.

The quality of a 100 m front crawl swim completed on a long-course depends on several
components, including the start on the block, the flip turn, which comprises a push from the wall,
underwater swimming, which is limited to 15 m/lap, and the swimming portion of the swim per se
(clean swimming) [30]. Any variation in the quality of one or several of those components could result
in a worthwhile change in performance, if uncompensated by other components. Hence, to be able to
detect the potential small change in performance associated with hypohydration, we needed first to
determine whether our participants were reliable in their ability to reproduce their 100 m front crawl
performance. Our results indicate that they were as a group, as the performance CV from the second
to the third familiarization phase was 0.38%, translating to an average change in performance of only
0.01 s.

The force applied by the lower limbs on the starting block plays a critical role in sprint-type swim
races [31,32]. Indeed, it provides powerful momentum for the initial propulsion in the water. Moreover,
air traveling generates less resistance compared with water [3]. Our results show that the peak force
production on the starting block did not differ among hydration conditions. Additionally, the flip turn
is associated with a complete change in direction, and the push off from the wall is pivotal in generating
the final velocity to complete the last segment of the race [33]. It has been reported that the velocity
created following the flip turn can be a determinant factor for medal standing [34]. Although not
directly measured, it is reasonable to believe that the force applied to the wall by swimmers during the
flip turn was also unimpacted by hypohydration. It follows, then, that if the block and push off phases
from the wall were unimpacted by hypohydration, that the swimming portions per se, i.e., the clean
swimming and dolphin style swimming underneath water, were also not.

We can only speculate as to why we were not able to detect an impact of mild hypohydration
on 100 m front crawl performance. Men and women were combined, and some may believe that this
could have mixed findings. However, both genders responded similarly to the change in hydration
levels. Moreover, the % fat mass (men range: 6.9 - 27.5%; women range: 20.2–27.7%), % LM
(men range: 71.4–92.8%; women range: 71.3–78.9%) and body mass index (men range: 20.2–27.6 kg/m2;
women range: 21.0–25.4 kg/m2) were similar between some of the men and women. On the other
hand, hypohydration level may have been potentially sufficient to impact performance, but the >1 h
recovery period between the end of hypohydration and onset of testing may have allowed sufficient
time for optimal re-equilibration of fluid between compartments, thereby minimizing any possible
impact through cardiovascular, metabolic, buffering or neuromuscular mechanisms [15].
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In a meta-analysis, Savoie et al. [16] demonstrated that hypohydration of on average 3% body
mass impairs lower body muscle strength and endurance. Lower limb strength has been shown to be a
key determinant for peak horizontal and vertical force production on the starting block [4]. Indeed,
in male international sprint swimmers in whom peak resultant force produced on the starting block
was on average 1545 N, in comparison to 1319 N in the current study, peak horizontal and vertical
force production were highly correlated with 1 RM squat strength [4]. Moreover, peak lower limb force
production on the wall contributes to optimize flip turn time [35]. On the other hand, muscle endurance
is required to minimize the loss of stroke efficiency [6]. It is possible that the level of hypohydration
created in this study was too low to impact in any meaningful way lower limb muscle strength and
endurance and, therefore, swimming performance. Anaerobic contribution has been demonstrated to
be important for swimming performance [5]. However, it has been demonstrated that the glycolytic
pathway is not impacted in a significant manner by decreased cell volume and water content [36].

This study has limitations. First, the quality and validity of our observations are tributary to the
intrinsic motivation and desire of swimmers to produce a maximal effort during the 100 m front crawl,
including the start on the block and the push from the wall during the flip turn. Second, the results
only apply to university-level competitive swimmers. Third, per the research design, participants
were not blinded to the hydration conditions. Therefore, that a nocebo effect contributed to decrease
performance in some swimmers cannot be ruled out [37]. Fourth, with nine participants, appropriate
counterbalancing of the conditions was not achieved. However, no order effect was observed for any
performance-related outcomes. Fifth, no measurements of blood/plasma sodium or osmolality were
performed. Therefore, it cannot be ruled out that, although swimmers had lost 1.5% of their body
mass and were considered hypohydrated based on urinary markers, hydration status was within the
physiological range based on blood/plasma-related variables [14]. Finally, swimming performance
times were not measured using an electronic timing system. As a result, small performance changes
may have been missed, although it must be noted that perfect inter-rater reliability was achieved and
that we used a timing protocol supported by FINA.

6. Conclusions

The present results indicate that mild hypohydration of 1.5% body mass does not impact 100 m
front crawl performance time nor force production on the starting block, thereby suggesting that
resorting to a strategy aimed at optimizing hydration prior to such an exercise is not necessary and
that ad libitum drinking is likely just what is needed.
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