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Chemoresistance is a challenge for management of ovarian cancer, and therefore the response of resistant cells to nanosecond
electric pulses (nsEP) was explored. Human ovarian cancer cell line COC1 and the cisplatin-resistant subline COC1/DDP were
subjected to nsEP (32 ns, 10 kV/cm, 10Hz pulse repletion frequency, and 10min exposure duration), and then the cellular responses
were followed. The percentages of dead cells and of comet-formed cells in the alkaline assay displayed two peak levels (i.e., 2 and 8 h
after nsEP exposure), with the highest value noted at 8 h; the percentage of comet-formed cells in the neutral assay was increased
at 8 h; the apoptotic percentage was increased at 8 h, with collapse of the mitochondrial membrane potential and the activation
of caspase-3 and caspase-9. The comet assay demonstrated DNA single-strand break at 2 h and double-strand break at 8 h. nsEP
resulted in lower cytotoxicity in COC1/DDP cells compared with COC1 cells. These findings indicated that nsEP induced early
and late phases of DNA damage and cell death, and these two types of cell death may have distinct applications to treatments of
chemoresistant ovarian cancers.

1. Introduction

Chemoresistance is yet a challenge for management of ovar-
ian cancer; a chemical sensitizer lacks selectivity, resulting in
poor therapeutic efficacy and toxicity to noncancerous tissues
[1]. A physical modality may be an alternative because the
energy can be delivered into the preselected volume without
harming adjacent tissues, realizing a targeted treatment [2].

Nanosecond electric pulses (nsEP) can trans-membra-
nously evoke a high potential (i.e., > 0.5–1.0 V, the critical
potential required to cause damage) in specifically subcellular
structures, thereby causing responses such as membrane
poration, ion permeation, and protein modification [3–7].
These effects to a certain extent will lead to cell death
mainly via inducing apoptosis [5–7]. However, the responsive
difference between chemosensitive and chemoresistant cells
remains unclear.

Theoretical calculations based on themultilayer dielectric
model have manifested that nsEP (24 ns, 6 kV/cm) can
evoke potentials of 1.98V in the nucleoplasm, 1.17V in the

cytoplasm, and 0.25V in the cellular membrane, in cisplatin-
resistant human ovarian cancer cells COC1/DDP [4]. The
high potential in the nucleoplasm leads to DNA single-
strand break (SSB). The data suggest that nsEP may be a
therapeutic strategy for resistant cancers, considering the
pivotal role of DNAdamage and repair in chemoresistance [8,
9]. However, the biological implications of the high potential
in the cytoplasm remain unclear.

Here we compared the response to nsEP between
cisplatin-sensitive and -resistant human ovarian cancer cells.
Data indicated that nsEP can induce early and late phases
of cell death in chemoresistant cells. These two types of cell
death may have distinctly therapeutic applications.

2. Materials and Methods

2.1. Cells. Human ovarian cancer cell line COC1 and the
cisplatin-resistant subline COC1/DDP (China Center for
Typical Culture Collection, Wuhan, China) were cultured in
suspension in RPMI 1640 medium (Hyclone, Beijing, China)
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supplemented with 10% fetal bovine serum (Hyclone), at
37∘C and 5% CO

2
[10]. Cisplatin (0.5𝜇g/ml) was added to

the COC1/DDP medium to maintain the resistant property;
cells were transferred into drug-free medium for >48 h
before experiments to avoid interferences due to residual
cisplatin [2].The single-cell suspension was prepared and the
concentration was adjusted to 1.0 × 106 cells/ml.

2.2. nsEP Exposure. nsEP treatments were performed as
described previously using a device designed by School of
Physics, University of Electronic Science and Technology of
China (Chengdu, China) [4]. 2.0ml of single-cell suspension
was subjected to nsEP. The pulse duration was 32 ns at a 10Hz
pulse repetition frequency, the strength was 10 kV/cm, and
the total exposure time was 10min. nsEP-treated cells were
maintained at 37∘C before assays. Control cells received sham
exposure.

2.3. Cell Death. Cell viability was determined with a WST-8
assay (Dojindo Lab., Kumamoto, Japan) after 2, 4, 8, 12, and
24 h, and then the percentage of dead cells was calculated ([1
- (absorbance in treated cells/absorbance in control cells @
2 h)] × 100%) [11].

2.4. DNADamage. DNA damage was detected with the alka-
line comet assay after 2, 4, 8, 12, and 24 h, and cells at 2 and 8 h
also received the neutral comet assay to determine whether
there was double-strand break (DSB) [12]. The percentage
of comet-formed cells was used to quantify the degree of
DNA damage [(number of comet-formed cells/number of
total cells) × 100%] [13]. Control cells served as the reference
considering a high sensitivity of the comet assay: a percentage
of <5% demonstrated no unspecific cellular damage, thereby
avoiding an overestimation.

2.5. Apoptosis. Cell apoptosis was analyzed with the Annexin
V assay (Nanjing Keygen Biotech., Nanjing, China) after
2 and 8 h. Cells were stained with FITC-Annexin V and
propidium iodide (PI) and then received flow cytometry.
The V+/PI− population represented early apoptotic cells, the
V+/PI+ population was regarded as late apoptotic cells, and
the sum was the number of total apoptotic cells [14].

2.6. Mitochondrial Membrane Potential. The membrane po-
tential was determined by fluorospectrophotometry using
the JC-1 assay (Invitrogen, Eugene, OR) after 2 and 8 h
[15]. 𝜆ex was 485 nm, and 𝜆em was 529 or 590nm. The
ratio of red to green fluorescence intensity reflected the
membrane potential [10, 15]. Cells were also observed under
a fluorescence microscopy.

2.7. Activity of Caspase-3 and Caspase-9. Activity of caspase-
3 and caspase-9 was determined using a luminescent assay
(Promega,Madison,WI) after 2 and 8h.The lg[RLU] (relative
light unit) reflected the enzymatic level.

2.8. HighMobility Group Box 1 (HMGB1). HMGB1 in the cul-
ture supernatant, the biomarker of cell necrosis, was detected

with an enzyme-linked immunosorbent assay (Shino-Test,
Kanagawa, Japan) after 2 and 8 h [16].

2.9. Temperature Rise. Theoretical simulations suggested that
multiple pulses may cause Joule heating [17]. In order
to determine whether heat played a part in the cellular
response, the temperature rise in the cell suspension was
measured using a thermocouple immediately after nsEP
exposure (Guangzhou Sungun Meas. Ctrl. Technol. Co., Ltd.,
Guangzhou, China) [18].

2.10. Statistics. Data were processed with the SAS software
(SAS Inst., Cary, NC). Analysis of variance was used andmul-
tiple comparisons were corrected with the Student-Newman-
Keuls test. The critical value was set at p<0.05.

3. Results and Discussion

3.1. Cell Death and DNA Damage Displayed Two Peak
Levels at 2 and 8 h, but Apoptosis Was Detected Only at
8 h. The percentage of dead cells was increased after nsEP
treatments in both cell lines, with 2 peak levels noted at 2
and 8 h (p<0.0001, p<0.0001). Values were 20.3±0.1% and
11.3±0.0% at 2 h (p<0.0001), and 36.4±2.7% and 23.1±1.2% at
8 h (p=0.0106), in COC1 and COC1/DDP cells, respectively
(Figure 1(a)).

The percentage of comet-formed cells in the alkaline
assay displayed a similar trend in both cell lines: the peak
value was noted at 2 and 8 h (p<0.0001, p<0.0001). Lev-
els were 26.3±1.3% and 18.2±0.5% at 2 h (p=0.0163), and
42.4±5.2% and 30.2±2.1% at 8 h (p=0.0218), in COC1 and
COC1/DDP cells, respectively (Figures 1(b) and 1(d)). These
data indicated that nsEP induced early and delayed cellular
damage.

In the neutral assay, comets appeared only at 8 h, demon-
strating SSB at 2 h and DSB at 8 h. The percentage of comet-
formed cells was increased in both cell lines (p=0.0013,
p=0.0042), and the value in COC1 cells was higher than that
in COC1/DDP cells (20.0±3.3% versus 11.1±2.5%, p=0.0487)
(Figures 1(c) and 1(e)).

nsEP can directly induce reversibly transient externaliza-
tion of phosphatidylserine, causing a false positive in identi-
fying apoptotic cells [6, 19].Therefore, apoptosis was detected
≥2 h after treatments to decrease experimental errors. Apop-
tosis was analyzed at 2 and 8 h, considering the temporal
pattern of cell death and DNA damage. A percentage of
<5% demonstrated a lack of apoptosis at 2 h. The apoptotic
percentage was increased in both cell lines at 8 h (p<0.0001,
p<0.0001), with a higher value in COC1 cells (27.6±1.0%
versus 20.6±0.5% for early apoptosis, p=0.0162; 33.5±0.8%
versus 23.5±3.1% for total apoptosis, p=0.0355) (Figures 2(a)
and 2(b)). The activity of caspase-3 was increased in both
cell lines at 8 h (p<0.0001, p<0.0001) (Figure 2(c)). HMGB1
was detected to determine the cell-death mode, since flow
cytometry cannot distinguish late apoptotic cells from those
membrane-intact necrotic cells [14]. The HMGB1 level was
not increased after nsEP exposure (p=0.2594, p=0.4142)
(Figure 2(d)). These findings demonstrated that cell death at
8 h was due to apoptosis.



BioMed Research International 3

Ctrl
Treat

COC1 COC1/DDP
24 h12 h8 h4 h2 h 24 h12 h8 h4 h2 h

c c

c

−10

0

10

20

30

Pe
rc

en
t d

ea
d 

ce
lls

 (%
)

(a)

a

a
a a

a
a

a

ac

ac
ac

Ctrl
Treat

COC1 COC1/DDP
24 h12 h8 h4 h2 h 24 h12 h8 h4 h2 h

0

20

40

Pe
rc

en
t c

om
et

-fo
rm

ed
 ce

lls
 (%

)
(b)

Ctrl
Treat

COC1/DDP

ab

abc

0

10

20

Pe
rc

en
t c

om
et

-fo
rm

ed
 ce

lls
 (%

)

2 h 8 h2 h 8 h
COC1

(c)

Ctrl 2 h 8 h 24 h

CO
C1

CO
C1/D

D
P

(d)

COC1−2 h COC1−8 h COC1/DDP−2 h COC1/DDP−8h

(e)

Figure 1: Percentages of dead cells (a) and of comet-formed cells in the alkaline assay (b) after nsEP treatments: the negative death fraction
demonstrated proliferation of control cells; two peak levels were detected at 2 and 8 h, with the highest value at 8 h; the value in COC1 cells
was higher than that in COC1/DDP cells. Percentage of comet-formed cells in the neutral assay (c): the value was increased at 8 h. Images
under the alkaline assay (d): more comets were observed at 2 and 8 h in both cell lines; few comets emerged at 24 h, indicating repair. Images
under the neutral assay (e): comets appeared at 8 h, demonstrating single-strand break at 2 h and double-strand break at 8 h. Data were mean
± standard deviation for 3 independent experiments.The scale bar was 50𝜇m; (a) versus control, p<0.05; (b) versus 2 h, p<0.05; and (c) versus
COC1 at the same time point, p<0.05.

The first peak of cell death and DNA damage occurred
2 h after nsEP exposure. The comet assay showed that DNA
damage was SSB. Most SSB can be repaired; certain SSB
would evolve into DSB and eventually resulted in cell death

via the apoptosis pathway (a programmed process required
several hours) [20]. These suggested that cell death at 2 h
may not be due to apoptosis. This deduction was supported
by alterations of the apoptotic percentage and of caspase-3
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Figure 2: Apoptosis detectedwith flow cytometry after 2 and 8 h (a, b): Q4 represented early apoptotic cells, andQ2 represented late apoptotic
cells; a higher apoptotic percentage was detected at 8 h, and the value in COC1 cells was higher than that in COC1/DDP cells. Activity
of caspase-3 (c): relative light unit (RLU) reflected the enzymatic level; a higher level was noted at 8 h. HMGB1 level (d): no increase was
detected. Data were mean ± standard deviation for 3 independent experiments. (a) versus control, p<0.05; (b) versus 2 h, p<0.05; (c) versus
COC1 at the same time point, p<0.05.

activity. Theoretical calculations indicated that the evoked
potential in the cellular membrane increased with widening
the pulse duration and elevating the strength [4]. Thus, nsEP
applied in this study can evoke a potential of about 0.5V in
the cellular membrane (0.2V was the lowest critical potential
required to create membrane pores) [3, 4]. An amount of
unrepairable membrane pores would lead to cell lysis [21].
Similar findings were reported in U937 cells: early cell death
was detected 1–2 h after nsEP exposure, which resulted from

the rupture of plasmic membrane [22]. These results were
contrary to the prevalent verdict that nsEP caused repairable
nanopores [3, 5, 7, 19]. Previous trials were commonly per-
formed under a single pulse. The present data indicated that
membrane pores displayed distinct behaviors under multiple
pulses. Continuous pulses can delay the closure of pores and
can create newpores, leading to expansion and amalgamation
of pores, and ultimately formed large-size pores rupturing
the cellular membrane. Pakhomova et al. attributed early
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Figure 3:Mitochondrialmembrane potential detectedwith the JC-1 assay. Images under fluorescencemicroscopy (a): green fluorescencewas
due to the monomer of JC-1 and the number of green cells was increased at 8 h, indicating collapse of the potential.The membrane potential
qualified with the ratio of fluorescence intensity (b): the potential was decreased at 8 h. Activity of caspase-9 at 2 and 8 h (c): relative light unit
(RLU) reflected the enzymatic level; the enzymatic activation was detected at 8 h. Data were mean ± standard deviation for 3 independent
experiments. The scale bar was 50𝜇m; (a) versus control, p<0.05.

cell death to necrosis for lack of caspase-3 activation [22].
Necrosis was a nonprogrammed death mode and was trigged
by intracellular damage accompanied with the release of
HMGB1 [23]. The HMGB1 level was not increased in the
present study. These data demonstrated that early cell death
was mainly due to cell lysis. Chemoresistant cells usually
had apoptotic deficiency, and the induction of nonapoptotic
death can be an alternative therapy [2, 8]. These suggested
that nsEP may be a modality against chemoresistant cancer
cells.

Romeo et al. observed the DNA electrophoretic pattern
in Jurkat cells [24]. DNA migration appeared immediately
after single nsEP exposure (60 ns, 25 kV/cm), deteriorated
at 20min, and returned to the baseline level at 1 h; these
indicated that nsEP candirectly affect the nucleus and that the
maximal effect emerged after a certain interval. A strength of
6 kV/cm evoked a potential of 1.98V in the nucleoplasm [4].
A higher strength with multiple pulses was employed in this
study, thereby evoking a longer-lasted higher nucleoplasmic
potential (≈3.2 V). Additionally, the temperature rise in the
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cell suspension was <1∘C, demonstrating no involvement of
thermal effects. Therefore, SSB at 2 h may result from directly
electric effects.

The second peak level of cell death and DNA damage was
detected after 8 h. The apoptotic percentage was increased
and approached to the cell-death percentage; caspase-3 was
activated, and there was no increase of the HMGB1 level.
The time span from SSB to apoptosis commonly was several
hours [20]. A long interval between nsEP treatments and the
activation of caspase-3 was consistent with the theoretical
simulations of Song et al., where the caspase-3 level elevated
after 5 h in mitochondrial apoptosis due to nsEP [25]. These
data manifested that cell death at 8 h was due to apoptosis.

3.2. Mitochondrial Damage Was Observed at 8 h. The JC-1
ratio was decreased at 8 h and no variation was observed at
2 h, in both COC1 and COC1/DDP cells (p=0.0074, p=0.0158)
(Figures 3(a) and 3(b)). The level of activated caspase-9
was increased in both cell lines at 8 h (p<0.0001, p<0.0001)
(Figure 3(c)). These data demonstrated the occurrence of
mitochondrial damage.

A strength of 6 kV/cm can evoke a potential of 1.17V in
the nucleoplasm [4]. Thus, nsEP applied in this study can
evoke a higher cytoplasmic potential (≈1.9 V) to impair mito-
chondria, initiating apoptosis [3, 26]. The collapse of mito-
chondrial membrane potential and activation of caspase-
9 demonstrated mitochondrial insults and mitochondria-
dependent apoptosis. This result accorded with the prevalent
verdict that nsEP deactivated cells via apoptosis [6, 7, 19]. A
translocation of apoptosis inducing factor frommitochondria
into the nucleus led to cleavage of DNA, thereby resulting
in DSB [27]. Because DNA break mainly resulted from
apoptosis, the gap between the percentage of comet-formed
cells and that of dead/apoptotic cells was relatively narrow.

3.3. Potential Therapeutic Applications. These two phases of
cell death had distinctly therapeutic implications. The first
phase was mainly due to cell lysis, which can be used to
necrotize cancer tissues directly. The second phase was due
to apoptosis, thereby being a strategy to enhance the action
of an apoptotic therapy (e.g., chemotherapy).Therefore, nsEP
can deactivate resistant cells via multiple pathways. This
was an advantage since chemoresistance resulted frommany
overlapped mechanisms—the induction of a sequence of
cell death can lead to synergism to improve the therapeutic
efficacy. The temporal pattern of cell death was a reference to
set the interval for administrating other treatments [21].

A less percentage of dead/comet-formed cells after
8 h demonstrated the cellular repair. A similar result was
observed in insonated cells: the proliferation capacity was
improved in certain subpopulations causing compensational
effects, which was related to the heterogeneity of cancer cells
[28–30]. Cells with a higher repair capacity had a higher
compensation capacity. This may play a part in the lower
toxicity noted in COC1/DDP cells and should be explored to
formulate a protocol to set the interval between therapeutic
courses.

The evoked potential in a subcellular unit was determined
by nsEP applied (strength and the pulse duration), electric

property of contents (conductivity and permittivity), and
absolute and relative sizes of a cell [19]. Thus, for a specific
cancer type, an expected potential within cancer cells can
be realized by modulating the strength and pulse duration,
improving the therapeutic effect. nsEP caused lower cytotox-
icity in chemoresistant cells; underlying mechanisms should
be explored in follow trials.

4. Conclusion

nsEP induced an early phase of cell death and caused SSB.
nsEP induced apoptosis leading to a late phase of cell death,
which related to mitochondria insults. The temporal pattern
of DNA break and cell death may have distinct implications
to treatments of resistant ovarian cancers.
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