Research Article

miR-146a C/G polymorphism increased the risk of head and neck cancer, but overall cancer risk: an analysis of 89 studies

Dezhong Sun¹, Xiaoyan Zhang² and Xiaolei Zhang³

¹Department of Otolaryngology, Linyi City People's Hospital, Linyi 276000, China; ²Department of Oncology, Linyi City People's Hospital, Linyi 276000, China; ³Department of Geratology, Linyi City People's Hospital, Linyi 276000, China

Correspondence: Xiaolei Zhang (xiaoleizhang_lyrm@126.com)

Several studies have evaluated the association of miR-146a C/G with head and neck cancer (HNC) susceptibility, and overall cancer risk, but with inconclusive outcomes. To drive a more precise estimation, we carried out this meta-analysis. The literature was searched from MEDLINE (mainly PubMed), Embase, the Cochrane Library, and Google Scholar databases to identify eligible studies. A total of 89 studies were included. The results showed that miR-146a C/G was significantly associated with increased HNC risk in dominant model (l² =15.6%, P_{heterogeneity}=0.282, odds ratio (OR) =1.088, 95% confidence interval (CI) =1.002-1.182, P=0.044). However, no cancer risk was detected under all genetic models. By further stratified analysis, we found that rs4919510 mutation contributed to the risk of HNC amongst Asians under homozygote model ($l^2 = 0, P_{heterogeneity} = 0.541, OR$ =1.189, 95% CI =1.025-1.378, P=0.022), and dominant model (l² =0, P_{heterogeneity}=0.959, OR =1.155, 95% CI =1.016-1.312, P=0.028). Simultaneously, in the stratified analysis by source of controls, a significantly increased cancer risk amongst population-based studies was found under homozygote model, dominant model, recessive model, and allele comparison model . However, no significant association was found in the stratified analysis by ethnicity and source of control. The results indicated that miR-146a C/G polymorphism may contribute to the increased HNC susceptibility and could be a promising target to forecast cancer risk for clinical practice. However, no significant association was found in subgroup analysis by ethnicity and source of control. To further confirm these results, well-designed large-scale case-control studies are needed in the future.

Introduction

Cancer, although an age old disease, still poses a formidable challenge to researchers and clinicians. Little is known about its initiation, sustenance, progression and metastasis, and resistance and remission. Due to its morbidity and mortality, cancer is one of the most dreaded diseases and the related fatalities are majorly attributed to delayed diagnosis and treatment. Head and neck cancer (HNC), the sixth most frequent kind of cancer worldwide, is a group of biologically similar cancers that originate from head and neck regions such as oral cavity, pharyngeal cavity, and larynx [1]. Multifactors such as smoking, drinking, betel quid chewing, papilloma virus infection, and exposure to toxic substances are suggested to be the etiological risk factors for HNC [2,3]. Nevertheless, though many individuals are exposed to these external factors, HNC develops only in a small proportion of the exposed people, indicating that intrinsic factors such as genetic polymorphism might play critical roles in its carcinogenic mechanisms.

Received: 06 October 2017 Revised: 02 December 2017 Accepted: 04 December 2017

Accepted Manuscript Online: 05 December 2017 Version of Record published: 10 January 2018 miRNAs represent a class of evolutionarily conserved, endogenous, single-stranded, non-coding RNA molecules of \sim 20 nts that regulate gene expression by degrading mRNAs or suppressing translation. miRNAs have been implicated in a wide range of physiologic and pathologic processes, including development, cell differentiation, proliferation, apoptosis, and carcinogenesis [4,5]. Accumulating evidence indicates that the expression of roughly 10–30% of all human genes is regulated by miRNAs [6]. More than half of the known miRNAs are located in cancer-associated genomic regions, and miRNAs are thought to contribute to oncogenesis because they can function either as tumor suppressors or oncogenes [7]. Analyses in human epithelial malignancies have shown that cancers can be distinguished and classified by distinct tumor-specific miRNA signatures [8]. Some of the key dysregulated miRNAs could serve as molecular biomarkers, leading to improved diagnosis and monitoring of cancer treatment response [9-11].

Single nucleotide polymorphisms (SNPs) are a type of common genetic variations associated with population diversity, disease susceptibility, drug metabolism, and genome evolution [12]. SNPs may affect the expression and function of miRNAs, which could therefore contribute to the susceptibility to cancer occurrence and development [13-16]. *miR-146a* C/G is located in the stem region opposite to the mature *miR-146a* sequence, which is suspected to have an effect on tumor immune responses and ultimately the development of cancer. In recent years, the polymorphism rs2910164 in *miR-146a* has attracted wide attention and many studies have been published to explore the association between SNPs of miRNAs and susceptibility to various cancers. But the results were not conclusive and consistent. Since SNPs in miRNAs are closely associated with head and neck cancer (HNC) susceptibility, it is necessary to assess whether these SNP polymorphisms are the risk factors for HNC. It is reported that meta-analysis is a well-established method for combining all the results from the available published information to produce a single estimate for quantitating gene–disease associations more precisely to increase the statistical power [17]. Thus, we performed this meta-analysis of case–control studies to estimate the importance of pre-*miR-146a* C/G polymorphism for HNC susceptibility.

Materials and methods Publication search

A comprehensive electronic search was performed to identify articles published up until 12 November 2016 in MEDLINE (mainly PubMed), Embase, the Cochrane Library, and Google Scholar using the following search terms: '*miR-146a*' or 'rs2910164' and 'head and neck cancer' or 'cancer' or 'tumor' or 'carcinoma' and 'polymorphism' or 'SNPs' or 'variation'. All eligible studies published in English were retrieved, and their bibliographies were checked for additional relevant publications. Review articles and bibliographies of other identified relevant studies were searched by hand to identify any additional eligible studies.

Inclusion and exclusion criteria

Studies included in this meta-analysis had to meet all of the following criteria: (i) case–control study evaluating the association between *miR-146a* C/G polymorphism and susceptibility to HNC and overall cancer; (ii) sufficient published data for calculating odds ratios (ORs) with corresponding 95% confidence intervals (CIs); (iii) full-text manuscript; and (iv) only the most recent or complete study reporting on the same population of patients was included. Exclusion criteria included: (i) reviews, other meta-analyses, comments, letters, and editorial articles; (ii) not a case–control study; and (iii) no usable data reported.

Data extraction

Information regarding the following aspects was independently retrieved from each study by two reviewers: the first author's surname, year of publication, country of origin, ethnicity, study design, total number of cases and controls, source of cases and controls, detected sample, genotyping methods, allele and genotype frequencies of cases and controls, and evidence of Hardy–Weinberg equilibrium (HWE) in the controls. In studies including subjects of more than one ethnicity, genotype data were extracted separately for each ethnic group. Data from one publication may contain more than one seperate case-control studies. Any discrepancies between the reviewers were resolved through discussion to reach a consensus.

Statistical analysis

We used crude ORs with 95% CIs to explore the association between miR-146a C/G polymorphism and the risk of HNC and overall cancer. Five genetic variation models were analyzed: homozygote model (CC compared with GG), heterogeneity model (GC compared with CC), dominant model (CC + GC compared with GG), recessive model (CC compared with GC + GG), and allele comparison model (C compared with G). *P*-value of HWE in control

Figure 1. The process of literature research

group of each study was calculated by χ^2 test and P < 0.05 presented a state of disequilibrium [18]. We also performed subgroup analyses by ethnicity and source of control, and heterogeneity was calculated by χ^2 -based Q-statistic [19]. Both random-effects model (when *P*-value of heterogeneity was less than 0.05) and fixed-effects model (when *P*-value of heterogeneity was more than 0.05) were used [20,21]. Sensitivity analyses were performed to verify if our present results were stable. Begg's funnel plots and Egger's linear regression tests were used to examine possible publication bias [22,23]. All statistical analyses were performed using Stata software version 11.0 (StataCorp LP, College Station, TX, U.S.A.). All statistical analyses were two-sided, and *P*-values <0.05 were considered statistically significant.

Results

Characteristics of eligible studies

A total of 721 articles were retrieved after the first search in PubMed, Embase, the Cochrane Library, and Google Scholar. Selection following the specified criteria eliminated 632 studies, leaving 89 individual studies [24-103]. The details of the selection process are presented in Figure 1. The publication years of included articles ranged from 2008 to 2016. The distributions of *miR-146a* C/G genotype in all studies were in accordance with HWE in the control group. No significant differences were found between cases and controls with respect to gender and age distributions. The modified quality scores of all studies ranged from 9 to 16, with 71% (5/7) of the included studies classified as high quality (\geq 12). The characteristics of all included studies are summarized in Table 1.

miR-146a C/G polymorphism and HNC risk

In the overall analysis, we pooled 13 separate studies to explore the association between miR-146a C/G polymorphism and the risk of HNC under homozygote, heterozygote, recessive, and allele comparison model. There is no significant association between miR-146a C/G polymorphism and the risk of HNC under homozygote model ($I^2 = 21.6\%$, $P_{heterogeneity}=0.226$, OR =1.113, 95% CI =0.980–1.263, P=0.099, Figure 2), heterozygote model (I^2

Table 1 Characteristics of all eligible studies

					Control	Genotyping			•						
Reference	Year	Country	Ethnicity	Cancer type	source	method	Sample	esize	Case			Conti	rol		
							Cases	Controls	GG	GC	CC	GG	GC	CC	
Horikawa et al. [24]	2008	U.S.A.	Caucasian	Renal cell cancer	PB	SNPlex assay	261	235	144	103	14	126	94	15	
Jazdzewski et al. ¹ [25]	2008	Finland	Caucasian	PTC	PB	SNPlex assay	206	274	99	104	3	150	105	19	
Jazdzewski et al. ² [25]	2008	Poland	Caucasian	PTC	PB	SNPlex assay	201	475	115	82	4	286	163	26	
Jazdzewski et al. ³ [25]	2008	U.S.A.	Caucasian	PTC	PB	SNPlex assay	201	152	91	101	9	90	52	10	
Xu et al. [26]	2008	China	Asian	Liver cancer	HB	PCR-RFLP	479	504	80	241	158	58	249	197	
Yang et al. [27]	2008	U.S.A.	Caucasian	Bladder cancer	PB	SNPlex assay	691	674	414	242	35	385	258	31	
Hoffman et al. [28]	2009	U.S.A.	Caucasian	Breast cancer	PB	massARRAY	439	478	234	176	29	273	178	27	
Hu et al. [29]	2009	China	Asian	Breast cancer	HB	PCR-RFLP	1009	1093	165	515	329	180	551	362	
Tian et al. [30]	2009	China	Asian	Lung cancer	PB	PCR-RFLP	1058	1035	360	510	188	364	502	169	
Catucci et al. ¹ [31]	2010	Italy	Caucasian	Breast cancer	HB	Sequencing	754	1243	409	286	59	650	520	73	
Catucci et al. ² [31]	2010	Germany	Caucasian	Breast cancer	HB	Sequencing	805	904	451	304	50	536	318	50	
Guo et al. [32]	2010	China	Caucasian	ESCC	PB	SNaPshot	444	468	234	190	20	206	220	42	
Liu et al. [33]	2010	U.S.A.	Mixed	SCCHN	HB	PCR-RFLP	1109	1130	630	411	68	655	405	70	
Okubo et al. [34]	2010	Japan	Asian	Gastric cancer	HB	PCR-RFLP	552	697	73	243	236	121	322	254	
Pastrello et al. [35]	2010	Italy	Caucasian	Breast and ovarian cancer	PB	Sequencing	101	155	60	36	5	90	59	6	
Srivastava et al. [36]	2010	India	Asian	Gall bladder cancer	PB	PCR-RFLP	230	224	129	90	11	138	81	5	
Xu et al. [37]	2010	China	Asian	Prostate cancer	HB	PCR-RFLP	251	280	68	135	48	54	150	76	
Zeng et al. [38]	2010	China	Asian	Gastric cancer	HB	PCR-RFLP	304	304	62	153	89	53	132	119	
Akkiz et al. [39]	2011	Turkey	Caucasian	Liver cancer	HB	PCR-RFLP	222	222	137	75	10	144	67	11	
Garcia et al. [40]	2011	French	Caucasian	Breast cancer	PB	TaqMan	1130	596	676	388	66	352	220	24	
George et al. [41]	2011	India	Asian	Prostate cancer	PB	PCR-RFLP	159	230	4	79	76	7	107	116	
Hishida et al. [42]	2011	Japan	Asian	Gastric cancer	HB	PCR-RFLP	583	1637	82	271	230	229	775	633	
Mittal et al. [43]	2011	India	Asian	Bladder cancer	PB	PCR-RFLP	212	250	127	79	6	135	108	7	
Permuth-Wey et al. [44]	2011	U.S.A.	Caucasian	Glioma	PB	GoldenGate	593	614	345	198	50	375	214	25	
Vinci et al. [45]	2011	Italy	Caucasian	NSCLC	PB	HRMA	101	129	44	48	9	73	45	11	
Yue et al. [46]	2011	China	Asian	Cervical cancer	HB	PCR-RFLP	447	443	118	224	105	87	206	150	
Zhang et al. [47]	2011	China	Asian	Liver cancer	HB	PIRA-PCR	925	1593	156	450	319	291	725	577	
Zhou et al. [48]	2011	China	Asian	CSCC	HB	PCR-RFLP	226	309	43	113	70	34	159	116	
Ma et al. [49]	2012	China	Asian	Gastric cancer	HB	Sequencing	86	42	20	44	14	6	19	14	
Alshatwi et al. [50]	2012	Saudi	Asian	Breast cancer	PB	TaqMan	100	100	2	50	48	3	46	51	
Chu et al. [51]	2012	China	Asian	Oral cancer	HB	PCR-RFLP	470	425	54	242	174	54	196	175	
Hezova et al. [52]	2012	Czech	Caucasian	Colorectal	HB	IaqMan	197	212	115	70	12	124	79	9	
Kim et al. [53]	2012	Korea	Asian	Liver cancer	РB	PCK-RFLP	286	201	27	159	100	24	103	74	
Lung et al. [54]	2012	China	Asian	Nasopharyngeal carcinoma	РВ	I m-shift	229	3631	24	88	117	497	1721	1413	

Continued over

Table 1 Characteristics of all eligible studies (Continued)

Deference	Veer	Country	Ethnisity	Concerture	Control	Genotyping	Comula cino		Case			Control		
Reference	rear	Country	Ethnicity	Cancer type	source	method		Controls	Case	60		Cont		<u> </u>
							Vases	00111013	uu	40	00	aa	au	00
Mihalache et al. [55]	2012	Italy and Germany	Caucasian	Cholangiocarcinoma	HB	TaqMan	182	350	118	53	11	211	122	17
Min et al. [56]	2012	Korea	Asian	Colorectal	HB	PCR-RFLP	446	502	62	233	151	69	245	188
Wang et al. [57]	2012	China	Asian	Bladder cancer	HB	TaqMan	1017	1179	369	456	192	340	571	268
Xiang et al. [58]	2012	China	Asian	Liver cancer	HB	PCR-RFLP	100	200	27	45	28	45	100	55
Zhou et al. [59]	2012	China	Asian	Liver cancer	PB	PCR-RFLP	186	483	33	86	67	71	254	158
Zhou et al. [60]	2012	China	Asian	Gastric cancer	HB	TaqMan	1686	1895	578	822	286	551	951	393
Lv et al. [61]	2013	China	Asian	Colorectal cancer	PB	PCR-RFLP	353	540	54	230	47	96	274	143
Chae et al. [62]	2013	Korea	Asian	Colorectal cancer	PB	PCR-RFLP	399	568	61	182	156	121	282	165
Ma et al. [63]	2013	China	Asian	TNBC	HB	massARRAY	192	191	35	94	63	34	93	64
Ma et al. [64]	2013	China	Asian	Colorectal cancer	HB	TaqMan	1147	1203	444	534	169	397	614	192
Orsos et al. [65]	2013	Hungary	Caucasian	SCCHN	PB	PCR-RFLP	468	468	284	168	16	323	136	9
Vinci et al. [66]	2013	Italy	Caucasian	Colorectal cancer	PB	HRMA	160	178	86	57	17	100	65	13
Wei et al. [67]	2013	China	Asian	PTC	PB	massARRAY	753	760	136	323	294	138	345	277
Wei et al. [68]	2013	China	Asian	ESCC	HB	massARRAY	368	370	67	184	117	67	181	122
Yamashita et al. [69]	2013	Japan	Asian	Melanoma	PB	PCR-RFLP	50	107	0	35	15	3	53	51
Zhang et al. [70]	2013	China	Asian	HCC	PB	MassARRAY	997	998	163	503	331	156	475	367
Ahn et al. [71]	2013	Korea	Asian	Gastric cancer	HB	PCR-RFLP	461	447	71	231	159	62	221	164
Song et al. [72]	2013	China	Asian	Gastric cancer	HB	PCR-RFLP	1208	1166	199	586	423	207	615	344
Wu [73]	2014	China	Asian	Colorectal cancer	HB	ASA	175	300	22	59	80	53	120	114
Chu et al. [74]	2014	China	Asian	HCC	HB	PCR-RFLP	188	337	22	82	84	50	145	141
Cong et al. [75]	2014	China	Asian	HCC	HB	PCR-RFLP	206	218	27	85	94	17	84	117
Dikeakos et al. [76]	2014	Greece	Caucasian	Gastric cancer	HB	PCR-RFLP	163	480	13	45	105	24	149	307
Du et al. [77]	2014	China	Asian	Renal	HB	TaqMan assay	353	362	68	167	118	57	190	115
Hu et al. [78]	2014	China	Asian	Colorectal	HB	PCR-RFLP	200	373	34	82	84	44	187	142
Huang et al. [79]	2014	China	Asian	Nasopharyngeal	HB	PCR-RFLP	160	200	23	73	64	36	110	54
Jeon et al. [80]	2014	Korea	Asian	Lung	PB	PCR-RFLP	1091	1096	223	500	368	244	540	312
Jia et al. [81]	2014	China	Asian	NSCLC	HB	PCR-RFLP	400	400	64	182	154	76	200	124
Kupcinskas et al. [82]	2014	Germany, Lithuania, Latvia	Caucasian	Gastric	HB	TaqMan assay	362	347	252	94	16	223	108	16
Kupcinskas et al. [83]	2014	Lithuania, Latvia	Caucasian	Colorectal	HB	TaqMan assav	192	424	140	50	2	275	134	15
Mao et al. [84]	2014	China	Asian	Colorectal	PB	SNPscan system	547	561	70	291	186	85	271	205
Nikolić et al. [85]	2014	Serbia	Caucasian	Prostate	HB	TaqMan assay	286	199	184	90	12	129	63	7
Palmieri et al. ¹ [86]	2014	Italy	Caucasian	OSCC	HB	TaqMan assay	337	88	197	121	19	50	31	7
Palmieri et al. ² [86]	2014	Italy	Caucasian	OSCC	HB	TaqMan assay	337	206	197	121	19	105	84	17
Palmieri et al. ³ [86]	2014	Italy	Caucasian	OSCC	HB	TaqMan assay	337	543	197	121	19	297	206	40

Continued over

Table 1 Characteristics of all eligible studies (Continued)

					Control	Genotyping								
Reference	Year	Country	Ethnicity	Cancer type	source	method	Sample	size	Case			Contr	ol	
							Cases	Controls	GG	GC	СС	GG	GC	CC
Parlayan et al. ¹ [87]	2014	Japan	Asian	Gastric	HB	TaqMan assay	160	524	20	79	61	71	237	216
Parlayan et al. ² [87]	2014	Japan	Asian	Lung	HB	TaqMan assay	148	524	25	67	56	71	237	216
Parlayan et al. ³ [87]	2014	Japan	Asian	Prostate	HB	TaqMan assay	89	524	11	41	37	71	237	216
Pu et al. [88]	2014	China	Asian	Gastric	HB	PCR-RFLP	197	513	36	96	65	96	274	143
Qu et al. [89]	2014	China	Asian	ESCC	HB	Allele-specific PCR	381	426	62	203	116	75	228	123
Dikaiakos et al. [90]	2015	Greece	Caucasian	Colorectal	HB	PCR-RFLP	157	299	8	48	101	21	120	158
Gomez-Lira et al. [91]	2015	Italy	Caucasian	Melanoma	HB	PCR-RFLP	224	264	107	100	17	149	105	10
Qi et al. [92]	2015	China	Asian	Breast cancer	PB	PCR-RFLP	321	290	146	132	43	126	144	20
Zhu et al. [93]	2015	China	Asian	ESCC	HB	PCR-RFLP	248	300	82	120	36	99	139	40
Deng et al. [94]	2015	China	Asian	Bladder cancer	HB	PCR-RFLP	159	258	26	73	60	32	154	112
Li et al. [95]	2015	China	Asian	HCC	HB	PCR-RFLP	266	266	151	86	29	166	81	19
Shen et al. [96]	2015	China	Asian	ESCC	HB	SNaPshot multiplex system	1400	2185	220	685	495	345	1060	780
Yan et al. [97]	2015	China	Asian	HCC	HB	PCR-RFLP	274	328	35	145	94	36	169	123
Yin et al. [98]	2015	China	Asian	Lung cancer	HB	PCR-RFLP	575	608	97	280	198	127	313	168
Xia et al. [99]	2015	China	Asian	Gastric cancer	HB	TaqMan assay	1125	1196	192	536	397	199	577	420
Hashemi et al. [100]	2016	Iran	Caucasian	Prostate cancer	HB	T-ARMS-PCR assay	169	182	25	131	13	24	147	11
Jiang et al. [101]	2016	China	Asian	Gastric cancer	HB	MassARRAY	898	992	154	441	303	207	457	325
Miao et al. [102]	2016	China	Asian	HNSCC	HB	Illumina Infinium1 human exome BeadChip	576	1552	497	773	278	154	228	80
Chen et al. ¹ [103]	2016	Taiwan	Asian	OSCC	HB	TaqMan assay	512	668	71	241	200	103	293	272
Chen et al. ² [103]	2016	Taiwan	Asian	PSCC	HB	TaqMan assay	146	668	16	77	53	103	293	272
Chen et al. ³ [103]	2016	Taiwan	Asian	OPSCC	HB	TaqMan assay	658	668	87	318	253	103	293	272

Abbreviations: BC, breast cancer; CRC, colorectal cancer; GC, gastric cancer; ESCC,esophageal squamous cell carcinoma; HB, hospital-based; HCC, hepatocellular carcinoma; HNSCC, squamous cell carcinoma of the head and neck; HRMA, high resolution melting analysis; LC, lung cancer; NSCLC, non-small-cell lung carcinoma; OPSCC, squamous cell carcinoma of the oral cavity, oropharynx, and hypopharynx; OSCC, oral squamous cell carcinoma; PB, population-based; *P*_{hwe}, *P*-value of HWE; PSCC, squamous cell carcinoma of the oropharynx and hypopharynx; PTC, papillary thyroid cancer; RFLP, restriction fragment length polymorphism; SCCHN, squamous cell carcinoma of head and neck; TNBC, triple negative breast cancer.

^{1,2,3}The superscript values 1, 2 and 3, indicate the number of studies (one, two and three respectively) covered the published article.

=14.2%, $P_{\text{heterogeneity}}$ =0.301, OR =1.084 , 95% CI =0.991–1.186, P=0.079, Figure 3), recessive model (I^2 =66.3%, $P_{\text{heterogeneity}}$ <0.01, OR =1.068, 95% CI =0.896–1.272, P=0.465, Figure 4), and allele comparison model (I^2 =61%, $P_{\text{heterogeneity}}$ =0.002, OR =1.061, 95% CI =0.966–1.166, P=0.214, Figure 5). Furthermore, we pooled all 14 eligible studies to explore the association between pre-*miR*-146a C/G polymorphism and the risk of HNC. Significant association was found under dominant model (I^2 =15.6%, $P_{\text{heterogeneity}}$ =0.282, OR =1.088, 95% CI =1.002–1.182, P=0.044, Figure 6). In the subgroup analysis by ethnicity, no significant association was found amongst Caucasians under homozygote model (I^2 =36.7%, $P_{\text{heterogeneity}}$ =0.177, OR =0.919, 95% CI =0.716–1.180, P=0.509, Table 2), heterozy-

Figure 2. Forest plot of the association between *miR-146a* rs2910164 polymorphism and HNC risk (under homozygote model)

Figure 3. Forest plot of the association between *miR-146a* rs2910164 polymorphism and HNC risk (under heterozygote model)

Figure 4. Forest plot of the association between miR-146a rs2910164 polymorphism and HNC risk (under recessive model)

Figure 5. Forest plot of the association between *miR-146a* rs2910164 polymorphism and HNC risk (under allele comparison model)

© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

Figure 6. Forest plot of the association between miR-146a rs2910164 polymorphism and HNC risk (under dominant model)

gote model (*I*² =52.7%, *P*_{heterogeneity}=0.076, OR =1.040, 95% CI =0.922-1.173, *P*=0.521, Table 2), dominant model $(I^2 = 58.6\%, P_{heterogeneity} = 0.034, OR = 1.027, 95\% CI = 0.857 - 1.232, P = 0.772, Table 2)$, recessive model $(I^2 = 10.9\%, P_{heterogeneity} = 0.034, OR = 1.027, 95\% CI = 0.857 - 1.232, P = 0.772, Table 2)$, recessive model $(I^2 = 10.9\%, P_{heterogeneity} = 0.034, OR = 1.027, 95\% CI = 0.857 - 1.232, P = 0.772, Table 2)$, recessive model $(I^2 = 10.9\%, P_{heterogeneity} = 0.034, OR = 1.027, 95\% CI = 0.857 - 1.232, P = 0.772, Table 2)$, recessive model $(I^2 = 10.9\%, P_{heterogeneity} = 0.034, OR = 1.027, 95\% CI = 0.857 - 1.232, P = 0.772, Table 2)$, recessive model $(I^2 = 10.9\%, P_{heterogeneity} = 0.034, OR = 1.027, P = 0.027, P =$ $P_{\text{heterogeneity}} = 0.344$, OR = 0.919, 95% CI = 0.719-1.174, P = 0.449, Table 2), and allele comparison model ($I^2 = 69\%$, Pheterogeneity=0.012, OR =0.981, 95% CI =0.814-1.183, P=0.843, Table 2). Simultaneously, no associations were detected amongst Asians under heterozygote model ($I^2 = 0$, $P_{heterogeneity} = 0.713$, OR =1.142, 95% CI =0.997-1.308, P=0.054, Table 2), recessive model (I² =76.5, P_{heterogeneity} < 0.01, OR =1.133, 95% CI =0.914-1.404, P=0.254, Table 2), and allele comparison model (I² =57.6, P_{heterogeneity}=0.021, OR =1.103, 95% CI =0.988-1.233, P=0.082, Table 2), while slight association was found amongst Asians under homozygote model ($I^2 = 0$, $P_{heterogeneity} = 0.541$, OR =1.189, 95% CI =1.025-1.378, P=0.022, Table 2) and dominant model (I^2 =0, P_{heterogeneity}=0.959, OR =1.155, 95% CI =1.016–1.312, P=0.028, Table 2). In the stratified analysis by source of controls, a significantly increased cancer risk amongst population-based studies was found under homozygote model ($I^2 = 0$, $P_{heterogeneity} = 0.855$, OR =1.668, 95% CI =1.183-2.352, P=0.004, Table 2), dominant model (I² =0, P_{heterogeneity}=0.674, OR =1.359, 95% CI =1.095-1.687, P=0.005, Table 2), recessive model (I² =0, P_{heterogeneity}=0.874, OR =1.697, 95% CI =1.367-2.107, P < 0.001, Table 2), and allele comparison model ($I^2 = 0$, $P_{heterogeneity} = 0.991$, OR = 1.394, 95% CI = 1.215-1.599, P<0.001, Table 2), while no association was found amongst population-based studies under heterozygote model (I^2 =3.5%, Pheterogeneity=0.408, OR =1.219, 95% CI =0.974-1.526, P=0.083, Table 2). Meanwhile, no significant association was found amongst hospital-based studies under homozygote model ($I^2 = 0$, $P_{heterogeneity} = 0.471$, OR =1.113, 95% CI =0.980-1.263, P=0.603, Table 2), heterozygote model (I^2 =40.5%, $P_{heterogeneity}$ =0.186, OR =1.060, 95% CI =0.961-1.169, P=0.248, Table 2), dominant model (I^2 =0, $P_{heterogeneity}$ =0.462, OR =1.047, 95% CI =0.957-1.144, P=0.318, Table 2), recessive model (I² =26%, P_{heterogeneity}=0.204, OR =0.941, 95% CI =0.849-1.043, P=0.247, Table 2), and allele comparison model ($I^2 = 19.8\%$, $P_{heterogeneity} = 0.261$, OR = 0.994, 95% CI = 0.935-1.056, P = 0.837, Table 2). Results of the meta-analyses are presented in Table 2.

Table 2 Meta-analysis on the association between miR-146a rs2910164 polymorphism and HNC risk

Variables	Study	Statistic model	Test of	hotorogonoity	Test of asso	ciation	Public	ation hise
Valiables	number	Statistic model	P	I ²	OR (95% CI)	P	PRogrado	PEggar'a
			•	•		•	- Begg s	• Egger's
Homozygote model								
Total	13	Fixed	0.226	21.6	1.113 (0.980–1.263)	0.099	1.000	0.793
Ethnicity								
Caucasian	5	Fixed	0.177	36.7	0.919 (0.716–1.180)	0.509		
Asian	8	Fixed	0.541	0	1.189 (1.025–1.378)	0.022		
Source of control								
Population-based study	3	Fixed	0.855	0	1.668 (1.183–2.352)	0.004		
Hospital-based study	10	Fixed	0.471	0	1.113 (0.980–1.263)	0.603		
Heterozygote model								
Total	13	Fixed	0.301	14.2	1.084 (0.991–1.186)	0.079	0.855	0.968
Ethnicity								
Caucasian	5	Fixed	0.076	52.7	1.040 (0.922–1.173)	0.521		
Asian	8	Fixed	0.713	0	1.142 (0.997–1.308)	0.054		
Source of control								
Population-based study	3	Fixed	0.408	3.5	1.219 (0.974–1.526)	0.083		
Hospital-based study	10	Fixed	0.186	40.5	1.060 (0.961–1.169)	0.248		
Dominant model								
Total	14	Fixed	0.282	15.6	1.088 (1.002–1.182)	0.044	0.661	0.549
Ethnicity								
Caucasian	6	Random	0.034	58.6	1.027 (0.857–1.232)	0.772		
Asian	8	Fixed	0.959	0	1.155 (1.016–1.312)	0.028		
Source of control								
Population-based study		Fixed	0.674	0	1.359 (1.095–1.687)	0.005		
Hospital-based study		Fixed	0.462	0	1.047 (0.957–1.144)	0.318		
Recessive model								
Total	13	Random	< 0.01	66.3	1.068 (0.896–1.272)	0.465	0.76	0.784
Ethnicity								
Caucasian	5	Fixed	0.344	10.9	0.919 (0.719–1.174)	0.449		
Asian	8	Random	< 0.01	76.5	1.133 (0.914–1.404)	0.254		
Source of control								
Population-based study	3	Fixed	0.874	0	1.697 (1.367–2.107)	<0.001		
Hospital-based study	10	Fixed	0.204	26	0.941 (0.849–1.043)	0.247		
Allele comparison mod	el				· · ·			
Total	13	Random	0.002	61	1.061 (0.966–1.166)	0.214	0.855	0.587
Ethnicity								
Caucasian	5	Random	0.012	69	0.981 (0.814–1.183)	0.843		
Asian	8	Random	0.021	57.6	1.103 (0.988–1.233)	0.082		
Source of control					,			
Population-based study	3	Fixed	0.991	0	1.394 (1.215–1.599)	<0.001		
Hospital-based study	10	Fixed	0.261	19.8	0 994 (0 935-1 056)	0.837		

miR-146a C/G polymorphism and overall cancer risk

Furthermore, we explored the association between the pre-*miR*-146a C/G polymorphism and overall cancer risk. We first analyzed the heterogeneity by Q-test and *I*-squared in any of the genetic models. Significant statistical heterogeneity was identified in the homozygote model ($I^2 = 57.1\%$, $P_{heterogneity} < 0.001$), heterozygote model ($I^2 = 55.1\%$, $P_{heterogneity} < 0.001$), dominant model ($I^2 = 46.4\%$, $P_{heterogneity} < 0.001$), recessive model ($I^2 = 60.9\%$, $P_{heterogneity} < 0.001$), and allele comparison model ($I^2 = 58.8\%$, $P_{heterogneity} < 0.001$), so that random-effects model was used in all genetic models. Overall, significant association was not identified in all genetic models (homozygote model: OR =1.005, 95% CI = 0.931-1.084, P=0901, Figure 7; heterozygote model: OR =1.009, 95% CI = 0.951-1.070, P=0.766, Figure 8; dominant model: OR =0.998, 95% CI = 0.951-1.047, P=0.932, Figure 9; recessive model: OR =1.005, 95% CI

Figure 7. Forest plot of the association between *miR-146a* rs2910164 polymorphism and overall risk (under homozygote model)

Figure 8. Forest plot of the association between *miR-146a* rs2910164 polymorphism and overall cancer risk (under heterozygote model)

12

Figure 9. Forest plot of the association between miR-146a rs2910164 polymorphism and HNC risk (under dominant model)

=0.946-1.066, P=0.880, Figure 10, and allele comparison model: OR =0.999, 95% CI =0.965-1.035, P=0.970, Figure 11). Subgroup analysis was performed according to ethnicity. The same result was found, that is, no significant association was detected in all genetic models amongst Caucasians, Asians, and mixed populations. All the results are listed in Table 3.

Figure 10. Forest plot of the association between *miR-146a* rs2910164 polymorphism and overall cancer risk (under recessive model)

Figure 11. Forest plot of the association between *miR-146a* rs2910164 polymorphism and overall cancer risk (under allele comparison model)

Table 3 Meta-analysis on the association between miR-146a rs2910164 polymorphism and overall cancer risk

Variables	Study number	Statistic model	Test of h	neterogeneity	Test of asso	ciation	Public	lication bias				
Turiabile o	number		P	1 ²	OR (95% CI)	P	P _{Begg} 's	P _{Egger's}				
llemente medel					. ,		2099 0					
Homozygote model	80	Developer	0.001		1 005 (0 001 1 004)	0.001	0.500	0.000				
lotal Ethnicitu	89	Random	<0.001	57.1	1.005 (0.931–1.084)	0.901	0.568	0.889				
	00	Dondom	0.004	46.0	0.010 (0.716 1.100)	0.756						
Caucasian	20	Random	0.004	40.9	0.919 (0.716-1.180)	0.750						
Asian Mixed perculation	1	Random	<0.001	01.4	0.995 (0.915-1.083)	0.913						
	I	Random	-	-	1.01 (0.711–1.435)	0.956						
Deputation based study	00	Dondom	0.001	E4 G	1 104 (0 070 1 000)	0 100						
Population-based study	29	Random	<0.001	54.0	1.134 (0.972-1.323)	0.109						
Hotorozvasta model	00	naliuolii	<0.001	55.4	0.900 (0.002-1.043)	0.347						
Heterozygote model	90	Dandom	-0.001	55 I	1 000 (0 051 1 070)	0.766	0.019	0.926				
Total Ethnicity	09	naliuolii	<0.001	55.1	1.009 (0.951-1.070)	0.700	0.916	0.630				
	00	Dondom	0.01	40.7	1 070 (0 000 1 070)	0.400						
Caucasian	20	Random	-0.001	42.7	1.072 (0.902-1.273)	0.430						
Asian Mixed population	1	Random	<0.001	59.3	0.994 (0.934-1.057)	0.839						
	I	naliuolii	-	-	0.957 (0.007-1.373)	0.012						
Source or control	00	Dondom	0.001	70.0	1 010 (0 000 1 107)	0.070						
Population-based study	29	Random	< 0.001	72.9	1.013 (0.863-1.187)	0.006						
Rospital-based study	60	Random	0.005	30	0.997 (0.944–1.052)	0.906						
Dominant model	20	Dandam	0.001	46.4	0.000 (0.051 1.047)	0.000	0.620	0.040				
Total Ethnicity	69	Random	<0.001	40.4	0.998 (0.951-1.047)	0.932	0.632	0.349				
	00	Dondom	0.000	40	1 010 (0 000 1 104)	0.701						
Caucasian	20	Random	0.003	48	1.012 (0.929-1.104)	0.701						
Asian Mixed perculation	1	Random	<0.001	40.9	0.969 (0.932-1.051)	0.731						
Nixed population	I	Random	-	-	1.048 (0.887–1.240)	0.580						
Source or control	20	Dandom	0.024	25.1	1 000 (0 000 1 160)	0.400						
Population-based study	29	Dandam	0.034	46.7	1.063 (0.963-1.106)	0.420						
Rospital-based study	60	Random	<0.001	40.7	0.957 (0.903-1.015)	0.143						
Recessive model	90	Dandom	-0.001	60.0		0 000	0.075	0.917				
Total Ethnicity	09	naliuolii	<0.001	00.9	1.005 (0.940-1.000)	0.000	0.975	0.017				
	00	Dondom	0.004	05.1	1 000 (1 000 1 100)	0.467						
Caucasian	20	Random	0.034	30.1	1.083 (1.003-1.188)	0.407						
Asian Mixed perculation	60	Random	<0.001	40.7	0.957 (0.903-1.015)	0.743						
Nixed population	I	Random	-	-	0.989 (0.701–1.396)	0.951						
Source or control	00	Developer	0.001	70.0		0.005						
Population-based study	29	Random	<0.001	72.3	1.041 (0.895–1.210)	0.605						
Hospital-based study	60	Random	<0.001	50.3	0.986 (0.929-1.046)	0.643						
Allele comparison mode		Developer	0.001	<u> </u>		0.070	0 700	0 757				
lotal Ethericity	89	Random	<0.001	60.8	0.999 (0.965-1.035)	0.970	0.790	0.757				
	00	Dandom	0.000	10.9		0 5 4 0						
Gaucasian	28	Random	0.002	49.8	1.022 (0.954-1.095)	0.542						
Asian	1	Random	<0.001	63.1	0.991 (0.950-1.032)	0.000						
ivitxed population	I	Random	-	-	1.030 (0.899–1.181)	0.070						
Source of control	00	Develop	0.001	F7 7		0.140						
Population-based study	29	Random	<0.001	5/./	1.053 (0.988-1.122)	0.112						
Hospital-based study	60	Kandom	<0.001	60.1	0.977 (0.938–1.017)	0.252						

Publication bias

Egger's test and Begg's test were used to investigate the publication bias in the literature in all the genetic models. No publication bias was detected by Begg's and Egger's tests. The shapes of the funnel plots (not shown) did not identify obvious asymmetry in any of the comparison models, and plot symmetries are evidenced by *P*-values greater than 0.05. Accordingly, no publication bias was evident in the meta-analysis (Tables 2 and 3).

Sensitivity analysis

We performed sensitivity analysis by sequential omission of individual studies, and the results showed that the significance of the pooled ORs for *miR-146a* rs2910164 polymorphism was not excessively influenced, suggesting the stability and reliability of the results in the present meta-analysis (not shown).

Discussion

It is well known that genetic mutations are responsible for cancer occurrence [104]. SNPs, as the most common genetic sequence variation, could affect the function of a series of miRNAs by altering the formation of the primary transcript, miRNA maturation, or miRNA–mRNA interactions [105,106]. Thus, genetic susceptibility to cancer, particularly from SNPs, has been a research focus in the scientific community. Previously, variations of the pre-*miR-146a C*/G gene have drawn increasing attention in cancer etiologies, and altered expression levels have been observed in inflammatory diseases as well as in cancers [107,108]. The results of the present meta-analysis confirm that *miR-146a C*/G polymorphism is associated with HNC risk. This risk is significant amongst the individuals with a dominant genotype model. In the stratified analysis by ethnicity, significant analysis was detected amongst Asians under homozygote and dominant model, while no association was found amongst Caucasians under all genetic models. Furthermore, significant association was found in population-based studies under homozygote, dominant, recessive, and allele comparison models. However, no significant association was found between this gene polymorphism and overall cancer risk. Furthermore, in the stratified analyses by ethnicity and source of control, no significant association was detected in the subgroup analyses of source of control.

To the best of our knowledge, the present study is the first and most comprehensive one to date to assess the relationship between *miR-146a* C/G polymorphism and HNC risk, and the most comprehensive one to date to explore the association between this gene polymorphism and overall cancer risk. Nevertheless, our meta-analysis also has some limitations common to these types of studies. First, relatively large heterogeneity was observed across all the studies involved despite the use of strict criteria for study inclusion and precise data extraction. So, we performed subgroup analyses to explore the possible source of heterogeneity. Second, the majority of subjects included in this meta-analysis were mainly Caucasians and Asians. Thus, the inherent genetic and geographic differences require more data from different ethnic group to increase the statistical power. Third, the low sample size in some of the included studies likely influences the statistical power for evaluating the association between the *miR-146a* C/G polymorphism and HNC risk, especially in subgroup analyses. Fourth, lack of original data from the reviewed studies limited our further evaluation of potential interactions, considering that gene-to-gene and gene-to-environment interactions might modulate cancer risk. As a result, a more precise analysis stratified by variable host factors could be performed. Last, although the results for publication bias were not statistically significant, publication bias may still exist, because only published studies were included in this meta-analysis.

In conclusion, the meta-analysis presented here indicates that *miR-146a* C/G polymorphism more is likely contribute to the susceptibility to HNC, and overall cancer risk. Further well-designed studies with large sample size are needed to confirm these findings.

Author contribution

Xiaolei Z. contributed to the study design. D.S. and Xiaoyan Z. contributed to the literature search, data extraction. and the assessment of methodology quality. D.S. contributed to the statistical analysis and drafting of the manuscript. Xiaolei Z. contributed to the revising of the manuscript. All authors approved the final version of manuscript.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

The authors declare that there are no sources of funding to be acknowledged.

Abbreviations

CI, confidence interval; HNC, head and neck cancer; HWE, Hardy–Weinberg equilibrium; OR, odds ratio; SNP, single nucleotide polymorphism.

References

- Specenier, P. and Vermorken, J.B. (2013) Cetuximab: its unique place in head and neck cancer treatment. Biologics 7, 77–90
- 2 Liao, C.T., Wallace, C.G., Lee, L.Y. et al. (2014) Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral Oncol. 50, 721–731, https://doi.org/10.1016/j.oraloncology.2014.04.010
- 3 Machiels, J.P., Lambrecht, M., Hanin, F.X. et al. (2014) Advances in the management of squamous cell carcinoma of the head and neck. *F1000Prime Rep.* 6, 44, https://doi.org/10.12703/P6-44
- 4 Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* **116**, 281–297, https://doi.org/10.1016/S0092-8674(04)00045-5
- 5 Esquela-Kerscher, A. and Slack, F.J. (2006) Oncomirs microRNAs with a role in cancer. *Nat. Rev. Cancer* **6**, 259–269, https://doi.org/10.1038/nrc1840
- 6 Berezikov, E., Guryev, V., van de Belt, J. et al. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. *Cell* **120**, 21–24, https://doi.org/10.1016/j.cell.2004.12.031
- 7 Chen, C.Z. (2005) MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med. 353, 1768–1771, https://doi.org/10.1056/NEJMp058190
- 8 Hui, A., How, C., Ito, E. et al. (2011) Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies. *BMC Cancer* **11**, 500, https://doi.org/10.1186/1471-2407-11-500
- 9 Qu, K.Z., Zhang, K., Li, H. et al. (2011) Circulating microRNAs as biomarkers for hepatocellular carcinoma. J. Clin. Gastroenterol. 45, 355–360, https://doi.org/10.1097/MCG.0b013e3181f18ac2
- 10 Yoon, S.O., Chun, S.M., Han, E.H. et al. (2011) Deregulated expression of microRNA-221 with the potential for prognostic biomarkers in surgically resected hepatocellular carcinoma. *Hum. Pathol.* **42**, 1391–1400, https://doi.org/10.1016/j.humpath.2010.12.010
- 11 Ji, J., Shi, J., Budhu, A. et al. (2009) MicroRNA expression, survival, and response to interferon in liver cancer. *N. Engl. J. Med.* **361**, 1437–1447, https://doi.org/10.1056/NEJMoa0901282
- 12 Shastry, B.S. (2009) SNPs: impact on gene function and phenotype. Methods Mol. Biol. 578, 3–22, https://doi.org/10.1007/978-1-60327-411-11
- 13 Hu, Z., Liang, J., Wang, Z. et al. (2009) Common genetic variants in premicroRNAs were associated with increased risk of breast cancer in Chinese women. *Hum. Mutat.* **30**, 79–84, https://doi.org/10.1002/humu.20837
- 14 Hu, Z., Chen, J., Tian, T. et al. (2008) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest. 118, 2600–2608
- 15 Slaby, O., Bienertova-Vasku, J., Svoboda, M. et al. (2012) Genetic polymorphisms and microRNAs: new direction in molecular epidemiology of solid cancer. *J. Cell. Mol. Med.* **16**, 8–21, https://doi.org/10.1111/j.1582-4934.2011.01359.x
- 16 Landau, D.A. and Slack, F.J. (2011) MicroRNAs in mutagenesis, genomic instability, and DNA repair. *Semin. Oncol.* **38**, 743–751, https://doi.org/10.1053/j.seminoncol.2011.08.003
- 17 Ntais, C., Polycarpou, A. and Ioannidis, J.P. (2004) Meta-analysis of the association of the cathepsin D Ala224Val gene polymorphism with the risk of Alzheimer's disease: a HuGE gene-disease association review. *Am. J. Epidemiol.* **159**, 527–536, https://doi.org/10.1093/aje/kwh069
- 18 Wigginton, J.E., Cutler, D.J. and Abecasis, G.R. (2005) A note on exact tests of Hardy-Weinberg equilibrium. *Am. J. Hum. Genet.* **76**, 887–893, https://doi.org/10.1086/429864
- 19 Cochran, W.G. (1954) The combination of estimates from different experiments. *Biometrics* **10**, 101–129, https://doi.org/10.2307/3001666
- 20 DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Control. Clin. Trials 7, 177-188, https://doi.org/10.1016/0197-2456(86)90046-2
- 21 Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748
- 22 Begg, C.B. and Mazumdar, M. (1994) Operating characteristics of a rank correlation test for publication bias. *Biometrics* **50**, 1088–1101, https://doi.org/10.2307/2533446
- 23 Egger, M., Davey Smith, G., Schneider, M. et al. (1997) Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**, 629–634, https://doi.org/10.1136/bmj.315.7109.629
- 24 Horikawa, Y., Wood, C.G., Yang, H. et al. (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. *Clin. Cancer Res.* **14**, 7956–7962, https://doi.org/10.1158/1078-0432.CCR-08-1199
- 25 Jazdzewski, K., Murray, E.L., Franssila, K. et al. (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 7269–7274, https://doi.org/10.1073/pnas.0802682105
- 26 Xu, T., Zhu, Y., Wei, Q.K. et al. (2008) A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. *Carcinogenesis* **29**, 2126–2131, https://doi.org/10.1093/carcin/bgn195
- 27 Yang, H., Dinney, C.P., Ye, Y. et al. (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. *Cancer Res.* 68, 2530–2537, https://doi.org/10.1158/0008-5472.CAN-07-5991
- 28 Hoffman, A.E., Zheng, T., Yi, C. et al. (2009) microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. *Cancer Res.* 69, 5970–5977, https://doi.org/10.1158/0008-5472.CAN-09-0236
- 29 Hu, Z., Liang, J., Wang, Z. et al. (2009) Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. *Hum. Mutat.* **30**, 79–84, https://doi.org/10.1002/humu.20837
- 30 Tian, T., Shu, Y., Chen, J. et al. (2009) A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. *Cancer Epidemiol. Biomarkers Prev.* **18**, 1183–1187, https://doi.org/10.1158/1055-9965.EPI-08-0814
- 31 Catucci, I., Yang, R., Verderio, P. et al. (2010) Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. *Hum. Mutat.* **31**, E1052–E1057, https://doi.org/10.1002/humu.21141
- 32 Guo, H., Wang, K., Xiong, G. et al. (2010) A functional variant in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. *Fam. Cancer* **9**, 599–603, https://doi.org/10.1007/s10689-010-9370-5

- 33 Liu, Z., Li, G., Wei, S. et al. (2010) Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. *Cancer* **116**, 4753–4760, https://doi.org/10.1002/cncr.25323
- 34 Okubo, M., Tahara, T., Shibata, T. et al. (2010) Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. *Helicobacter* **15**, 524–531, https://doi.org/10.1111/j.1523-5378.2010.00806.x
- 35 Pastrello, C., Polesel, J., Della Puppa, L. et al. (2010) Association between hsa-miR146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. *Carcinogenesis* **31**, 2124–2126, https://doi.org/10.1093/carcin/bgq184
- 36 Srivastava, K., Srivastava, A. and Mittal, B. (2010) Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J. Hum. Genet. 55, 495–499, https://doi.org/10.1038/jhg.2010.54
- 37 Xu, B., Feng, N.H., Li, P.C. et al. (2010) A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression *in vivo*. *Prostate* **70**, 467–472, https://doi.org/10.1002/pros.21149
- 38 Zeng, Y., Sun, Q.M., Liu, N.N. et al. (2010) Correlation between pre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World J. Gastroenterol. 16, 3578–3583, https://doi.org/10.3748/wjg.v16.i28.3578
- 39 Akkz, H., Bayram, S., Bekar, A. et al. (2011) No association of pre-microRNA-146a rs2910164 polymorphism and risk of hepatocellular carcinoma development in Turkish population: a case-control study. *Gene* **486**, 104–109, https://doi.org/10.1016/j.gene.2011.07.006
- 40 Garcia, A.I., Cox, D.G., Barjhoux, L. et al. (2011) The rs2910164: G>C SNP in the MIR146A gene is not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. *Hum. Mutat.* **32**, 1004–1007, https://doi.org/10.1002/humu.21539
- 41 George, G.P., Gangwar, R., Mandal, R.K. et al. (2011) Genetic variation in microRNA genes and prostate cancer risk in North Indian population. *Mol. Biol. Rep.* **38**, 1609–1615, https://doi.org/10.1007/s11033-010-0270-4
- 42 Hishida, A., Matsuo, K. and Goto, Y. (2011) Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. *Dig. Dis. Sci.* **56**, 1131–1137, https://doi.org/10.1007/s10620-010-1376-1
- 43 Mittal, R.D., Gangwar, R., George, G.P. et al. (2011) Investigative role of pre-microRNAs in bladder cancer patients: a case-control study in North India. *DNA Cell Biol.* **30**, 401–406, https://doi.org/10.1089/dna.2010.1159
- 44 Permuth-Wey, J., Thompson, R.C., Burton Nabors, L. et al. (2011) A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. *J. Neurooncol.* **105**, 639–646, https://doi.org/10.1007/s11060-011-0634-1
- 45 Vinci, S., Gelmini, S., Pratesi, N. et al. (2011) Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on relative expression in lung cancers. *Clin. Chem. Lab. Med.* **49**, 2073–2080, https://doi.org/10.1515/CCLM.2011.708
- 46 Yue, C., Wang, M., Ding, B. et al. (2011) Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. *Gynecol. Oncol.* **122**, 33–37, https://doi.org/10.1016/j.ygyno.2011.03.032
- 47 Zhang, X.W., Pan, S.D., Feng, Y.L. et al. (2011) Relationship between genetic polymorphism in microRNAs precursor and genetic predisposition of hepatocellular carcinoma. *Zhonghua Yu Fang Yi Xue Za Zhi* **45**, 239–243
- 48 Zhou, B., Wang, K., Wang, Y. et al. (2011) Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. *Mol. Carcinog.* 50, 499–505, https://doi.org/10.1002/mc.20740
- Ma, L., Zhu, L.J., Gu, D.Y. et al. (2013) A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population. *Arch. Toxicol.* 87, 825–833, https://doi.org/10.1007/s00204-012-1004-2
- 50 Alshatwi, A.A., Shafi, G., Hasan, T.N. et al. (2012) Differential expression profile and genetic variants of microRNAs sequences in breast cancer patients. PLoS ONE 7, e30049, https://doi.org/10.1371/journal.pone.0030049
- 51 Chu, Y.H., Tzeng, S.L., Lin, C.W. et al. (2012) Impacts of microRNA gene polymorphisms on the susceptibility of environmental factors leading to carcinogenesis in oral cancer. *PLoS ONE* 7, e39777, https://doi.org/10.1371/journal.pone.0039777
- 52 Hezova, R., Kovarikova, A., Bienertova-Vasku, J. et al. (2012) Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. *World J. Gastroenterol.* **18**, 2827–2831, https://doi.org/10.3748/wjg.v18.i22.2827
- 53 Kim, W.H., Min, K.T., Jeon, Y.J. et al. (2012) Association study of mi-croRNA polymorphisms with hepatocellular carcinoma in Korean population. *Gene* **504**, 92–97, https://doi.org/10.1016/j.gene.2012.05.014
- 54 Lung, R.W., Wang, X., Tong, J.H. et al. (2013) A single nucleotide polymorphism in microRNA-146a is associated with the risk for nasopharyngeal carcinoma. *Mol. Carcinog.* 52, E28–E38, https://doi.org/10.1002/mc.21937
- 55 Mihalache, F., Hoblinger, A., Acalovschi, M. et al. (2012) A common variant in the precursor miR-146a sequence does not predispose to cholangiocarcinoma in a large European cohort. *Hepatobiliary Pancreat. Dis. Int.* **11**, 412–417, https://doi.org/10.1016/S1499-3872(12)60200-8
- 56 Min, K.T., Kim, J.W., Jeon, Y.J. et al. (2012) Association of the miR-146aC>G, 149C>T, 196a2C>T, and 499A>G polymorphisms with colorectal cancer in the Korean population. *Mol. Carcinog.* 51, E65–E73, https://doi.org/10.1002/mc.21849
- 57 Wang, M., Chu, H., Li, P. et al. (2012) Genetic variants in miRNAs predict bladder cancer risk and recurrence. *Cancer Res.* **72**, 6173–6182, https://doi.org/10.1158/0008-5472.CAN-12-0688
- 58 Xiang, Y., Fan, S., Cao, J. et al. (2012) Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population. *Mol. Biol. Rep.* 39, 7019–7023, https://doi.org/10.1007/s11033-012-1532-0
- 59 Zhou, J., Lv, R., Song, X. et al. (2012) Association between two genetic variants in miRNA and primary liver cancer risk in the Chinese population. *DNA Cell Biol.* **31**, 524–530, https://doi.org/10.1089/dna.2011.1340
- 60 Zhou, F., Zhu, H., Luo, D. et al. (2012) A functional polymorphism in Pre-miR-146a is associated with susceptibility to gastric cancer in a Chinese population. *DNA Cell Biol.* **31**, 1290–1295, https://doi.org/10.1089/dna.2011.1596
- 61 Lv, M., Dong, W., Li, L. et al. (2013) Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. *J. Cancer Res. Clin. Oncol.* **139**, 1405–1410, https://doi.org/10.1007/s00432-013-1456-7
- 62 Chae, Y.S., Kim, J.G., Lee, S.J. et al. (2013) A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. *Anticancer Res.* **33**, 3233–3239

- 63 Ma, F., Zhang, P., Lin, D.X. et al. (2013) There is no association between microRNA gene polymorphisms and risk of triple negative breast cancer in a Chinese Han population. *PLoS ONE* **8**, e60195, https://doi.org/10.1371/journal.pone.0060195
- 64 Ma, L., Zhu, L., Gu, D. et al. (2013) A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population. *Arch. Toxicol.* 87, 825–833, https://doi.org/10.1007/s00204-012-1004-2
- 65 Orsos, Z., Szanyi, I., Csejtei, A. et al. (2013) Association of pre-miR-146a rs2910164 polymorphism with the risk of head and neck cancer. *Anticancer Res.* **33**, 341–346
- 66 Vinci, S., Gelmini, S., Mancini, I. et al. (2013) Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. *Methods* **59**, 138–146, https://doi.org/10.1016/j.ymeth.2012.09.002
- 67 Wei, W.J., Wang, Y.L., Li, D.S. et al. (2013) Association between the rs2910164 polymorphism in pre-Mir-146a sequence and thyroid carcinogenesis. *PLoS ONE* **8**, e56638, https://doi.org/10.1371/journal.pone.0056638
- 68 Wei, J., Zheng, L., Liu, S. et al. (2013) MiR-196a2 rs11614913 T>C polymorphism and risk of esophageal cancer in a Chinese population. *Hum. Immunol.* **74**, 1199–1205, https://doi.org/10.1016/j.humimm.2013.06.012
- 69 Yamashita, J., Iwakiri, T., Fukushima, S. et al. (2013) The rs2910164 G/C polymorphism in microRNA-146a is associated with the incidence of malignant melanoma. *Melanoma Res.* 23, 13–20, https://doi.org/10.1097/CMR.0b013e32835c5b30
- 70 Zhang, J., Wang, R., Ma, Y.Y. et al. (2013) Association between single nucleotide polymorphisms in miRNA196a-2 and miRNA146a and susceptibility to hepatocellular carcinoma in a Chinese population. *Asian Pac. J. Cancer Prev.* **14**, 6427–6431, https://doi.org/10.7314/APJCP.2013.14.11.6427
- 71 Ahn, D.H., Rah, H., Choi, Y.K. et al. (2013) Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. *Mol. Carcinog.* **52** (Suppl. 1), E39–E51, https://doi.org/10.1002/mc.21962
- 72 Song, M.Y., Su, H.J., Zhang, L. et al. (2013) Genetic polymorphisms of mR-146a and miR-27a, *H. pylori* infection, and risk of gastric lesions in a Chinese population. *PLoS ONE* **8**, e61250, https://doi.org/10.1371/journal.pone.0061250
- 73 Wu, R.R. (2014) The Association of miR-SNP with the Susceptibility of Colorectal Cancer and Response to Chemotherapy, Soochow University, Suzhou, China
- 74 Chu, Y.H., Hsieh, M.J., Chiou, H.L. et al. (2014) MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma. PLoS ONE 9, e89930, https://doi.org/10.1371/journal.pone.0089930
- 75 Cong, N., Chen, H., Bu, W.Z. et al. (2014) miR-146a G>C polymorphisms and risk of hepatocellular carcinoma in a Chinese population. *Tumour Biol.* **35**, 5669–5673, https://doi.org/10.1007/s13277-014-1750-2
- 76 Dikeakos, P., Theodoropoulos, G., Rizos, S. et al. (2014) Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. *Mol. Biol. Rep.* **41**, 1075–1080, https://doi.org/10.1007/s11033-013-2953-0
- 77 Du, M., Lu, D., Wang, Q. et al. (2014) Genetic variations in microRNAs and the risk and survival of renal cell cancer. *Carcinogenesis* **35**, 1629–1635, https://doi.org/10.1093/carcin/bgu082
- 78 Hu, X., Li, L., Shang, M. et al. (2014) Association between microRNA genetic variants and susceptibility to colorectal cancer in Chinese population. *Tumour Biol.* 35, 2151–2156, https://doi.org/10.1007/s13277-013-1285-y
- 79 Huang, G.L., Chen, M.L., Li, Y.Z. et al. (2014) Association of miR-146a gene polymorphism with risk of nasopharyngeal carcinoma in the central-southern Chinese population. *J. Hum. Genet.* **59**, 141–144, https://doi.org/10.1038/jhg.2013.135
- 80 Jeon, H.S., Lee, Y.H., Lee, S.Y. et al. (2014) A common polymorphism in premicroRNA-146a is associated with lung cancer risk in a Korean population. *Gene* **534**, 66–71, https://doi.org/10.1016/j.gene.2013.10.014
- 81 Jia, Y., Zang, A., Shang, Y. et al. (2014) Micro-RNA-146a rs2910164 polymorphism is associated with susceptibility to non-small cell lung cancer in the Chinese population. *Med. Oncol.* **31**, 194, https://doi.org/10.1007/s12032-014-0194-2
- 82 Kupcinskas, J., Wex, T., Link, A. et al. (2014) Gene polymorphisms of micrornas in *Helicobacter pylori*-induced high risk atrophic gastritis and gastric cancer. *PLoS ONE* **9**, e87467, https://doi.org/10.1371/journal.pone.0087467
- 83 Kupcinskas, J., Bruzaite, I., Juzenas, S. et al. (2014) Lack of association between miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 gene polymorphisms and colorectal cancer. *Sci. Rep.* **4**, 5993, https://doi.org/10.1038/srep05993
- 84 Mao, Y., Li, Y., Jing, F. et al. (2014) Association of a genetic variant in microRNA-146a with risk of colorectal cancer: a population-based case-control study. *Tumour Biol.* 35, 6961–6967, https://doi.org/10.1007/s13277-014-1916-y
- 85 Nikolić, Z.Z., SavićPavićević, D.L.j., Vukotić, V.D. et al. (2014) Association between genetic variant in hsa-miR-146a gene and prostate cancer progression: evidence from Serbian population. *Cancer Causes Control.* **25**, 1571–1575, https://doi.org/10.1007/s10552-014-0452-9
- 86 Palmieri, A., Carinci, F., Martinelli, M. et al. (2014) Role of the MIR146A polymorphism in the origin and progression of oral squamous cell carcinoma. *Eur. J. Oral Sci.* **122**, 198–201, https://doi.org/10.1111/eos.12121
- 87 Parlayan, C., Ikeda, S., Sato, N. et al. (2014) Association analysis of single nucleotide polymorphisms in miR-146a and miR-196a2 on the prevalence of cancer in elderly Japanese: a case-control study. *Asian Pac. J. Cancer Prev.* **15**, 2101–2107, https://doi.org/10.7314/APJCP.2014.15.5.2101
- 88 Pu, J.Y., Dong, W., Zhang, L., Liang, W.B., Yang, Y. and Lv, M.L. (2014) No association between single nucleotide polymorphisms in pre-mirnas and the risk of gastric cancer in Chinese population. *Iran J. Basic Med. Sci.* **17**, 128–133
- 89 Qu, Y., Qu, H., Luo, M. et al. (2014) MicroRNAs related polymorphisms and genetic susceptibility to esophageal squamous cell carcinoma. *Mol. Genet. Genomics* 289, 1123–1130, https://doi.org/10.1007/s00438-014-0873-x
- 90 Dikaiakos, P., Gazouli, M., Rizos, S. et al. (2015) Evaluation of genetic variants in miRNAs in patients with colorectal cancer. *Cancer Biomark.* **15**, 157–162, https://doi.org/10.3233/CBM-140449
- 91 Gomez-Lira, M., Ferronato, S., Orlandi, E. et al. (2015) Association of microRNA 146a polymorphism rs2910164 and the risk of melanoma in an Italian population. *Exp. Dermatol.* 24, 794–795, https://doi.org/10.1111/exd.12778
- 92 Qi, P., Wang, L., Zhou, B. et al. (2015) Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. *Genet. Mol. Res.* **14**, 6289–6296, https://doi.org/10.4238/2015.June.11.2

- 93 Zhu, J., Yang, L., You, W. et al. (2015) Genetic variation in miR-100 rs1834306 is associated with decreased risk for esophageal squamous cell carcinoma in Kazakh patients in northwest China. Int. J. Clin. Exp. Pathol. 8, 7332–7340
- 94 Deng, S., Wang, W., Li, X. et al. (2015) Common genetic polymorphisms in pre-microRNAs and risk of bladder cancer. *World J. Surg. Oncol.* **13**, 297, https://doi.org/10.1186/s12957-015-0683-6
- 95 Li, X., Li, K. and Wu, Z. (2015) Association of four common SNPs in microRNA polymorphisms with the risk of hepatocellular carcinoma. *Int. J. Clin. Exp. Pathol.* **8**, 9560–9566
- 96 Shen, F., Chen, J., Guo, S. et al. (2016) Genetic variants in miR-196a2 and miR-499 are associated with susceptibility to esophageal squamous cell carcinoma in Chinese Han population. *Turnour Biol.* 37, 4777–4784, https://doi.org/10.1007/s13277-015-4268-3
- 97 Yan, P., Xia, M., Gao, F. et al. (2015) Predictive role of miR-146a rs2910164 (C>G), miR-149 rs2292832 (T>C), miR-196a2 rs11614913 (T>C) and miR-499 rs3746444 (T>C) in the development of hepatocellular carcinoma. *Int. J. Clin. Exp. Pathol.* **8**, 15177–15183
- 98 Yin, Z., Cui, Z., Ren, Y. et al. (2016) Association between polymorphisms in pre-miRNA genes and risk of lung cancer in a Chinese non-smoking female population. Lung Cancer 94, 15–21, https://doi.org/10.1016/j.lungcan.2016.01.013
- 99 Xia, Z.G., Yin, H.F., Long, Y. et al. (2016) Genetic variant of miR-146a rs2910164 C>G and gastric cancer susceptibility. *Oncotarget* **7**, 34316–34321, https://doi.org/10.18632/oncotarget.8814
- 100 Hashemi, M., Moradi, N., Ziaee, S.A. et al. (2016) Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population. *J. Adv. Res.* **7**, 491–498, https://doi.org/10.1016/j.jare.2016.03.008
- 101 Jiang, J., Jia, Z.F., Cao, D.H. et al. (2016) Association of the miR-146a rs2910164 polymorphism with gastric cancer susceptibility and prognosis. *Future Oncol.* **12**, 2215–2226, https://doi.org/10.2217/fon-2016-0224
- 102 Miao, L., Wang, L., Zhu, L. et al. (2016) Association of microRNA polymorphisms with the risk of head and neck squamous cell carcinoma in a Chinese population: a case-control study. *Chin J. Cancer* **35**, 77, https://doi.org/10.1186/s40880-016-0136-9
- 103 Chen, H.C., Tseng, Y.K., Chi, C.C. et al. (2016) Genetic variants in microRNA-146a (C>G) and microRNA-1269b (G>C) are associated with the decreased risk of oral premalignant lesions, oral cancer, and pharyngeal cancer. *Arch. Oral Biol.* **72**, 21–32, https://doi.org/10.1016/j.archoralbio.2016.08.010
- 104 Frixa, T., Donzelli, S. and Blandino, G. (2015) Oncogenic microRNAs: key players in malignant transformation. *Cancers (Basel)* **7**, 2466–2485, https://doi.org/10.3390/cancers7040904
- 105 Ryan, B.M., Robles, A.I. and Harris, C.C. (2010) Genetic variation in microRNA networks: the implications for cancer research. *Nat. Rev. Cancer* **10**, 389–402, https://doi.org/10.1038/nrc2867
- 106 Kang, Z., Li, Y., He, X. et al. (2014) Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects. *Tumor Biol.* **35**, 6271–6282, https://doi.org/10.1007/s13277-014-1822-3
- 107 Perry, M.M., Moschos, S.A., Williams, A.E. et al. (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. *J. Immunol.* **180**, 5689–5698, https://doi.org/10.4049/jimmunol.180.8.5689
- 108 Reis, L.O., Pereira, T.C., Lopes-Cendes, I. et al. (2010) MicroRNAs: a new paradigm on molecular urological oncology. Urology 76, 521–527, https://doi.org/10.1016/j.urology.2010.03.012