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Abstract: In the present study, the anti-diabetic potential of Ocimum tenuiflorum was investigated
using computational techniques for α-glucosidase, α-amylase, aldose reductase, and glycation at
multiple stages. It aimed to elucidate the mechanism by which phytocompounds of O. tenuiflorum
treat diabetes mellitus using concepts of druglikeness and pharmacokinetics, molecular docking
simulations, molecular dynamics simulations, and binding free energy studies. Isoeugenol is a
phenylpropene, propenyl-substituted guaiacol found in the essential oils of plants. During molecular
docking modelling, isoeugenol was found to inhibit all the target enzymes, with a higher binding effi-
ciency than standard drugs. Furthermore, molecular dynamic experiments revealed that isoeugenol
was more stable in the binding pockets than the standard drugs used. Since our aim was to discover
a single lead molecule with a higher binding efficiency and stability, isoeugenol was selected. In this
context, our study stands in contrast to other computational studies that report on more than one
compound, making it difficult to offer further analyses. To summarize, we recommend isoeugenol
as a potential widely employed lead inhibitor of α-glucosidase, α-amylase, aldose reductase, and
glycation based on the results of our in silico studies, therefore revealing a novel phytocompound for
the effective treatment of hyperglycemia and diabetes mellitus.

Keywords: diabetes mellitus; Ocimum tenuiflorum; isoeugenol; in silico approach; molecular docking;
molecular dynamics simulations; binding free energy calculations

1. Introduction

Type-2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by
hyperglycemia, in which the body’s metabolism is disrupted as a result of abnormalities in
the insulin levels [1]. Prolonged hyperglycemic conditions lead to diabetes mellitus, which
in turn results in the damage, dysfunction, and failure of various organs. Carbohydrate
digestive enzymes, such as α-glucosidase and α-amylase, play a crucial role in fueling
hyperglycemia by releasing monosaccharides in the course of digestion [2–4]. Therefore,
the inhibition of carbohydrate digestive enzymes proves to be an essential part of treating
diabetes mellitus.
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Furthermore, blood glucose levels that are too high cause a significant flow of glucose
into the polyol pathway, where it is converted to sorbitol by aldose reductase [5]. Because
the metabolism is impaired by the enzyme sorbitol dehydrogenase, sorbitol accumulates in
the kidneys, nerves, and retina in diabetes patients. Additionally, sorbitol accumulation
causes microvascular problems and a variety of cardiovascular diseases, which the aldose
reductase enzyme can successfully prevent [6]. Thus, aldose reductase can also serve as an
important target that can be inhibited in order to prevent sorbitol accumulation, which is
associated with a number of microvascular and cardiovascular issues [7].

Furthermore, protein glycation in diabetes mellitus causes a partial impairment of
activity as a result of prolonged hyperglycemia. The non-enzymatic nucleophilic addition
reaction of the carbonyl residue of sugar with the free amino group of proteins forms
a reversible Schiff base, which eventually gives rise to a more stable Amadori product.
The Amadori products are then subjected to a series of dicarbonyl intermediate-mediated
reactions, creating an unspecified class of compounds known as advanced glycation end
products (AGEs). These AGEs accumulate in tissues and are the source of micro- and
macro-vascular problems in diabetics [8,9]. It has been suggested that changes in lifestyle,
such as increased physical activity and consumption of a diet rich in plant-derived foods
(e.g., whole grains, fruits, and vegetables) might prevent 90% of T2DM cases [10]. Plant
phytochemicals, such as polyphenolic compounds, as well as vitamins, minerals, and
dietary fiber, have been linked to the health advantages of plant-derived products. Polyphe-
nols have been demonstrated to lessen the severity of T2DM symptoms (such as fasting
and postprandial hyperglycemia) by inhibiting disaccharidases (such as α-amylase and
α-glucosidase) in the gut lumen [11].

Ocimum tenuiflorum, commonly known as tulsi, is a fragrant shrub of the basil family
Lamiaceae, which is native to the eastern globe tropics, and is said to have originated in north-
central India. In Ayurveda, it aids in the treatment of cough, asthma, diarrhea, fever, dysentery,
arthritis, eye diseases, indigestion, gastric ailments, etc. The pharmacological advantages of
tulsi have been demonstrated in numerous in vitro, animal, and human studies. O. tenuiflorum
is therefore a valuable source of phytoconstituents that can be applied in pharmacotherapeutic
procedures. Tulsi has been found to have a variety of pharmacological and phytochemical
characteristics, including anti-diabetic properties [12,13]. In the current scenario, in silico
pharmacology techniques are becoming an essential aspect of the drug development process.
Meanwhile, in order to strategically plan our biological investigations, we sought to assess
the anti-diabetic potential of O. tenuiflorum phytocompounds utilizing bioinformatics methods.
Computational techniques, such as molecular docking, molecular dynamics modelling, and
binding free energy calculations, have been proven to give accurate predictions in the field of
drug development [14]. When compared to in vitro and in vivo studies, they save a substantial
amount of time and money. As a result, we intended to virtually screen the O. tenuiflorum
phytochemicals obtained from the Indian Medicinal Plants, Phytochemistry, and Therapeutics
(IMPPAT) database as potential inhibitors ofα–glucosidase, α–amylase, human aldose reductase,
and human serum albumin proteins using molecular docking simulation, molecular dynamics
(MD) simulation, binding free energy calculations, and pharmacokinetic analysis. The findings
of this study suggest that the phytochemicals from O. tenuiflorum are potent and can act as
multiple target inhibitors of T2DM; thus, they should be taken into consideration for further
evaluation. Through this study, we aim to identify a single lead potential inhibitor of all the
target enzymes used.

2. Material and Methods
2.1. Data Retrieval and ADMET Profiling

The datasets of active phytocompounds were searched using the Indian Medicinal
Plants, Phytochemistry and Therapeutics database (https://cb.imsc.res.in/imppat/) (ac-
cessed on 10 July 2022) [15]. The phytocompounds were retrieved from NCBI PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 10 July 2022). Further, the
compounds were screened based on their ADMET properties. To deduce the pharmacoki-
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netic properties and their functions inside the body, the ADMET study was conducted based
on previous works of the authors using ADMETlab 2.0 (https://admetmesh.scbdd.com/)
(accessed on 10 July 2022) [16,17].

2.2. Molecular Docking Simulation

The 3D X-ray crystal structures of the target proteins required for the study, α-
glucosidase, α-amylase, human serum albumin (HSA), and human aldose reductase (HAR),
were retrieved from the RCSB Protein Data Bank (https://www.rcsb.org/) (accessed on
10 July 2022), and their PDB IDs are IDHK, 1AO6, and 1IEI, respectively. The protein
sequence of Saccharomyces cerevisiae α-glucosidase MAL-32 obtained from UniProt (UniProt
ID: P38158) was used to build a protein model using SWISS-MODEL. The model was
created using the X-ray crystal structure of S. cerevisiae isomaltase (PDB ID: 3AXH), which
showed a 72% identical and an 84% comparable sequence at a resolution of 1.8 Å. The
model was evaluated and found to be stable in the authors’ previous works [7,18]. The
pre-preparation of the proteins and ligands and virtual screening of compounds were
performed based on Patil et al. (2021) [19]. The binding site was predicted according
to the literature available on the RCSB PDB database. The grid box was placed on the
binding pockets of the respective target proteins. The size of the grid box was maintained
as constant, with different coordinates (Table 1). The molecular docking protocol was
validated according to a previous study, where the same proteins (homology-built model
of α-glucosidase, α-amylase, and HAR) were used for the in silico experiments [7]. In
the case of HSA, the protocol was validated using the literature available on RCSB PDB
database [20]. Concurrently, the 3D structures of the ligands were obtained from PubChem
in SDF format and were later converted into PDBQT format using OpenBabel 2.3.1 [21,22].
Finally, the prepared protein and ligand compounds were docked using AutoDock Vina
1.1.2, along with their controls. For α-glucosidase and α-amylase, acarbose was considered
as a control. Meanwhile, for human serum albumin (HSA) and human aldose reductase
(HAR), aminoguanidine and quercetin were considered as controls, respectively. The selec-
tion of the control drugs was based on the previous works of the authors [7]. The virtual
screening and interaction studies were performed using AutoDock Vina 1.1.2 and BIOVIA
Discovery Studios Visualizer 2021, respectively, based on Kumar et al. (2021) [23].

Table 1. The position of the grid box placed on binding pockets of the respective target proteins.

Enzyme Targets
Coordinates of the Grid Box

Size of the Grid Box
x y z

α-glucosidase −17.48 Å −8.62 Å −19.65 Å 40 Å × 40 Å × 40 Å

α-amylase 103.46 Å 37.17 Å 19.60 Å 40 Å × 40 Å × 40 Å

HSA 8.24 Å 2.58 Å −14.75 Å 40 Å × 40 Å × 40 Å

HAR −5.06 Å 0.19 Å 9.94 Å 40 Å × 40 Å × 40 Å

2.3. Molecular Dynamics Simulation

Based on the interaction analysis of the compounds, the best docked conformation
was selected for the dynamic investigation using GROMACS-2018.1, which is a biomolec-
ular software package [24]. The molecular dynamics simulation study was conducted in
order to understand the complexes’ stability, flexibility, and their conformational changes
according to the time interval. Based on the work of Patil et al. (2021a) [18] and Patil
et al. (2021b) [19], the simulation was performed for 100 ns. The simulation was carried
out using a nanosecond scale, and the pdb2gmx program protein was assigned with the
CHARMM36 force field to obtain the protein topology, whereas the SwissParam server
(https://www.swissparam.ch/) (accessed on 12 July 2022) [25,26] was used to obtain the
ligand topology. Furthermore, the system was solvated using a TIP3 water model with
a 10 Å cubic box. An appropriate number of Na+ and Cl− counter ions were added to

https://admetmesh.scbdd.com/
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neutralize the whole system, and the concentration of 0.15 M was added to maintain the
salt concentration. By using the steepest descent algorithm, the energy minimization of
50,000 steps was performed on the system. Furthermore, the system was equilibrated
in two phases, including the NVT and subsequent NPT ensemble (1000 ps each), with a
310 K temperature and 1 bar pressure [26,27]. The MD trajectories obtained were the root
mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration
(Rg), SASA (solvent accessible surface area), and the ligand hydrogen bonds. The MD
trajectories were plotted and analyzed using XMGRACE, based on the previous studies by
the authors [28,29].

2.4. Binding Free Energy Calculation

The binding free energy calculation of the complex was estimated using the mechanics/
Poisson–Boltzmann surface area (MM–PBSA) approach, using the g_mmpbsa program, which
is a GROMACS plugin. The quantitatively estimated of MM–PBSA was performed according
to the study conducted by Martiz et al. (2022) [30]. The calculation was performed using the
last 50 ns frames, which were extracted from the MD trajectory [18,19].

2.5. Druglikeness, Pharmacokinetics, and PASS Analysis of the Representative Compounds

Details related to the druglikeness and pharmacokinetics of the representative com-
pounds (isoeugenol, acarbose, quercetin, and aminoguanidine) were retrieved from the
previous analysis (virtual screening using molecular docking and ADMET profiling).
In addition, the pharmacological activity prediction using the PASS online tool (http:
//www.way2drug.com/passonline/) (accessed on 15 July 2022) was performed on the
representative compounds. The PASS server evaluates whether the provided chemical
compound(s) can have a specific pharmacological effect [31]. The outcomes were numerical
and classified into “Pa” and “Pi,” where “Pa” is symbolizes potential activity, while “Pi” in-
dicates the potential inactivity of the given compound. The compounds that are considered
acceptable for a particular pharmacological activity have comparatively greater Pa values
than Pi values (Pa > Pi) [18,19]. In this study, parameters such as α-glucosidase inhibition,
α-amylase inhibition, AGE-related disorder treatment, and HAR inhibition were assessed.

3. Results and Discussion
3.1. Virtual Screening through ADMET and Molecular Docking Simulation

Prior to performing the molecular docking, the in silico druglikeness and toxicity
predictions were carried out in order to understand their biological activities and toxic
effects. The screening results of all the phytocompounds of O. tenuiflorum are given in the
Supplementary Materials (Supplementary Table S1).

Meanwhile, the ADMET screening results of the 26 selective compounds are given
in Table 2. The predicted outcomes showed that most of the phytocompounds satisfy
Lipinski’s rule of five, which is a commonly used criteria for classifying the compounds as
drugs [32]. The oral bioavailability (OB) and blood–brain barrier (BBB) showed a better
permeation. OB is one of the most significant pharmacokinetic features in addition ADME
properties. Whereas, in the case of the TPSA, the compounds with <140 Å TPSA value
were considered as more flexible and could interact better with the target protein [33]. As
evident from Table 2, the values of the selected properties were well within range, and the
molecules showed excellent percentages of human oral absorption.

After the ADMET screening, the docking study was carried out for the 26 selected phy-
tocompounds. Table 3 displays the docking results of the compounds with α-glucosidase,
α-amylase, HSA, and HAR as their target proteins. From Table 3, it can be concluded that
all of the molecules have significantly lower docking scores (the more negative the docking
score is, the better the binding is). Out of all the phytocompounds docked, isoeugenol was
selected as a single multi-protein inhibitor based on its pharmacokinetic properties and
binding efficiency, since our aim was to discover this type of inhibitor.

http://www.way2drug.com/passonline/
http://www.way2drug.com/passonline/
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Table 2. Pharmacokinetics and ADMET screening results of selective compounds of O. tenuiflorum obtained from the ADMETlab 2.0 server.

Sl. No Compound Names OB
(OB ≥ 30%) BBB DHL

(HL < 3 h) LR5 IEP
(Caco-2 Cells) DILI CL (CL > 15

mL/min/kg)
MW

(100~600)
HBA

(0~12)
HBD
(0~7)

TPSA
(0~140) PAINS

1 (−)-Alloaromadendrene Pass Pass 0.671 Accepted −4.711 Negative 5.356 212.150 4 2 58.200 0

2 (−)-Camphene Pass Pass 0.013 Accepted −4.756 Negative 16.686 414.390 1 1 20.230 0

3 (−)-Linalool Pass Pass 0.040 Accepted −4.577 Negative 13.563 204.190 0 0 0.000 0

4 (+)-α-Phellandrene Pass Pass 0.077 Accepted −4.463 Negative 9.346 136.130 0 0 0.000 0

5 (+)-Endo-β-bergamotene Pass Pass 0.493 Accepted −4.375 Negative 9.738 154.140 1 1 20.230 0

6 (1S)-1,7,7-
Trimethylbicyclo[2.2.1]heptan-2-one Pass Pass 0.617 Accepted −4.383 Negative 12.660 136.130 0 0 0.000 0

7 (1S,2R,4S)-(−)-Bornyl acetate Pass Pass 0.063 Accepted −4.466 Negative 16.946 204.190 0 0 0.000 0

8 (E)-β-ocimene Pass Pass 0.243 Accepted −4.552 Moderate 6.063 196.150 2 0 26.300 0

9 1S-α-Pinene Pass Pass 0.701 Accepted −4.582 Negative 13.808 152.120 1 0 17.070 0

10 2,3-Dimethylaniline Pass Pass 0.678 Accepted −4.434 Negative 14.171 136.130 0 0 0.000 0

11 3-Carene Pass Pass 0.114 Accepted −4.303 Negative 15.022 136.130 0 0 0.000 0

12 4-Terpineol Pass Pass 0.583 Accepted −4.255 Negative 10.496 121.090 1 2 26.020 0

13 Acetyleugenol Pass Pass 0.132 Accepted −4.307 Negative 16.061 136.130 0 0 0.000 0

14 α-Fenchene Pass Pass 0.447 Accepted −4.217 Negative 14.345 154.140 1 1 20.230 0

15 α-Terpineol Pass Pass 0.843 Accepted −4.453 Moderate 8.457 206.090 3 0 35.530 0

16 β-caryophyllene Pass Pass 0.099 Accepted −4.460 Negative 10.559 136.130 0 0 0.000 0

17 β-Pinene Pass Pass 0.527 Accepted −4.193 Negative 8.942 154.140 1 1 20.230 0

18 Cis-Anethole Pass Pass 0.048 Accepted −4.517 Negative 9.943 204.190 0 0 0.000 0

19 Cyclo(L-Val-L-Leu) Pass Pass 0.107 Accepted −4.460 Negative 10.097 136.130 0 0 0.000 0

20 Dehydro-p-cymene Pass Moderate 0.638 Accepted −4.440 Negative 11.146 148.090 1 0 9.230 0

21 Eucalyptol Pass Pass 0.568 Accepted −4.344 Moderate 10.755 132.090 0 0 0.000 0

22 γ-Selinene Pass Pass 0.352 Accepted −4.414 Negative 8.066 154.140 1 0 9.230 0

23 Geranyl acetate Pass Pass 0.088 Accepted −4.577 Negative 13.350 204.190 0 0 0.000 0

24 Isoeugenol Pass Pass 0.506 Accepted −4.420 Moderate 9.707 196.150 2 0 26.300 0

25 Myrcene Pass Moderate 0.880 Accepted −4.579 Negative 13.435 164.080 2 1 29.460 0

26 Phytosterols Pass Pass 0.453 Accepted −4.402 Moderate 13.108 136.130 0 0 0.000 0

27 Acarbose Fail Fail 0.546 Rejected −6.149 Positive 0.373 645.250 19 14 321.170 0

28 Aminoguanidine Pass Moderate 0.714 Accepted 5.448 Negative 5.857 74.060 4 6 87.920 0

29 Quercetin Fail Pass 0.929 Accepted −5.204 Positive 8.284 302.040 7 8 131.360 1

Note: OB: oral bioavailability, BBB: blood–brain barrier, DHL: drug half-life, LR5: Lipinski’s rule of five, IEP: intestinal epithelial permeability (Caco-2 cells), DILI: drug-induced liver
injury, CL: clearness, MW: molecular weight, HBA: hydrogen bond acceptor, HBD: hydrogen bond donor, TPSA: topological polar surface area.
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Table 3. Name of the compounds, respective binding affinity, and total non-bonded interactions and hydrogen bonds, with their respective target proteins.

Sl. No. Compound Names
Binding Affinity (kcal/mol) Total No. of Intermolecular Interactions Total No. of Hydrogen Bonds

AG AM HSA HAR AG AM HSA HAR AG AM HSA HAR

1 (−)-Alloaromadendrene −7.3 −6.8 −6.3 −5.1 2 7 5 8 - - - -

2 (−)-Camphene −5.3 −5.4 −5.7 −6.2 3 3 3 7 - - - -

3 (−)-Linalool −5.8 −4.9 −5.2 −6.2 10 7 6 9 3 - - -

4 (+)-α-Phellandrene −5.8 −5.6 −5.9 −6.5 5 4 6 7 - - - -

5 (+)-Endo-β-bergamotene −7.3 −6.1 −6.2 −7.3 6 5 6 7 - - - -

6
(1S)-1,7,7-

Trimethylbicyclo[2.2.1]heptan-
2-one

−5.9 −5.5 −5.7 −6.3 2 4 3 3 - 2 - -

7 (1S,2R,4S)-(−)-Bornyl acetate −6.9 −5.7 −6.4 −6.4 2 3 3 3 1 - 1 2

8 (E)-β-ocimene −5.7 −5.0 −5.8 −6.4 8 6 6 11 - - - -

9 1S-α-Pinene −5.5 −5.4 −6.2 −6.1 4 9 6 9 - - - -

10 2,3-Dimethylaniline −5.1 −5.3 −5.6 −5.9 3 5 7 3 3 3 1 -

11 3-Carene −5.4 −5.5 −6.0 −6.5 3 4 6 6 - - - -

12 4-Terpineol −5.8 −5.7 −6.2 −6.2 6 3 5 7 1 - - -

13 Acetyleugenol −6.3 −5.7 −6.5 −6.6 7 4 8 6 2 1 2 1

14 α-Fenchene −5.6 −5.3 −5.8 −6.1 4 5 4 8 - - - -

15 α-Terpineol −6.2 −6.0 −6.2 −6.5 5 5 5 7 2 - - -

16 β-caryophyllene −7.3 −6.0 −6.1 −7.0 1 1 2 3 - - - -

17 β-Pinene −5.4 −5.6 −6.3 −6.1 3 5 6 8 - - - -

18 Cis-Anethole −5.7 −5.4 −6.3 −5.9 7 4 6 6 - - - -

19 Cyclo(L-Val-L-Leu) −6.6 −5.6 −6.4 −6.3 4 3 1 1 - - - -

20 Dehydro-p-cymene −6.0 −5.8 −6.1 −6.8 5 6 7 10 - - - -

21 Eucalyptol −5.5 −5.3 −6.2 −6.2 1 5 4 7 1 - 2 -

22 γ-Selinene −7.3 −6.7 −6.8 −7.4 1 4 5 8 - - 1 1

23 Geranyl acetate −6.3 −5.3 −6.3 −7.0 7 7 5 7 2 2 2 -

24 Isoeugenol −7.6 −6.9 −6.8 −7.4 9 7 8 11 4 4 2 1

25 Myrcene −5.6 −4.9 −5.9 −6.2 8 6 9 9 - - - -

26 Phytosterols −7.2 −6.6 −6.8 −4.0 6 7 3 2 - - - -

27 Acarbose −8.2 −7.4 - - 7 4 - - 6 4 - -

28 Aminoguanidine - - −8.0 - - - 7 - - - 3 -

29 Quercetin - - - −7.8 - - - 8 - - - 1

Note: AG: α-glucosidase, AM: α-amylase, HSA: human serum albumin, HAR: human aldose reductase.
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In this regard, all the pharmacokinetic parameters, the binding affinity, total number
of intermolecular interactions, and total number of hydrogen bonds were taken into con-
sideration. Isoeugenol had the highest docking score in comparison to the other docked
complexes and in the case of all the protein targets. The π-π stacking interactions, halogen
bonding, hydrogen bonding, and aromatic hydrogen bonding were the typical interactions
observed. Further analysis, in order to understand the differences in the docking scores,
was carried out using MD simulations.

In the case of α-glucosidase, isoeugenol had the better binding affinity and was
bound within the inhibitor binding site of the protein. In comparison with the control,
acarbose, isoeugenol formed a higher number of bonds, as presented in Figure 1. The
isoeugenol complex formed a total of nine intermolecular interactions, which included
four hydrogen bonds with Asp68, Arg439, Glu276, and Asp214. A single electrostatic
bond was formed with Asp349. Hydrophobic π-π stacked bond bounds were formed
via Phe177, whereas Tyr71, Phe157, and Phe177 formed π-alkyl with the ligand. The
predicted binding interaction results are in accordance with the previous works [17,21,34].
Meanwhile, the control compound, acarbose, formed a total of seven intermolecular bonds,
which is less than the isoeugenol compound, of which six were hydrogen bonds formed via
Asn241, Arg439, Asp408, Pro309, and His239. A hydrophobic π-sigma bond was formed
between acarbose and His279, whereas Thr307 and Asp349 were found to have formed
an unfavorable acceptor–acceptor bond. The visualization of the binding interaction of
isoeugenol and acarbose with α-glucosidase is given in Figure 1.

Based on the α-amylase-bound isoeugenol and acarbose docking study, isoeugenol
was predicted to bind within the inhibitory binding site. A total of seven intermolecular
bonds were predicted, of which four were hydrogen bonds via Arg398, Thr11, and Asp402.
It also formed hydrophobic pi-pi-shaped bonds via Phe335 and pi-alkyl via Pro4 and
Arg398. Meanwhile, a total four hydrogen bonds were formed between the protein and
acarbose, and one unfavorable bond was formed with His331. The docking results were
found to be in accordance with the previous studies [23,29,35]. The binding interactions of
isoeugenol and acarbose with α-amylase are visualized in Figure 2.

Meanwhile, in the case of HAR, both isoeugenol and quercetin were bound within the
inhibitory pocket of protein. Based on the predicted complex, isoeugenol formed a total
of 13 bonds, of which Cys298 formed a hydrogen bond. The hydrophobic pi-sigma and
pi-pi stacked bonds were formed via Trp111. The alkyl and pi-alkyl bonds were formed
with Val47, Cys80, Leu300, Trp20, Trp79, Trp111, and Phe122. In comparison, quercetin had
eight intermolecular interactions, of which one hydrogen bond and two donor–donor and
acceptor–acceptor unfavorable bonds were formed via Tyr309 and Cys298, thus indicating
that isoeugenol might form a better stable complex than quercetin. The docking results
were found to be in accordance with the previous studies [7]. The binding interactions of
isoeugenol and quercetin with HAR are visualized in Figure 3.
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Figure 1. Visualization of the docking simulation of the compounds with α-glucosidase. (A,B) Inter-
action of isoeugenol (purple) visualized in 3D and 2D, respectively. (C,D) Interaction of acarbose
(red) visualized in 3D and 2D, respectively.

In the case of HSA, the isoeugenol compounds were predicted to result in more
non-bonded interactions (8) when compared to aminoguanidine (7). A total of eight inter-
molecular interactions were predicted, of which Glu354 and Arg209 formed hydrogen
bonds, while hydrophobic alkyl and pi-alkyl were formed with Lys212, Val216, Lys351,
Ala213, Leu327, and Ala350. These residues are present in the vicinity of fatty acid site 4
(FA4), which accommodates the methylene tails of lipids bound to this site. In addition, the
ligands occupied the same binding site as the co-crystallized inhibitor ligand ibuprofen, in
accordance with the previous study [20]. According to this study, binding in the polar patch
of the binding pocket induces the conformational changes in the protein. In comparison,
aminoguanidine formed an unfavorable donor–donor bond between the ligand and Arg197.
The binding interactions of isoeugenol and quercetin with HSA are visualized in Figure 4.
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Figure 2. Visualization of the docking simulation of compounds with α-amylase. (A,B) Interaction
of isoeugenol (purple) visualized in 3D and 2D, respectively. (C,D) Interaction of acarbose (red)
visualized in 3D and 2D, respectively.

Thus, based on the overall study, using different target proteins, the isoeugenol
compound was predicted to have a better stability during complex formation, and the
compound was identified as binding within the inhibitory binding pocket, suggesting that
it might act as an inhibitor drug. The results obtained were in accordance with the previous
studies [36,37].
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3.2. Molecular Dynamics Simulation

Molecular dynamics simulation was performed to provide insight into the protein–
ligand stability and protein structural flexibility of the docked complexes. The simula-
tions of isoeugenol, along with the respective controls (acarbose for α-glucosidase and
α-amylase, aminoguanidine for HSA, and quercetin for HAR), which bound to the targets
α –glucosidase, α-amylase, HSA, and HAR, respectively, were carried out using the docked
structure as a starting geometry [38]. Figure 5 represents the plot of the trajectories of
the isoeugenol and acarbose complexes bound to α-glucosidase, along with apo-protein.
Throughout the simulation, the RMSD values of the complexes of isoeugenol and acarbose,
as well as protein α-glucosidase, show periodic variations, and isoeugenol was found
within the inhibitor binding site. The isoeugenol complex was found to be stable after
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80 ns, whereas fluctuation was found throughout the simulation in the case of the acarbose
complex. The RMSF plot was analyzed to discern each residue’s fluctuations during the
period of the simulation (100 ns). Both the complexes that bound to protein were on par,
with almost similar pattern. The protein model was shown to be relatively stable at both the
N- and T-terminals. The isoeugenol complex showed lower fluctuations, indicating that its
interaction may be superior. The radius of gyration (Rg) of the complexes and apo-protein
was determined, since it represents the structural compactness of the structure. The Rg and
SASA values showed similar patterns throughout the experiment, with no fluctuations.
Based on the hydrogen bond analysis, it can be predicted that structural re-agreement may
have occurred during the simulation, as the number of hydrogen bonds increased when
compared to the docking process; thus, it can be predicted that the isoeugenol complex has
better stability compared to the acarbose complex. The simulation results complemented
those of recent works that used the same protein model of α-glucosidase [18,23]. The MD
simulation analysis of isoeugenol and acarbose demonstrated that both the complexes
are found within the inhibitor binding site and formed persistent contacts, which may
contribute to the stability of the complexes (Figure 5). Table 4 depicts both isoeugenol and
acarbose complexed with α-glucosidase and the MD trajectory values.

Table 4. MD trajectory values of isoeugenol and acarbose complexed with α-glucosidase.

MD Trajectory
Values Apo-Protein Protein-Acarbose

Complex
Protein-Isoeugenol

Complex

RMSD 0.30–0.40 nm 0.25–0.32 nm 0.20–0.25 nm

Rg 3.10–3.14 nm 2.39–2.45 nm 2.39–2.45 nm

SASA 350–370 nm2 240–250 nm2 240–250 nm2

Ligand H-bonds - 9 7

In the case of the α-amylase-bound complexes, the RMSD plot indicates that the
isoeugenol complex is bound within the inhibitor binding site, whereas a much higher
deviation can be seen in the case of the acarbose complex, which might indicate that
isoeugenol is more stable than the acarbose complex. Both complexes and the apo-protein
showed more or less identical oscillation patterns in the RMSF evaluation. The higher
fluctuation can be seen in the loop region of the structures that were studied, which indicates
that there might be a chance of high mobility. Meanwhile, compared to the isoeugenol
complex, both the acarbose complex and apo-protein showed high fluctuation, which may
suggest that the instability with the structure. To understand the structure compactness
and the stability of the complexes formed, both Rg and SASA were evaluated. Based on
the evaluation, it was observed that the Rg values of both the complexes, isoeugenol and
acarbose, showed similar pattern. Thus, it can be said that the complexes were compact
throughout the simulation. Furthermore, to understand if any structural rearrangement
occurred within the complexes, the ligand H-bond was analyzed. Based on the H-bond
plot analysis, he acarbose complex showed the same number of hydrogen bonds as the
isoeugenol complex, which was in accordance with our previous study. The outcomes
of the MD simulation of α-amylase were found to be in accordance with the previous
studies [21,26]. The graphical representation of the MD simulation plot is shown in Figure 6,
and the trajectory values are given in Table 5.
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Figure 5. Analysis of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds of isoeugenol-
(purple) and acarbose-bound (red) α-glucosidase complexes, as well as apo-protein α-glucosidase
(green), at 100 ns. (A) Time evolution of RMSD values of both the complexes along with the protein.
(B) RMSF. (C) Radius of gyration (Rg). (D) SASA. (E) Hydrogen bonds.

Table 5. MD trajectory values of isoeugenol and acarbose complexed with α-amylase.

MD Trajectory
Values Apo-Protein Protein-Acarbose

Complex
Protein-Isoeugenol

Complex

RMSD 0.20–0.30 nm 0.25–0.32 nm 0.20–0.25 nm

Rg 3.10–3.14 nm 2.39–2.45 nm 2.39–2.45 nm

SASA 350–370 nm2 240–250 nm2 240–250 nm2

Ligand H-bonds - 7 7
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Figure 6. Analysis of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds of isoeugenol-
(purple) and acarbose-bound (red) α-amylase complexes, as well as apo-protein α-amylase (green), at
100 ns. (A) Time evolution of RMSD values of both the complexes along with the protein. (B) RMSF.
(C) Radius of gyration (Rg). (D) SASA. (E) Hydrogen bonds.

The MD simulation plot analysis of the HAR-bound isoeugenol and quercetin com-
plexes is shown in Figure 7. The RMSD plot illustrates that both the complexes are bound to
the protein within the inhibitory site. Based on the plot, it can be said that isoeugenol bound
to HAR stabilized after 20 ns, whereas quercetin showed a slight variation throughout
the simulation. Thus, based on the RMSD evaluation, it may be said that the isoeugenol
complex is more stable compared to quercetin complex. The simulation result is in accor-
dance with the authors’ previous studies [7,39]. The RMSF plot shows high fluctuations
between the residues, and both the complexes, as well as the apo-protein, showed similar
patterns throughout the simulation. The Rg values of both the apo-protein and isoeugenol
complex show a similar pattern, which might indicate the better compactness of the struc-
ture, whereas, based on the SASA plot, it can be observed that all the structures, the
apo-protein, isoeugenol complex, and quercetin complex, yielded values that are on par
and show a rather similar pattern. Finally, based on the H-bond analysis, it can be seen
that the isoeugenol bound complex has a maximum of seven hydrogen bonds, compared
to the quercetin docked complex, which indicates that the structure may have undergone
structural rearrangement (Figure 7). The trajectory values of the MD simulation are given
in Table 6.
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In the case of HSA, the RMSD plot analysis showed that both the complexes and 
apo-protein showed rather similar patterns of variation throughout the MD simulation. 
Both the complexes are bound within the inhibitory site of the protein. Similar high 
fluctuations were seen at the terminal region of the RMSF plot, which indicates that there 
might be a chance of high mobility between the residues (480–590). However, based on 
the RMSF plot, overall, the fluctuations of the protein-aminoguanidine complex were 
found to be greater. The Rg value was evaluated, indicating the compactness of the 
structure during the complex formation, and based on the plot, it can be observed that 

Figure 7. Analysis of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds of isoeugenol-
(purple) and quercetin- bound (red) HAR complexes, as well as apo-protein α-glucosidase (green), at
100 ns. (A) Time evolution of RMSD values of both the complexes, along with the protein. (B) RMSF.
(C) Radius of gyration (Rg). (D) SASA. (E) Hydrogen bonds.

Table 6. MD trajectory values of isoeugenol and quercetin complexed with HAR.

MD Trajectory
Values Apo-Protein Protein-Quercetin

Complex
Protein-Isoeugenol

Complex

RMSD 0.20–0.36 nm 0.20–0.35 nm 0.20–0.30 nm

Rg 1.70–1.90 nm 1.90–1.92 nm 1.70–1.90 nm

SASA 140–150 nm2 140–150 nm2 140–150 nm2

Ligand H-bonds - 5 7

In the case of HSA, the RMSD plot analysis showed that both the complexes and apo-
protein showed rather similar patterns of variation throughout the MD simulation. Both
the complexes are bound within the inhibitory site of the protein. Similar high fluctuations
were seen at the terminal region of the RMSF plot, which indicates that there might be a
chance of high mobility between the residues (480–590). However, based on the RMSF
plot, overall, the fluctuations of the protein-aminoguanidine complex were found to be
greater. The Rg value was evaluated, indicating the compactness of the structure during the
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complex formation, and based on the plot, it can be observed that the isoeugenol complex
may have a better compactness compared with the aminoguanidine complex. A similar
pattern can be seen even in the SASA plot. Finally, based on H-bond analysis, it can be
predicted that structural rearrangement might have taken place. The results of the MD
simulation for HSA were found to be in accordance with the previous studies [40,41]. The
graphical visualization of the MD trajectory plot and values are given in Figure 8 and
Table 7, respectively.
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Figure 8. Analysis of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds of isoeugenol-
(purple) and aminoguanidine-bound (red) HSA complex, as well as apo-protein HSA (green), at
100 ns. (A) Time evolution of RMSD values of both the complexes, along with the protein. (B) RMSF.
(C) Radius of gyration (Rg). (D) SASA. (E) Hydrogen bonds.
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Table 7. MD trajectory values of isoeugenol and aminoguanidine complexed with HSA.

MD Trajectory
Values Apo-Protein

Protein-
Aminoguanidine

Complex

Protein-Isoeugenol
Complex

RMSD 0.25–0.45 nm 0.25–0.45 nm 0.25–0.45 nm

Rg 2.60–2.61 nm 2.60–2.61 nm 2.58–2.60 nm

SASA 270–280 nm2 270–280 nm2 270–280 nm2

Ligand H-bonds - 6 7

3.3. Binding Free Energy Calculations

Based on the free binding energy calculations, it can be predicted that van der Waal’s
energy and the binding energies had substantial impacts on the complex formation. Based
on the energy calculation, the predicted results were, mostly, energetically viable. According
to the predicted results, isoeugenol bound to the α-glucosidase complex (−224.811 kJ/mol)
showed the highest binding free energy when compared with all the other complexes
(Table 8). Van der Waal’s energy and binding free energy were shown to be the primary
contributors to the formation of the complexes when compared to the other energies.
Furthermore, when compared to the protein-control complexes, the protein-isoeugenol
complexes were found to have higher (more negative) binding free energies, which indi-
cates that the protein-control complexes have a weaker interaction and binding affinity
compared to the protein-isoeugenol complexes. This study result revealed a similar pattern
to that observed in previous studies that performed binding free energy calculations for
α-glucosidase, α-amylase, HAR [7], and HSA [42]. The predicted values of the energies
calculated are summarized in Table 8 and were obtained using the MMPBSA technique.

Table 8. Binding free energy values of the target proteins complexed with ligands.

Protein-Ligand
Complexes

Types of Binding Free Energies

Van Der Waal’s
Energy

(kJ/mol)

Electrostatic
Energy

(kJ/mol)

Polar Solvation
Energy

(kJ/mol)

SASA
Energy

(kJ/mol)

Binding
Energy

(kJ/mol)

α-Glucosidase-isoeugenol −224.811 −10.382 83.618 −26.746 −186.222

α-Glucosidase-acarbose −134.192 −4.813 62.125 −9.310 −90.102

α-Amylase-isoeugenol −218.568 −29.891 62.172 −21.886 −180.194

α-Amylase-acarbose −130.161 −2.106 39.340 −9.564 −87.109

HSA-isoeugenol −189.601 −15.288 56.9638 −9.149 −98.169

HSA-aminoguanidine −150.719 −5.127 47.498 −7.981 −81.872

HAR-isoeugenol −184.951 −10.105 87.107 −25.191 −99.171

HAR-quercetin −171.669 −3.291 81.102 −8.781 −85.768

3.4. Druglikeliness, Pharmacokinetic, and PASS Analysis of the Representative Compounds

In terms of the druglikeness properties, all the molecules except acarbose were found
to be in accordance with Lipinski’s rule of five. During the analysis of the pharmacokinetic
properties, acarbose and quercetin were found to violate the oral bioavailability parameter.
However, studies have shown that both acarbose [43,44] and quercetin [45] possess minimal
bioavailability. This makes the drugs effectively unsuitable for oral consumption. moreover,
both of these compounds were predicted to cause liver injuries. This arises due to their
toxicity and carcinogenic properties [46,47]. Therefore, ADMET profiling of the compounds
revealed that both acarbose and quercetin are unfavorable for oral consumption. However,
isoeugenol was predicted to be successful in all the investigations conducted. These reports
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indicate that isoeugenol may be used in in vitro and in vivo investigations. However, phy-
tocompounds could be used as alternative therapeutics due to their minimal adverse effects
on the human metabolism [48–50]. Table 9 depicts the druglikeness and pharmacokinetic
properties of the representative compounds, whereas Figure 9 shows their pharmacokinetic
mapping. The radar diagrams demonstrate that all the compounds were found to be within
the acceptable boundary regarding the druglikeness properties, except for acarbose.
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(C) aminoguanidine, and (D) quercetin.

In addition, PASS pharmacological action predictions were also conducted to examine
properties including α-glucosidase inhibition, α-amylase inhibition, AGE-related disorder
treatment, and HAR inhibition. Isoeugenol was found to have more ‘Pa’ values than ‘Pi’,
which indicates its positive activity in regard to all the parameters. However, acarbose
was not predicted to exhibit a pharmacological action for the treatment of AGE-related
disorders. In addition, aminoguanidine was found to be inactive in regard to all the
parameters investigated. Moreover, quercetin was found to be inactive in terms of α-
amylase inhibition and the treatment of AGE-related disorders. These results indicate that
isoeugenol may act as a potential lead compound, a hypothesis which requires thorough



Molecules 2022, 27, 6222 19 of 22

investigation using in vitro and animal models. The results from the PASS analysis of the
representative compounds are depicted in Table 10.

Table 9. Druglikeness and pharmacokinetic properties of the representative compounds.

Properties Isoeugenol Acarbose Aminoguanidine Quercetin

Oral bioavailability (OB ≥ 30%) Pass Fail Pass Fail

Blood–brain barrier (BBB) Moderate Fail Moderate Pass

Drug half-life (HL < 3 h) 0.880 0.546 0.714 0.929

Lipinski’s rule (LR) of five Accepted Rejected Accepted Accepted

Intestinal epithelial permeability
(Caco-2 cells) −4.579 −6.149 5.448 −5.204

Drug-induced liver injury (DILI) Negative Positive Negative Positive

Clearness (CL > 15 mL/min/kg) 13.435 0.373 5.857 8.284

Molecular weight (MW 100~600) 164.080 645.250 74.060 302.040

Hydrogen bond acceptor (0~12) 2 19 4 7

Hydrogen bond donor (0~7) 1 14 6 8

TPSA (0~140) 29.460 321.170 87.920 131.360

PAINS 0 0 0 1

Table 10. PASS analysis of the representative compounds.

Compounds
α-Glucosidase α-Amylase AGE-Related Disorder HAR

Pa Pi Pa Pi Pa Pi Pa Pi

Isoeugenol 0.107 0.025 0.184 0.065 0.371 0.011 0.064 0.041

Acarbose 0.451 0.009 0.943 0.000 - - - -

Aminoguanidine - - - - - - - -

Quercetin 0.139 0.058 - - - - 0.466 0.003

4. Conclusions

Plant-based antidiabetic drug development has been a stumbling block, with few
promising results, as most of the drugs have yet to pass the stage of clinical trials. Con-
ventional chemotherapeutics have been widely used in the pharmaceutical industry due
to their rapid action, mechanism, and economic viability. In the current investigation, we
carried out a combination of in silico investigations of the phytocompounds of O. tenuiflo-
rum and proposed isoeugenol as a potential inhibitor of α-glucosidase, α-amylase, human
serum albumin, and human aldose reductase. Isoeugenol showed the highest probability
of all the phytocompounds to act as a multi-target inhibitor of all the target enzymes
mentioned above. This can reduce the biological enzymatic activity of the target enzymes,
which could bring about a decline in hyperglycemia. The MD simulations and binding free
energy calculations, through which the binding of isoeugenol with the drug targets was
validated, supported the docking results. To summarize, isoeugenol has the potential to act
as a multi-target inhibitor that can be used to treat diabetes mellitus at various stages of the
disorder. In the near future, isoeugenol could be assessed using in vitro, in vivo, and then
clinical trials in order to discover its potential as an antidiabetic drug targeting different
stages of diabetes mellitus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196222/s1, Table S1: ADMET screening of O. tenui-
florum compounds obtained from IMPPAT database.
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