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Abstract
Society is starting to come up with exciting applications for social robots like butlers, coaches, and waiters. However, these
robots face a challenging task: to meet people during a first encounter. This survey explores the literature that contributes
to this task. We define a taxonomy based on psychology and sociology models: Kendon’s greeting model and Greenspan’s
model of social competence. We use Kendon’s model as a framework to compare and analyze works that describe robotic
systems that engage with people. To categorize individual skills, we use three components of Social Awareness that belong to
Greenspan’s model: Social Sensitivity, Social Insight, and Communication. Under each section, we highlight some research
gaps and propose research directions to address them. Through our analysis, we suggest significant research directions for
enhanced first encounters. First, social scripts need to be evaluated under equal conditions. Second, interaction management
and tracking for first encounters should consider state and observation uncertainties. Third, perception methods need lighter
and robust integration in mobile platforms. Fourth, methods to explicitly define social norms are still scarce. Finally, research
on social feedback and interaction recovery may fill the gaps of imperfect first encounters.

Keywords Survey · Human–robot interaction · Social robots · First encounters · Social feedback

1 Introduction

Timidly, mobile social robots are starting to appear in social
contexts. We define them as embodied agents designed to
engage in social interaction that can navigate autonomously
in their environment, combining the definitions of social
robots [40] and of mobile robots [104]. Contrary to vir-
tual characters on screens, computers, and smartphones, their
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embodiment allows them to be proactive members of soci-
ety and to improve human engagement [70,92,116]. It comes
as no surprise that industry and academia are exploring the
marketing advantages of these systems. For instance, compa-
nies and institutions have deployed mobile robotic butlers to
approach and guide people in their facilities (SIGA1 Robots
in Santander’s headquarters, inMadrid, Spain), greet visitors
(Viva2 robots in Pavilhão do Conhecimento, in Lisbon, Por-
tugal) and serve food and drinks in restaurants and events
(for instance, the Ginger3 robot, in Kathmandu, Nepal).
Another important application for these systems is assistance
to humans in elderly care centers. Given the unprecedented
increasing gap between supply and demand of care services,
robots like Vizzy [82], Mbot [129], and GrowMu [91] have
been used to help the staff to entertain, persuade, and moti-
vate seniors to participate in activities and physical exercises.
Albeit with distinct goals, all these robots share a common

1 https://www.cnet.com/news/ferrari-red-robots-greet-visitors-to-
santander-bank/.
2 https://www.idmind.pt/presentation-of-robot-viva/.
3 https://www.euronews.com/2018/11/27/nepal-s-digital-restaurant-
where-guests-are-served-by-robots.
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task: tomeet and engage humans into interaction in a possible
first encounter.

This survey’s objective is to study the achievements and
limitations of robot skills to initiate first encounters. First,
we define a taxonomy, models, and necessary social skills
based on social cognition literature. Then,we analyze robotic
systems on first encounters and relate their implementations
to the taxonomy. Considering the proposed taxonomy, we
address the state-of-the-art of individual social skills neces-
sary for first encounters, identify research gaps, and provide
future directions.

1.1 Human–robot First Encounters andWhy They
Matter

In the scope of this survey, a first encounter is the first interac-
tion between a physical robot and a human.We are especially
interested in situations where the robot has no information
about the humans with whom it interacts. We can classify
these as Zero Acquaintance Encounters (ZAE) [5] from the
perspective of the robot. Zero Acquaintance is defined in the
literature as a condition in which the agent/human has never
interacted with the target or observed the target in social
interaction [5,65].

The first encounter between a robot and a human is the
cornerstone for both short-term engagement and long-term
interactions. Their potential importance can be drawn from
human–human studies that report that first encounters deter-
mine the direction of relationships and whether people wish
to meet each other afterward [100]. Humans spontaneously
start forming impressions and judgments about each other
[5], and these impressions can last for a significant time after
the encounter [122]. These judgments and impressions are
influenced by several powerful effects known in the social
cognition literature. For instance, the primacy effect [10]
is a phenomenon that biases people into recalling/crediting
earlier information more than later information. Thus, peo-
ple can make negative judgments if a robot misbehaves in
the first interaction moments, which will affect their trust in
the robot [134]. Another example is the incongruency effect
[50,51,119,120], that states that people tend to better recall
expectancy-incongruent information than congruent infor-
mation. Even though these effects relate to the impression
formation of humans, researchers have shown that humans
evaluate and judge artificial social entities (like robots and
virtual characters) as they do with other humans [93,98].
In their recent HRI study, Paetzel et al. [87] observed that
participants determined the robot’s competence in the first
minutes of interaction, and it remained stable over the fol-
lowing sessions, a result that highlights the importance of a
first impression in human–robot interaction. Hypothetically,
if a human expects a robot to follow certain social norms and
it breaks them, the humanwould strongly recall this event due

to both effects, even if the remainder of the interaction was
pleasant. Given these insights, it is natural to assume that the
design and development of robotic skills that enhance the
quality of zero-acquaintance encounters are of the utmost
importance for human–robot interaction and trust.

In addition to the previous application-related motiva-
tions, this is also a fascinating topic from a scientific point of
view. It involves a complex set of perception and action skills,
research on how to integrate them in common frameworks,
and knowledge from social sciences and human behavior.
Definitively a multi-disciplinary challenge.

1.2 SurveyMotivation

During ZAE’s, the robot needs to be able to understand the
social context, perceive signals, express them, and respect
social norms. In this context, robots do not have a person-
alized model of the humans with whom they are going to
interact with, but still need to comply with human expecta-
tions of social behaviors. These systems need to leverage on
the body of knowledge of social sciences and Human–robot
interaction studies. It is necessary to understand which skills
are involved in the process, how to manage them, and under-
stand their current technological limitations and maturity. To
our knowledge, this problem has not been surveyed from this
perspective before. Past surveys focused on individual skills,
which are challenging research problems themselves. The
application of those skills is usually broader than ZAE’s.

An example is the ability to manage space during inter-
actions (proxemics) and social navigation, which the robot
needs to respect during ZAEs. This skill makes the robot
follow the social norm of respecting others’ personal space.
Rios-Martinez and co-authors [101] surveyed this topic in a
thoughtful review of theories and research on social robot
navigation for both focused and unfocused interactions.

Communication is another example. It is an essential
part of the interaction between social beings during a ZAE
since it lets both parties signal their intentions of interacting
or not, usually through its nonverbal modalities. Recently,
Saunderson et al. [108] surveyed existing works focused
on non-verbal communication in human–robot interaction.
They studied works under the proxemics, kinesics, haptics,
chronemics, and their combinations. They paid attention to
both sensing and action, as well as human reactions and per-
ceptions of robots employing these modes.

The final example is that of behavior adaptation. During
a ZAE, the robot may need to accommodate to the target
of interaction. For instance, if the person displays discom-
fort with the robot’s distance, it should be able to update
its belief of “appropriate distance” and act accordingly. This
topic has attracted a keen interest in the research community,
as reported by Rossi and colleagues in their survey on user
profiling and behavioral adaptation [103]. Their classifica-
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tion scheme splits both topics into physical, cognitive, and
social subdomains. They reviewcues used to profile people as
well as the robotic skills and methods to adapt their behavior
to that user profile. A more recent survey from Martins and
colleagues [75] explores robot adaptation on non-physical
interaction behaviors. They propose a taxonomy that they
use to categorize analyzed works under three categories: (i)
adaptive systems with no user model, (ii) systems based on
static user models, and (iii) systems based on dynamic user
models. They cover a large number of works on ongoing
interactions between people and robots, mainly during tasks.
Ahmad and colleagues [2] surveyed existing works on robot
adaptation to human actions. They covered robot adaptation
in the following domains: health care and therapy, education,
public domains and work environments, and homes.

This survey arises as an attempt to organize available lit-
erature and identify gaps and research directions to solve the
problem of first encounters. We intend to contribute to the
literature by attempting to answer the following question:
“How far are social robots from being able to engage with
strangers in feedback sensitive and socially acceptable way
in first encounters?”. We will do so by proposing a taxon-
omy based on the social cognition literature, using Kendon’s
model of greetings and Greenspan’s model of social aware-
ness. The taxonomy derived from Kendon’s model allows us
to compare robotic systems in first encounters, which have
distinct taxonomies. With Greenspan’s model, we categorize
and overview the state-of-the-art of required social skills.Our
line of work assumes that social robots, like humans, cannot
engage people perfectly the whole time, thus needing to be
able to understand human feedback and adapt accordingly.
With this question in mind, we intend this survey to be a
useful asset for researchers that aim to make robots capable
of smooth engagement with people and “break the ice” in
first interactions while being able to recognize social norm
violations and adopt corrective actions.

1.3 Survey Objectives and Scope

With this survey, we intend to study achievements and limi-
tations in socially aware engagement during first encounters
between robots and humans. Our focus on zero-acquaintance
encounters means that we only cover works that describe
robotic systems that meet and open interaction without pre-
viously known personalized user models. Thus, the robot has
zero-acquaintance with the person and must resort to models
of knowledge of social norms and scripts. We will address
this subject from the robot’s perspective, pinpointing current
shortcomings, challenges, and possible research directions.
Even though we focus on the technological side, we take
advantage of the valuable knowledge reported by interaction
studies aswell as studies in the areas of psychology and social
cognition.

First encounters can be extremely diverse, as a result of
multiple robot types and interaction contexts. Here, we focus
onmobile social robots that are minimally anthropomorphic.
This definition implies that robots need to be able to navi-
gate and have a design that allows them to mimic at least a
minor set of human social behaviors. Vizzy,MBOT, Robovie
[55], GrowMu, Sanbot, and Pepper are notable examples of
such robots (Fig. 1). Our survey assumes social norms play a
pivotal role in first encounters, where an agent has no infor-
mation about the other’s preferences.As such, we limit the
scope of the survey to interactions with adults and seniors
without cognitive impairments and casual social encounters
in uncrowded scenes. We assume that most members of this
group follow social norms and can recognize when others
break them. There is one pivotal moment of human–robot
interaction that we examine in this work: the interaction
opening set of perception-action iterations that lead to inter-
action. We do not focus on interactions past this point since
they can be remarkably broad, ranging from dialogues to
touch interaction. Therefore, these interaction topics should
be addressed in individual surveys. As a reference, Mavridis
[78] published a review of verbal and non-verbal communi-
cation in human–robot conversations. Finally, even though
we concentrate on 1-to-1 interaction, a social robot needs to
be aware of its surroundings, needing to detect and enter in
groups of people, if the target is part of a group.

2 Taxonomy and Survey Organization

The start of a pleasant meeting between people requires
them to recognize each other as social entities and be will-
ing to interact. That implies that both agents follow social
norms during an interaction. Social norms are so important
to humans that people are willing to incur self-costs to pun-
ish deviant behavior [39]. Nonetheless, they are informal and
can exist with no kind of sanction for someone not following
them. Given their importance in the process, we recall the
definition proposed by Malle et al. [74].

Definition 1 Social norm “... an instruction to (not) perform
action A in context C, provided that a sufficient number of
individuals in the community (i) indeed follow this instruc-
tion and (ii) demand of each other to follow the instruction”.

Remark 1 When we refer to social norms throughout our
work, we refer to those that occur due to the natural interac-
tion of people and are not enforced by a legal system.

Thus, it is relevant for a social robot to follow appro-
priate social norms when meeting people, acting according
to people’s expectations toward socially competent agents.
However, knowledge about social norms does not tell the
robot how to plan their actions and behave in a specific social
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Fig. 1 Examples of minimally
anthropomorphic mobile social
robots considered in this survey.
4https://en.wikipedia.org/wiki/
Pepper_(robot). 5https://cordis.
europa.eu/project/id/643647/
reporting. 6Robovie developed
by ATR

context, like meeting someone. This process is especially
challenging during a ZAE since people have no information
about each other. Before any interaction, each party will cre-
ate a visually based impression on the other according to
their preconceived beliefs, supported by social norms and
cultural information. Yet, these norms might not be suffi-
cient to plan the sequence of appropriate behaviors. Schank
[109] claims that people resort to sequential behavioral pat-
terns observed in their community during specific contexts:
they follow social scripts. Once people identify the interac-
tion type, they activate a script that embeds social norms and

specifies a sequence of actions that humans should performas
the interaction progresses [17]. Social scripts can be simple
or complex. Along with this work, we will use the following
definition, adapted from [1,52]:

Definition 2 Social script a mental construct that contains
information about the plans and sequences of actions appro-
priate and expected from the participants of a social situation.

With these insights in mind, one can ask: have researchers
studied social scripts that allow people to infer if others are
open for engagement? Indeed, Kendon [64] observed that
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Fig. 2 Storyboard with a possible application of Kendon’s greeting model in Human–robot interaction

humans followed a sequence of greeting ritualswhenmeeting
someone new, that although with distinct behaviors, follow
the same structure across cultures. This process involves the
interchange of social cues that ground the participants’ inter-
action intentions and establishes which are the appropriate
social norms to use through that interaction or future interac-
tions [66]. Kendon’s model is composed of six steps that we
analyze in Sect. 2.1. We note that when we refer to “greet-
ings” we are not addressing the individual act of saluting
someone, but the full script used to start an interaction. Our
definition was adapted from [34,64].

Definition 3 Greeting a ritual consisting of a sequence of
interaction behaviors observed when people come into
another’s presence.

Greetings involve an exchange of social cues in the form
of non-verbal signals that vary due to culture or the meet-
ing context [9]. During a ZAE, these differences may occur
in the management of space, gestures, and salutations. Hall
[49] reports notable examples of differences in proxemics
and gaze, with comparisons between several cultures. For
instance, he argued that the German culture has a stricter
notion of space and intrusion than the American culture.
Differences can be so extreme between cultures that deviant
behaviors in one culture can be considered normal in others.
Gaze interactions between theAmerican andEnglish cultures
are a notable example observable between two close cultures
[49]. While the English keep their gaze fixed on the target
to demonstrate that they are paying full attention, Ameri-
cans find that behavior uncomfortable, preferring to advert
their gaze frequently. Even when a social norm has the same
positive or negative connotation among several communi-
ties, they can follow it with different levels of rigidity (norm
tightness [44]).

It is not feasible to enumerate and encode a list of all of
them for a robot to follow, due to the number of possible
contexts [43]. Moreover, they can also evolve due to external
factors. The replacement of handshakes with elbow-bumps
during the salutation due to the COVID-19 pandemic exem-
plifies that.

Thus, creating a positive impact during a ZAE requires
muchmore than following social scripts in an open-loop fash-
ion. Socially aware robots need to perceive social feedback.
The literature reports that it can be displayed through both
verbal [18] and non-verbal cues [36].

Definition 4 Social feedback an evaluative response to a
social actor’s actions, in a specific social context, displayed
through social cues.

Besides allowing a robot to track the interaction state on a
social script, the ability to detect social feedback allows the
robot to understand whether its behaviors were appreciated
or violated people’s expectations. We believe this under-
standing is fundamental to create a positive perception in
humans during ZAEs. Since the public has a general per-
ception of robots as competent beings, people can interpret
failures and social norm violations as incongruent behaviors,
leading to the incongruency effect. However, Jerónimo et al
[56] reported that the incongruency effect vanished if the
person learned about a personality trait that explained the
incongruent behavior. Thus, we believe that a robot capable
of understanding social feedback from humans can employ
recovery strategies that can enhance the human–robot inter-
action experience.

For a robot to follow social scripts during a ZAE, it needs
to have a set of social skills to perceive and act, thus Social
Awareness. To make a comprehensive survey on the tech-
nological side of ZAEs, we need to identify relevant skills
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and analyze their current implementation strengths and lim-
itations. We make use of Greenspans’s definition of social
awareness.

Definition 5 Social Awareness “... the individual’s ability to
understand people, social events, and the processes involved
in regulating social events.”

2.1 Opening Interaction: the Greeting

Focused interaction between people usually starts with a
greeting [34,66]. Kendon proposed a model for greetings
between humans composed of the six multimodal steps illus-
trated in Fig. 2. We will now describe Kendon’s model as
described in his book [64], and discuss the necessary skills
to allow a social robot to follow it.

Remark 2 We make a clear distinction between greetings
and salutation. We consider the first as the social scripts
composed of several interaction steps to initiate interac-
tion. Salutations are the individual gestures or utterances that
explicitly signal one’s intent to interact (for instance, saying
“Hi” and performing a handshake).

Remark 3 We use the term social actor to refer to both
humans and social robots.

2.1.1 Sighting, Orientations, and Initiation of the Approach

The first step of the greeting ritual is crucial for its success.
First, it requires social actors to recognize others as some-
one they wish to greet and the conditions to do it. Thus, a
robotic social actor needs to be able to detect, track, identify
people, and be aware of its surroundings. In this work, we
call this set of skills: social context inference. According to
Kendon’s observations, humans will not approach a target
before the target acknowledges their presence. They display
this acknowledgment through gaze, which highlights another
essential perception skills: gaze and visual field of view esti-
mation. Theways humans get the target to acknowledge their
presence depend on several factors: urgency, roles, the goal of
the greeting, and their current activity. For instance,Yoshioka
et al. [136] claim that the target’s activity plays a significant
role on engagement behaviors of humans. They found signifi-
cant differences in speech distances and approach trajectories
for distinct perceptions of how much concentrated the target
was. It is thus fundamental for a competent social robot to
detect human activities, groups, and estimate whether peo-
ple can be interrupted or not. Kendon reported the following
strategies to get the target’s attention:

– Orient only head toward the target, but not the body, and
wait for gaze signals.

– Synchronize movements with those of target’s while
averting gaze, to lower the risk of explicit rejection.

– Get the other’s attention by calling, making gestures,
coughing, or knocking on doors.

– Interrupt the other’s activity directly, in urgent cases.

The following necessary skills are needed to employ these
strategies: speech, gesture generation, natural gaze control,
and body pose control. Humans can halt the greeting in this
step without significant social consequences.

2.1.2 Distance Salutation

In this state, both parties officially signal that they initiated
the greeting script. From this point, the greeting can either
come to an end, if none of the parties intend to have further
interaction (“greetings in passing”) or continue to other script
stages. Thus, it is necessary to track the greeting state to
predict how it is going to evolve. The form of salutation can
be a relevant predictor, which can be a combination of the
following actions:

– Wave
– Smile
– Call
– Head movements:

• Nod
• Head toss
• Head lower

Both parties may perform those salutations, which means
that a social robot needs the skills of gesture recognition,
facial expression detections, in addition to those we men-
tioned before.

This stage can be followed either by the head dip,
approach, final approach, or close salutation. The distance
salutation can occur just before the close salutation if both
parties are bound to pass close to one another (for instance,
moving toward one another in a corridor).

2.1.3 Head Dip

In this script stage, the social actor bends the neck forward,
lowering the head. According to Kendon’s observations, it
is more likely to occur if humans have to adjust their body
orientation to approach the target and does not happen after
a distant salutation that does not lead to further interaction.
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2.1.4 Approach

The approach is a stage where, either both parties or just one,
activelymove toward the other.During this step, humansmay
display:

– Grooming behaviors
– Gaze aversion, which is more salient in the social actor
that moves more

– Body cross, which is a gesture where the social actor that
walks a greater distance brings one or both arms forward
briefly.

From these descriptions, we can identify an extra skill for
social robots: socially aware navigation.

2.1.5 Final Approach

The final approach occurs when both parties are closer than
3.5m and just before the close salutation. During this stage,
we can observe the following behaviors:

– Verbal salutation
– Mutual smiling
– Mutual gazing
– Gestures where the participants show their hand palm

As the robot will be getting closer to the target in this
phase, it should be able to execute a socially acceptable tra-
jectory, and how to enter a group of people.

2.1.6 Close Salutation

The close salutation is the final stage of the greeting script.
Here, the participants come to a halt, orient their hands toward
each other, and salute each other verbally and non-verbally.
Non-verbal salutationsmay involve body contact and are cul-
turally dependent. Notable examples include:

– Handshakes
– Fist bumps
– Kiss on cheeks
– Hugs
– Bows
– Head nodding

Finally, bothparties adjust their relative positions.Accord-
ing to Hall’s proxemic theory [49], these distances signal the
person’s psychological proximity. At this stage, the greet-
ing script ends. From this description, we can identify the
following skills: salutation detection and performance.

Opening an encounter with a greeting is transversal
between cultures, but the sequence length of Kendon’smodel

varies according to several factors. Besides the cultural dif-
ferences in the close salutation (for instance, handshakes,
hugs, or kisses), the execution of each part of the model
depends on how acquainted the parties are (being shorter,
the emotionally closer they are) and context. Schiffrin [110]
observed that the process is not always linear since failures in
human perception can lead them to repeat some behaviors or
even cancel the greeting with an apology. Social actors can
fail and violate social norms during an interaction, which
can elicit reactions from people [12]. Thus, the robot should
be able to detect them and recover from interaction failures,
since research as shown that it will improve people’s per-
ceptions of the robot [30]. We identify this skill as social
feedback detection. Thus, these observations show us that
the first encounter between people is a complex set of com-
munication and perceptual skills.

2.2 Categorizing Social Skills with Greenspan’s
Model

Analysis of Kendon’s model shows that a robot requires a
multidisciplinary set of socially aware skills to engage with
someone. The robot needs to infer the context and appropriate
social norms, detect social cues and people’s feedback, and
communicate through verbal and non-verbal behaviors. To
perform a structured and useful survey, we need a proper cat-
egorization of research works related to these skills. We find
inspiration in Greenspans’s theoretical/conceptual model of
Social Competence to set a taxonomy for human–robot
zero-acquaintance encounters. Greenspan [47] categorized
these abilities under theSocialAwareness competence group.
Social Awareness is composed of three categories of skills:
(i) Social sensitivity, (ii) Social insight, and (iii) Communi-
cation. This model was proposed during studies related to
children with mental disabilities. Even though several theo-
retical models for Social Competence exist in the literature
[25,31,35,45], we believe Greenspan’s model serves a sim-
ple but efficient tool to categorize robots’ social skills for
zero-acquaintance encounters.

2.2.1 Model Description

The social sensitivity component ofGreenspan’smodel deals
with the capabilities to perceive and understand social agents,
objects, and events. It has two sub-components: social infer-
ence and role-taking. The social inference ability consists of
correctly classifying social situations, gatherings, and con-
text. Role-taking is the ability to understand the viewpoints
and feelings of others.

Social insight is the ability to interpret and understand
the processes that govern social events and evaluate them. It
splits into three sub-components. The first one is social com-
prehension, which is the ability to understand social models
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and processes, like relationships, social classes, norms, and
reciprocity. The second sub-component is psychological
insight, which consists of the capability to understand peo-
ple’s motivations and personalities. Moral judgment is the
third sub-component and consists of skills related to ethics,
morality, and intentionality.

Social communication is a set of skills to deliver infor-
mation to other social actors and influence their behaviors.
It is composed of referential communication and the social
problem-solving sub-components. Referential communica-
tion is the set of verbal and non-verbal skills necessary to
communicate one’s thoughts and feelings. Social problem
solving is the ability to influence others toward one’s goals
and to resolve conflicts.

2.2.2 Assigning Necessary Skills for First Encounters to
Greenspan’s Model

We now categorize the required skills to open and close the
interaction, under Greenspan’s model. Each one of themwill
belong to one of the model’s three categories, and then we
will either use the sub-dimensions as sub-categories or create
new ones. We do this to keep the structure simple and avoid
unnecessary nested sub-categories.

We propose to group the social context inference, gaze
& VFOA estimation, group detection, interruptibility esti-
mation, and role-taking skills under the social sensitivity
category. All of these abilities capture the social context.
We note that social context inference is composed of a
set of atomic skills that we will not discuss individually:
detect/track/identify people, objects, activities, and facial
expressions. Here, we are interested in how researchers inte-
grated these skills to detect and represent the social context.
Role-taking will designate the robot’s ability to understand
people’s feedback and reactions toward it.

Under the social insight category, we address the social
comprehension skills of socially aware navigation and under-
standing of social norms. We propose to associate them
with social comprehension split into implicitly and explicitly
defined social comprehension. The first deals with models
that encode social norms implicitly, like costmaps in socially
aware navigation. The second addressesmethods andmodels
where social norms are explicitly defined.

Our proposal for the communication category is to use
its sub-categories of referential communication and social
problem-solving. The first sub-category deals with the
gestures used for non-verbal communication, salutations,
gaze gestures, and their dynamics. Social problem-solving
addresses robot behavior adaptation to social feedback.

2.3 Survey Structure

This survey is structured as follows. In Sect. 3, we present the
methodology to survey research works related to our topic.
Since we wrote this survey with a top-down approach in
mind, wewill start by addressing existing papers which focus
on robots that engage people on possible first encounters.
Afterward, we will review the needed skills, categoriz-
ing them with Greenspan’s model. Thus, Sect. 4 analyses
research works with robots engaging people, compares their
social scripts with Kendon’s greeting model, and summa-
rizes their engagement success. The following three sections
describe works categorized under each of Greenspan’s com-
ponents of social awareness. Section 5 describes works under
the social sensitivity component. Those describe methods
that perceive the social context and signals. Section 6 focuses
on the social insight component, presenting papers that
developed methods that model social interaction and norms.
Then, Sect. 7 focuses on the communication component
and presents works that developed nonverbal communication
skills and strategies. We finish this survey with conclusions
and research directions in Sect. 8.

3 SurveyMethod

Our survey followed a methodology inspired by the
insights of Webster and Watson [131] and recommendations
of vomBroke and colleagues [19,20]. After defining this sur-
vey’s scope, we iterated through loops of conceptualization,
literature search, and literature analysis (Fig. 4). We selected
a total of 64 papers to debut in this survey as a result of the
iterative process (refer to Tables 2 and 3). It was unfeasible
for us to keep track of the number of discarded papers, as
well as used keywords, mainly due to the iterative method
and forward / backward search. Nonetheless, we created a
word cloud to represent the frequency of the fifty most com-
monwords in titles, author keywords, and INSPECkeywords
of the surveyed papers, to guide researchers when they per-
form a further investigation in this subject (Fig. 3). In the
following subsections, we describe our method in detail.

3.1 Problem Identification

We identified the topic covered in this review through read-
ing and discussion on human–robot interaction textbooks
and journal papers. Most notably, Kanda and Ishiguro’s book
on human–robot interaction [60], Rios-Martinez et al.’s sur-
vey on proxemics in robotics [101], Shi et al.’s work on a
flyer distributing robot [115], and Charalampous and col-
leagues’ review on recent trends in socially aware navigation
[26]. Thus, we reiterate the question on Sect. 1.2: “How far
are social robots from being able to engage with strangers
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Table 2 Papers covered in this survey (part 1)

Ref. Robots
engage
people

Social sensitivity Social insight Communication

Social
context
inference

Group
detection

Gaze &
VFOA

Interrupt. Role
taking

Implicitly
defined
social
compre-
hension

Explicitly
defined
social
compre-
hension

Referential
communi-
cation

Social
problem
solving

[125] � �
[126] � �
[135] �
[99] �
[106] � �
[115] � � �
[140] �
[54] �
[4] �
[13] �
[15] �
[16] �
[27] �
[32] �
[69] �
[71] �
[76] �
[77] �
[81] �
[84] � �
[94] � �
[95] � �
[96] � �
[102] �
[112] �
[113] �
[123] �
[127] �
[128] �
[130] �
[133] �
[139] �
[24] �

in feedback sensitive and socially acceptable way in first
encounters?”

3.2 Conceptualization of Topic

As a consequence of not finding an overview of the topic, we
organized our survey guided by Kendon’s model of human
greetings [64] and Greenspan’s model of social competence
[47]. Even though the main topic remained unchanged, the

scope evolved along the iterative process in order to become
more specific and comprehensive.

3.3 Literature Search

We restricted our literature search to the following acadamic
search engines and databases: IEEE Xplore, Scopus, Google
Scholar, andScinapse. The sets of keywords used to query the
databases evolvedwith the scope redefinitions andwith infor-
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Table 3 Papers covered in this survey (part 2)

Ref. Robots
engage
people

Social sensitivity Social insight Communication

Social
context
inference

Group
detection

Gaze &
VFOA

Interrupt. Role
taking

Implicitly
defined
social
compre-
hension

Explicitly
defined
social
compre-
hension

Referential
communi-
cation

Social
problem
solving

[89] �
[90] �
[48] �
[79] �
[6] �
[7] �
[57] �
[58] �
[59] �
[85] �
[86] �
[83] �
[11] �
[117] �
[33] �
[41] � �
[3] �
[107] � �
[22] � �
[62] � �
[105] �
[67] �
[73] �
[72] �
[21] �
[46] �
[138] �
[63] �
[124] �
[68] �
[38] �

Fig. 3 The fifty most common words in the surveyed paper titles, author keywords, and INSPEC keywords. Word sizes represents their frequency
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Fig. 4 The iterative survey method and its inner cycle. First we
identified the research topic from books and discussions with col-
leagues. From those, we identified the challenge of socially aware
human–robot engagement during first encounters. Search for surveys

of this topic revealed a gap. Then we employed an iterative cycle of
(re)conceptualization, literature search, literature analysis, paper syn-
thesis, writting, and survey analysis

mation from the previous paper analysis. In addition to the
active database searches, literature suggested by colleagues,
peers, and reviewers was an extremely valuable asset in the
process, since these were curated resources that introduced
new keywords and search terms. Finally, the search process
also had steps of backward and forward search. The back-
ward search step consisted of collecting references cited by
collected papers. The forward search step consisted of col-
lecting papers that cited the already collected papers.

3.4 Literature Analysis

Since it is unfeasible to analyze all papers to a full extent,
we used a method inspired in Subramanyam’s work [121].
First, we analyze each paper’s title and discard those where
the title is clearly out of the scope of the survey cycle, i.e.,
thosewith title keyowrd that do not respect scope restrictions.
Then, we analyze the abstract and conclusions of the remain-
ing articles to clarify whether their topic fits. Afterward, we
skim the selected papers. During the skimming process, we
examined tables, figures, and scanned through the introduc-
tion and discussion. For some articles, it becomes possible

to either make an informative summary or discard them with
this data. Finally, we fully read and examine the remaining
papers, either summarizing them or discarding them.

Regarding works on robots engaging with people, we
only included those where the robot opens interaction with
people without a personalized model. These can either be
technological or HRI studies, as long as they describe the
interaction stages in detail and present the robot’s architec-
ture. We excluded papers that focus on posterior moments
of interaction and those that did not feature single minimally
anthropomorphic robots.

As for the individual robotic skills, we only include those
that implement the skills derived fromSect. 2 and categorized
in Sect. 2.2.2. These can beworks, that although not tested on
autonomous robots, can be applied to them, as is the case for
computer vision algorithms. Since we do not deal with the
challenges of conversationmanagement, we excluded papers
that address speech synthesis, recognition, natural language
processing, and dialogue management. However, we do not
exclude works that use verbal and prosodic features since
these can be relevant cues to detect feedback.
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3.5 Final Cycle Steps

In the final cycle steps, we compiled the summarized papers
into the survey, from which we identify literature gaps, draw
conclusions, and reason about future directions. It was fol-
lowed by a review and discussion process either within
the authors or between authors and peers. This process is
fundamental for the survey to converge into a helpful and
comprehensive tool for future research.

4 Robots Engaging with People

The research topic of robots that engagewith people is receiv-
ing a keen interest in the research community. Even though
a considerable amount of works in the literature address the
problem of a robot that engages with people, a significant
amount of them focus solely on robot trajectories during the
robot’s approach [99,125,126,135]. However, as observed
in Kendon’s model, initiating an interaction with someone
requires an interchange of social signals. Moreover, since
people might not be expecting to be engaged by a robot, dur-
ing a first encounter, being unable to reproduce and detect
these social signals may lead to failed engagement attempts.
Satake and colleagues [106,107] observed and categorized
failed engagement attempts with Robovie at a shoppingmall.
These consisted of the following types:

1. Unreachable when the robot cannot get close to the per-
son. It can happen due to actuator limits, or because the
person was leaving.

2. Unaware when the person did not notice the robot’s
behaviors or did not recognize them as an attempt to inter-
act.

3. Unsurewhen people notice the robot’s actions but are not
certain of the robot’s intention to interact with them.

4. Rejective when people understand the robot’s intentions
but do not intend to interact.

Thus, Satake and colleagues [106,107] suggest that engag-
ing robots should not approach people naively. As such, we
now analyze past strategies formobile social robots to initiate
interaction. Since past works present distinct taxonomies to
describe the social scripts that they follow, we use Kendon’s
model to compare these works under a single taxonomy.
Moreover, since Kendon developed this greeting model from
observations of humans, it also allows us to compare these
works’ social scripts with those observed in humans. We
compared their respective taxonomies with Kendon’s model
is Table 1.

Distances between social actors play a relevant role not
only on their psychological distance [49] but also on the dis-
played behaviors when initiating the interaction. All papers

in Table 1 use them, whether the robot approaches people, or
whether they approach it. For instance, Zhao and colleagues
[140] tested the concept of “progressive interaction” with a
three-stage model. Each stage relies on the person’s distance
to the robot to control its expressions and utterances: (i) the
far field (from 4.2m to 2.7m); (ii) the mid field (from 2.7m
to 1.2m); and (iii) the near field (less than 1.2m). These
stages compose their “progressive interaction” condition. In
the far field, the robot displays facial expressions toward the
person. Then, the robot verbally greets the person and uses
more facial expressions in the mid field. Finally, once in the
near field, the robot asks the person to talkwith it. They report
that people preferred the “progressive interaction condition”
instead of passive behavior, where the robot waits for inter-
action. Distance may also mean that the robot cannot reach
the target, and thus should cancel an engagement attempt that
would fail due to unreachable targets, before it even begins.
Computing the target’s reachability is one of the first steps
of Satake et al.’s [107] and Shi and colleagues’ [115] works.

After knowing that the target can be reached, getting the
target’s attention and expressing the robot’s intent to interact
are twoessential abilities.Researchers havedone this inmany
ways. Showing high enthusiasm gestures can be an effective
strategy to draw people’s attention, as studied by Saad et al.
[105]. They performed a study with Pepper at a building’s
entrance with mild (wave), moderate (wave & speech), and
high (wave & speech & small approach movement) enthu-
siasm. They reported that people paid more attention to the
robotwhen it showedhigh enthusiasm.Nonetheless, attempt-
ing to establish eye contact is the most common strategy
among the analyzed papers [22,41,54,62,115], going in line
with Kendon’s description of the first stage of his model.
Not only do robots attempt to get the user’s attention through
gaze, but it is also a cue of human intention to interact with
them. For instance, the human gaze at the robot is used as
an interaction opening signal by Pepper in the MuMMER
project [41]. In that project, Pepper’s role was to give direc-
tion to people at a shopping mall. It initiated interaction after
detecting nearby people gazing at the robot and gazed back at
them. Getting the target’s attention addresses the “unaware”
error type.

A socially aware approach has been seen in the literature
either after both parties acknowledge each other’s presence
[22,54,62,115] or as a way to get the target’s attention
[106,107]. Satake and colleagues [107] carefully designed
Robovie’s approach behavior to show the robot’s intent to
interact when advertising shops to shopping mall’s passerby.
Their planner anticipates people’s trajectories and computes
a trajectory for a frontal approach toward a meeting point.
With this behavior, they intended to reduce both “unaware”
and “unsure” error types. They considerably reduced the
number of “unaware” errors from 14% to 4% and of “unsure”
errors from 24% to 18%, when compared with a strategy that
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only navigates to people’s positions. In total, they managed
to engage with 56% of the approached people. Besides a
frontal approach, gestures and appropriate velocities are also
relevant. Shi et al. [115] gave Robovie the challenging task
of flyer distribution. They first studied how humans do it
and modeled their strategies. After computing a target selec-
tion plan that maximizes the number of reachable targets,
Robovie gazed at its next target, moved toward her/him with
continuous gaze, and extended it arm with the flyer while
decelerating and verbally offering it. This last part is simi-
lar to Kendon’s description of the final approach. The robot
managed to distribute flyers to 18% of the engaged people,
while a human could only distribute to 10%.

Being able to detect if people are open for interaction can
reduce the occurrence of “rejective” errors, as claimed by
Brščić et al. [22], and Kato and colleagues [62]. Brscic et
al. implemented a classifier that detected people with atypi-
cal trajectories and selected them as approach targets. They
reasoned that those people might be lost and thus be open
for the robot’s help. The robot followed the steps in Table 1
during the approach. It managed to successfully engage in
87.2% of the attempts at a shopping mall. Similarly, Kato
et al. estimated a store’s customer’s need for help from their
trajectories. Robovie directed its body and gaze at likely tar-
gets and only initiated its approach movements when the
person moved in its direction. It was successful in 87.2% of
the attempts and significantly better than a passive approach
(62.9%) and a proactive approach (42.7%).

Integrating all these behaviors and strategies is a chal-
lenging task. It requires accurate tracking and management.
We argue that knowledge of social scripts will allow a robot
to manage and track the interaction during first encounters.
We believe that prior information about behaviors during the
interaction will allow the robot to estimate its state given
those that it observes, and to generate appropriate behav-
iors at each interaction step. Heenan and colleagues [54]
implemented a state-machinemodel that integratesKendon’s
greetingmodel and proxemics theory in theNAO robot. They
argue that due to the lack of robust sensing capabilities, they
needed to approximate the model to rely solely upon (i) pres-
ence; (ii) orientation; and (iii) location. Through informal
observations, they report that even though themodel is a good
starting point for engaging people, it needs further develop-
ment. They highlight that: (i) constant gaze can be awkward;
(ii) robot pacing is important; and that (iii) the system needs
to be more reliable to error situations, among others.They
highlight that the system needs to be more reliable for error
situations. Nonetheless, up to our knowledge, they were the
first to explicitly followKendon’s model to track andmanage
the interaction.

4.1 Research Gaps

The current state-of-the-art presents researchers with numer-
ous opportunities to develop complex engagement behaviors
for first encounters. Up to our knowledge, a small number
of works attempt to implement models based on all steps of
Kendon’s model, or similar approaches. As noted, sensing
capabilities are indeed a bottleneck for complex autonomous
interactions.

Managing and tracking the meeting is also an open chal-
lenge. Even though someworks take into consideration cases
where the person does not intend to interact, the greeting
steps depend on the context, with distinct steps for differ-
ent circumstances. Moreover, the interaction might not be
sequential. Humans might return to a previous level of the
model, or skip a step depending on the social cues and mis-
takes that they make during the interaction.

5 Social Sensitivity

In this section, we survey existing works that perceive and
understand humans, objects, and events. These skills com-
pose the Social Sensitivity component ofGreenspan’smodel.
A social agent can use these perceptions to choose the best
way to act (Communication component, Sect. 7) according to
its models of social events (Social insight component, Sect.
6). We address architectures which detect low-level social
information (like people, objects, their poses, and people’s
facial expressions) in Sect. 5.1—Social context inference.
Then, we present works that estimate gaze direction and the
visual field of attention (Sect. 5.2) followed by group detec-
tion (Sect. 5.3). Section 5.4methods in the literature that deal
with the challenging problem of interruptibility estimation, a
significant cue for an agent that intends to interact. Finally, in
Sect. 5.5 we address ”role-taking”, the ability to understand
others’ feelings and viewpoints. Humans can share this infor-
mation through feedback. Thus, we focus on literature that
proposes methods to estimate it. We end this section with an
analysis of research gaps of social sensitivity.

5.1 Social Context Inference

The objective of [138] is to detect and track a large set of
social signals to be used by a robotic head automata during
dialogue HRI. They propose a system that tracks and stores a
social scene. Their system uses RGB-D, RGB, illuminance,
sound level, and temperature sensors. After low-level fea-
ture extraction, they perform (i) facial analysis, (ii) identity
assignment, (iii) body analysis, and (iv) saliency detection.
During facial analysis, they extract face positions and eye,
nose, and mouth landmarks. They use this information to
classify people’s gender and estimate their age and facial
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expressions. The system uses QR-codes to identify people
and Kinect’s skeleton tracking library to recognize a set
of states/gestures (seating, standing, raising hands, crossing
arms). Additionally, they also detect the saliency of image
regions (interesting regions that attract human gaze). After-
ward, they compile all this information into a single file, that
describes the scene. This meta-scene file can then be used
for HRI algorithms. This work is followed up by [69], where
it becomes part of a cognitive architecture for robot face and
head control.

The SPENCER project proposes an architecture for a
mobile robot that guides people in an airport [123]. The robot
can map and localize itself in very dynamic environments,
and detects and tracks people and groupswith laser andRGB-
Ddata. It additionally detects objects and the spokesperson in
order to guide a group of people to their destination, formulat-
ing the problem as a Mixed Observability Markov Decision
Process.

On [125], the authors aim at creating a social navigation
framework based on proxemics theory. The system’s social
awareness architecture detects and tracks humans with an
RGB-D camera. The system estimates people’s states (stand-
ing/sitting/moving), walking velocities, the field of view,
interactions with “interesting objects” (with markers), and
social interactions. The robot uses these data to create a cost
map to navigate and approach people.

The MuMMER project [41] developed a complex system
to infer the social context around the robot through audio-
visual sensing. In the visual part, they extracted people’s
poses 2d skeleton poses using convolutional pose machines
(OpenPose) [132] and OpenHeadPose [23] to estimate head
poses. They kept track of people with face poses, colors,
and OpenFace re-id features [8]. Additionally, they used a
microphone array to perform voice localization. Amulti-task
neural network jointly performs speech/non-speech detec-
tion and sound localization, as proposedbyHeandcolleagues
[53]. Finally, they fuse both visual and audio location esti-
mates assigning speech direction with the visually detected
people to detect who is speaking. Their system also com-
putes the visual focus of attention of each person based on
estimated head poses with Sheiki and Odovez’s work [114].

5.2 Gaze andVisual Field of Attention Detection

The human gaze is an important cue to detect human–
human/object/robot interaction. Even though humans have
a strong ability to estimate gaze accurately, it is still a dif-
ficult task for robots. Thus, it is receiving interest from
the research community. Openface [13] is an example of
an opensource framework for facial analysis that can esti-
mate gaze. They use a method presented in [133], called
eye-CLNF (Constrained Local Neural Field), trained on a
synthetic training dataset of photo-realistic render of human

eyes. Their approach achieves accurate results if the image
of the subject’s eyes has enough resolution. However, it fails
with people who wear glasses or if their eyelids occlude the
eye.

Recently, researchers created a rich dataset of people look-
ing at a moving target (with known position) [63]. Then,
they train/test using head crops and feed them to a backbone
network (ImageNet pre-trained ResNet-18) that outputs 256
features to a bidirectional LSTM’swith two layers and a fully
connected layer. Their algorithm predicts gaze in spherical
coordinates relative to the camera frame and the uncertainty
of the gaze estimation. It has plausible results even when the
eyes are not visible.

The visual field of attention (VFOA) is probably an even
more important cue than gaze direction to reason about some-
one’s ongoing activity and interactions. To estimate it, the
authors of [76] propose a probabilistic formulation of the
problem. They define target locations (objects or heads) and
head orientations as observed random variables and VFOAs
and gaze directions as latent random variables. They use a
switching Kalman Filter approach and test it on two pro-
posed datasets. More recently, they extended their work [77]
to predict the VFOA when objects are outside of the image.
Given people’s heads’ position and orientation, they create
a top-down gaze heatmap that they feed into an encoder-
decoder convolutional neural network. The output is an
object heatmap that represents VFOA 3D locations from a
top-down view.

5.3 Group Detection

A social robot should detect groups of people. The litera-
ture classifies groups of people into two distinct classes:
semi-static groups of standing people and dynamic groups of
people. It describes several techniques to detect semi-static
groups of jointly focused interaction.

Perhaps the most commonly studied problem is the detec-
tion of standing conversational groups. For instance, one
approach [16] uses people’s 3D head orientation and prox-
imity information to detect whether their view frustum
intersects, thus assuming they are in a group. Hough Vot-
ing is a common strategy [32,112]. The idea is to associate
a Gaussian probability density function that represents the
probability of the o-space center, to each person in the scene.
This set of distributions is used to vote for a given o-space
center location.

Other works use game theory. The authors of [128] use
people’s position, orientation, and associated uncertainty to
compute the most plausible region of attention. Then, they
compute a pairwise affinitymatrix for each person and extract
the F-Formation as solutions of a non-cooperative clustering
game over multiple frames.
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Graph-based methods currently have the best results in
a recent evaluation with the GRODE metrics [111]. [113]
developed a Graph-Cuts based method that uses proxemic
information (position and orientation) to detect F-Formations
on single images. Another graph-based method [139] aims at
detecting levels of involvement in free-standing conversing
groups for single images.

Most works that use RGB data use fixed ceiling cameras
to maximize people’s detection efficiency. However, some
notable exceptions, like [4], detect groups of people from
head-mounted RGB cameras. To avoid degrading the results,
they first detect blur in the image and discard it if larger than
a threshold. Then, they detect faces, compute each face’s
3D pose. Finally, a correlation clustering method estimates
groups taking temporal information, position, and orientation
into account.

Dynamic group detection was also explored in the litera-
ture, but to a lesser extent. On [71], a system uses RGB-D
data to detect and track people and dynamic groups. Their
approach uses HOG’s and HOD’s to detect people and tracks
them with a Multiple Hypothesis Tracker (MHT). A proba-
bilistic SVMpredicts social relations between detections and
an extended version of MHT tracks groups. The full system
is computationally heavy but able to run in real-time.

The authors of [96] propose two fast methods. The Link
Method uses a static analysis based on proxemics and
dynamic analysis to track pairwise relationships’ evolution.
The Interpersonal Synchrony Method runs over sliding-time
windows and detects pair interactions through the inter-
section of the field of views. Then, it evaluates intergroup
synchrony through the analysis of people’s speeds.

In [126], the authors extend the Graph-Cuts method pro-
posed by [113] to deal with dynamic groups. They do so,
by adding velocity information to people’s state and adding
motion constraints to the algorithm.

5.4 Interruptibility Estimation

As reported in Sect. 4, knowing whether people are open for
interaction can significantly improve engagement success.
Thus, it makes it necessary for a robot to estimate interrupt-
ibility automatically.

People’s poses and trajectories are significant cues to
decide whether to engage with them or not. Thus, Satake
and colleagues [106,107] developed an algorithm that clas-
sifies people’s trajectories into four classes: (i) fast-walking,
(ii) idle-walking, (iii) wandering, and (iv) stopping.With this
information, their system predicts if the robot can approach a
pedestrian, and chooses a pose to intercept them. Kato et al.
[62] also use trajectories to understand when Robovie should
engage with shop clients, based on their need for help. They
trained an SVM to learn interaction intention, with 95.4%
performance, from the following features:

– Distance to robot.
– Smallest robot frontal aperture angle that can cover the
human trajectory.

– Deviation of velocity.
– Stop time.

To approach humans with atypical behaviors, Brščić and
colleagues [22] trained an SVM classifier to detect those,
based on two features: speed and predictability. The pre-
dictability feature represents how likely people are of going
to a position, given a pedestrianmotionmodel. Their detector
of atypical behaviors achieved 91.4% accuracy.

Banerjee et al. propose [15] a system that estimates if
people are interruptible. Their architecture extracts spatial
information (position, orientation, head orientation, and gaze
direction of a person), and sound (presence and orientation).
Using video data, the researchers label objects near the target
person. This data is fed into several machine learning algo-
rithms to estimate the level of “interruptibility” (from 0 to
4).

Other works do not represent the social scene explicitly,
using an end-to-end approach. On [84], the authors attempt
to detect whether a person can be interrupted or not and the
scene context (studying, dining, at lobby). They test two dif-
ferent sets of features: audio amplitude with image intensity,
orGISTwith volume and frequency features.With them, they
train several classifiers: SVM, Naive Bayes, and Decision
Trees (maximumof 78.07%accuracy for context and 70.64%
for appropriateness). The authors of [27] trained a neural net-
work that, given a detected person, creates a heatmap around
the focus of interaction and a caption that describes the activ-
ity.

5.5 Role-taking

We believe that the capacity to recognize humans’ feedback
to actions is fundamental to a social robot during human–
robot interaction. There is still scarce literature on robots that
receive natural feedback from humans and learn from them.
However, distinct feedback modalities have been explored in
past works.

From an implementation point of view, one of the easiest
ways for a robot to collect social feedback from humans is
through button presses or interface clicks from an informed
person. That is the case in the original paper presenting the
TAMER framework [67], a reinforcement learning frame-
work that takes users’ feedback to shape their behaviors.
MacGlashan and colleagues [73] trained a virtual dog to
navigate a grid world environment through 5 buttons of feed-
back to test their proposed reinforcement learning algorithm.
Another work [72] uses binary button feedback to make a
virtual agent learn how to chase and catch a second one.
They claim that the lack of feedback can be as informative as
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explicit feedback and present a probabilistic model of how
a trainer gives it. The work of Nigam and Riek [84], is yet
another examplewhere a robot receives button feedback. The
robot uses this feedback to learnwhether it interrupted people
or not.

Facial expressions contain significantly more information
than the previous modalities and do not require the user to
touch the system. Broekens [21] estimated affect from facial
expressions associating happiness to positive rewards and
fear to punishing reward. These signals were collected from
people watching an agent in a grid world environment. Social
feedback improved the performance of the agent when com-
pared with a condition without it. Gordon and colleagues
[46] composed social feedback as aweighted sumof detected
valence (three values) and engagement (binary). They used a
commercial product to compute these variables from smiles,
eyebrows, and lip motions and used the social feedback sig-
nal to train a robotic tutor to motivate children.

Other works estimate social feedback from body move-
ments and poses. Mitsunaga et al. [81] present a work where
they adapted the robot’s behaviors (proxemics, gaze meeting
ration, motion speed, and waiting time) with natural sig-
nals with a Policy Gradient Reinforcement Learning (PGRL)
method in real-time. The robot uses the human’s movement,
time spent looking at the robot, and time spent before inter-
action. Trung and colleagues [124] used the 3d coordinates
of the head shoulders and neck from data gathered in their
previous work [80], to produce distinct feature sets used to
train several classifiers. Their goal was to detect robot fail-
ures from people’s reactions. These reactions can be seen as
expressions of negative feedback since they are responses to
the unintended robot states. Their best results were achieved
using a KNN classifier trained with feature vectors com-
posed of the average of differences between features over
a 1 second time window. The authors claim that the classi-
fier could be used in real-life scenarios if the detected person
is part of the training set. However, it does not generalizes.
More recently, Kontogiorgos et al. [68] used head move-
ments, gaze, and speech features to detect reactions to robot
generated speech failures during a task where a robot (either
human-like or a device) instructed users to cook non-trivial
recipes. The authors used a random forest classifier to clas-
sify segments of videos. The classifier was better at detecting
“no failures” than “failures”. Gaze features and head move-
ments were found to be important when people dealt with
a humanoid robot. Ritschel and colleagues [102] use a mul-
timodal approach to get people’s engagement. They intend
their robot to adapt its personality (with different language
behaviors) to keep the user engaged during the interaction.
The robot has different levels of introversion and extrover-
sion and estimates the user’s engagement with a Dynamic
Bayesian Network (DBN). They gather body data from a

Kinect sensor and detect head tilt, head orientation, head
touches, crossed arms, open arms, and lean postures.

Audio is yet another importantmodality, used, for instance,
to detect laugher, a significant social signal. Although it
is a complex signal related to both positive and negative
feedback [38], it is a strong signal that, under normal condi-
tions, implies that something happened. Weber et al. [130],
developed a laugher detector for their reinforcement learning
joke-telling algorithm. They analyzed an audio signal with a
sliding window approach and classified voiced frames with
a Support Vector Machine that used paralinguistic features.
This system achieves 84% accuracy on laugher recognition
on a person-independent evaluation. They also used video
data to detect smiles through commercial software. They
claim that both detectors’ confidence can be an efficient esti-
mator of laugher intensity.

Researchers have also combined several modalities to
compute feedback. The Ph.D. thesis of Ahmad [3] containts
such an example. It describes a behavior selection unit for
a social robot engaging in a game with a child that uses a
reinforcement learning based algorithm to set the robot’s per-
sonality. The reward signal can be thought of as a form of
social feedback: social engagement. It is computed using eye-
gaze toward the robot, facial expressions, verbal responses,
and simple gestures. Qureshi et al. [95] used detected smiles,
successful handshakes (hand sensors), and eye contact detec-
tion to learn the most appropriate action given the state.

Finally, we also note that robots can potentially sense
signals that are invisible to humans and use them as social
feedback. The work of [127] and colleagues is such an exam-
ple, were a robot uses EEG signals to detect user engagement
and adapt the its speech behavior to keep a user interested
in the game. This signal is used in an Inverse Reinforcement
Learning approach as a complement to the user’s score.

5.6 Research Gaps

Mostworks present a fixed pipeline ofmodules that infer spe-
cific signals for specific applications. Even though notable
examples like [69,123,138] developed an architecture that
gathers a significant amount of sensed signals, it seems that
a central question remains open: which features are neces-
sary for general social sensitivity, and how can we feasibly
detect them all? The lack of exploration of fundamental skills
for social sensitivity supports this observation. Robots in
the literature are still incapable of detecting ongoing norms
or identifying that some correlations between contexts and
human behaviors represent a norm.Moreover, robots are still
incapable of detecting cues that let them predict that their
actions might cause discomfort to people, for instance, by
blocking the affordance space of an object.

Regarding individual social sensitivity skills, they still
suffer from high computational requirements and accuracy
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issues. Most works on group detection focus on standing
conversational groups using 3rd person views, which implies
that the biggest limitation of these methods is the assumption
of perfect person detection. Works that consider uncertainty
are computationally intensive, and all of these works are lim-
ited to using spatial information and velocities. Relying on a
better synchronization of relevant features, like map seman-
tic information, objects, gestures, and sound can potentially
disambiguate difficult scenarios, or detect groups without the
detection of all participants.

Of the analyzed works, the best algorithms for gaze detec-
tion are exceedingly computationally expensive for a mobile
social robot. Others are unreliable at greater distances. None
of the algorithms make explicit use of the scene context to
improve estimation results. Efficient gaze detection from a
moving robot still seems difficult to achieve, given image
motion noise and occlusions. A possible route to lessen com-
putational costs would be to explore prior information. For
instance, object affordances and human pose information
may provide valuable information to a robot estimating the
human visual field of attention.

As for end-to-endmethods like [27,84], they are application-
specific. Even though they might learn to extract important
social features from images and sound, these features lack
interpretability. Moreover, these methods are computation-
ally expensive and require significant amounts of training
data.

Concerning the role-taking dimension of social sensitiv-
ity, it is still an underexplored topic. Existing works have
identified that detecting people’s reactions to technical fail-
ures of robots is easier than social norm violations, which
remain a challenge. People’s attitudes to norm violations
can be ambiguous, since people may express laugher as a
response to both error situations as well as norm compliant
robot behavior. This data needs to be ecologically plausible
for a robot to be able to receive feedback in the wild. More-
over, there is no relationship between human reactions and
measurable quantities (either self-reported scales or phys-
iological data) [118]. Finally, there seems to be a gap in
receiving feedback related to physical discomfort related to
an interaction. For instance, a socially sensible robot should
be able to perceive whether a handshake is too tight or too
loose from the person’s reactions.

6 Social Insight

With social context data, the robot can reason about the
scene and act accordingly. These understanding and decision
skills correspond to Greenspan’s social insight component.
This component is composed of knowledge of social norms,
scripts, and models. Here, we will address works that
implicitly encode this information (Sect. 6.1) and those that

explicitly do it through social norms (Sect. 6.2). Then, we
identify several research gaps and propose research direc-
tions.

6.1 Implicitly Defined Social Comprehension

Yousuf et al. [137]modeled the problem of how a robot guide
at a museum should approach a group of people to explain an
exhibit. They based theirmodel on previous proxemics andF-
Formations, and define different approaching behaviors that
depend on the number of persons looking at the exhibition
and the robot. People’s answers to a questionnaire reveal that
they prefer the proposed system when compared to one that
does not consider people’s attention. Another work focuses
on the interaction potential of approaching behaviors [79] for
a holonomic robot. For an interaction to be successful, the
robot must also be in a position where its sensors can capture
people’s information efficiently. Thus, they propose a solu-
tion that computes the engagement pose and maintains an
appropriate distance to a human subject based on proxemics
and the overall accuracy of the robot’s sensors. In [126], the
authors compute approaching areas taking into consideration
proxemics, the human field of view, and social interactions.
Then, they choose the center of the closest approaching area
as the robot approach goal, with the robot facing the cen-
ter of the interaction area (o-space for a group), or facing a
single person. They further enhance their method in [125],
being able to approach moving pedestrians (linear predic-
tion of their movements) and groups gazing at objects. Other
researchers [115] focused on the problem of a robot that
approaches people to distribute flyers. Their work studies
the approaching behaviors and whoom to interact with to
maximize the number of distributed flyers. These works use
proxemics and linear models to predict people’s movements
and act accordingly. A different approach is to use the social
force model, as shown by [99]. They attempt to solve the
problem of a human–robot duo approaching another person.
A combination of forces draws the robot to the goal per-
son while making it keep an appropriate distance from the
accompanying person and avoiding objects and other people.

A different approach consists of learning the model that
governs the scene’s social norms through behavioral demon-
stration. In [96], the robot learns to approach one person
through Inverse Reinforcement Learning. The state represen-
tation is a circular grid centered in the person, with a polar
representation.The reward function is a linear combinationof
functions of state-action pairs. An expert controlled the robot
remotely to approach the person, thus gathering the approach
demonstrations. The robot can then use the learned reward
function in two ways. The first way is to use it to solve the
MDP, fitting a bézier curve to smooth the trajectory. The sec-
ond way is to create a costmap with where each state has an
associatedRadial Basis Functionweighted by learned reward
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function weights. Dondrup and Hanheide [33] propose a
distinct approach, also learned from demonstrations. Their
trajectory planningmethod takes future navigation actions of
robots and humans that move near each other into account.
They propose a Qualitative Trajectory Calculus (QTC) witch
consists of a spatial representation that encodes human–robot
velocity interaction rules from demonstrations. Their train-
ing data consists of vectors with QTC states of humans and
QTC states of the robot. With them, they create a conditional
probability table to predict the appropriate robot action given
a human observation. Predicted robot actions are then used
to build velocity costmaps that limit trajectories sampled by
a Dynamic Window Approach (DWA) local planner [42].

Researchers have also used Neural networks to tackle this
problem. For instance, Yang and Peters train Long Short
Term Memories (LSTM) on a semi-synthetic dataset to
approach small groups of people. The authors of [48], they
use a Generative Adversarial Network (GAN) and LSTMs to
predict people’s future trajectories given trajectory segments.
Similarly, [135] generates approaching trajectories into free-
standing conversational groups, given a training set of safe
and socially acceptable paths.

6.2 Explicitly Defined Social Comprehension

None of the previous works explicitly defines social rules.
The authors of [24] developed a framework for an explicit
social rule execution for Petri Nets. Their work generates a
Petri Net Plan that considers a set of social norms. Further-
more, they provide a formal definition of social norms for a
robot. Porfirio and colleagues [89] developed an interaction
design interface and a verification algorithm to test whether a
human designed interaction scripts respect a set of previously
encoded social norms. They model interactions with a state-
machine like formulation (transition-system) and represent
social normsusingLinearTemporal Logic (LTL). Transitions
between states occur when the robot detects human actions.
The authors manually encoded social norms in LTL.

6.3 Research Gaps

In most works, the underlying algorithms (for navigation,
for instance) implicitly encode the social rules. Thus, even
though it is possible to tune some parameters, there is no
explicit way to incorporate new norms. A social robot that
follows a human-centered designmust be able to perceive and
incorporate social norms explicitly. Learning social norms
through deep learning methods poses several application
problems.While humans can make sense of them either after
having them explained to them or through few observations,
these methods require a prohibitive number of observations
to learn models that encode the norms. There are also safety
concerns about these methods. Even though a costmap based

solution, as shown by [96] or training the robot in simulation
[28] could reduce dangerous situations, the robot’s behaviors
can be unpredictable since the model’s internal represen-
tation is often impossible to interpret. Thus, interpretable
models like Carlucci et al.’s [24] and Porfirio et al.’s [89]
may provide stronger safety guarantees. However, these do
not learn from the data or demonstrations, thus requiring a
human expert to design the interaction.

For social navigation-related algorithms, we also iden-
tify several research opportunities. The first one is that none
of these methods adapt proxemics to the free space of the
scene. Thus, if the scene is very cluttered, and the robot does
not adapt its social costmap, it will not be able to navigate
and approach people. The second research gap is related to
the scene’s semantic information. While the analyzed works
do not consider it when the robot engages with people, this
information is fundamental to plan and approachpeoplewith-
out disturbing their interactions with the environment and
each other. A possible way to address this issue is to explore
objects’ affordances and affordance spaces. With this social
insight, a robot can, for instance, navigate without blocking
the path of transient pedestrians in doorways and corridors.

7 Communication

The detected social context (Sect. 5) together with social
insight (Sect. 6) allow social agents to understand the inter-
action and guide their communication behaviors. Here, we
describe works that implement the skills to non-verbally
communicate one’s intentions and feelings (Sect. 7.1—
referential communication), aswell as communication strate-
gies to guide the interaction toward one’s goals (Sect.
7.2—social problem solving). We finalize the section by
highlighting research gaps.

7.1 Referential Communication

Non-verbal communication skills are necessary to initiate a
successful interaction. Peoplewithwhom the robot intends to
interact need to be aware of the robot’s intentions, otherwise
it risks being ignored. Thus, it is necessary to express one’s
intentions on time, especially when relying upon non-verbal
behaviors. This observation is supported by [115] since the
success of their flyer distributing robot depends on the timing
of the robot’s arm. Their best strategy was to have the robot
approach the pedestrian and extend its arm nearby while gaz-
ing at the target person.

For a robot to initiate an interaction with people, it must
be able to greet them in a socially acceptable way. The
handshake is the most common greeting behavior in west-
ern civilization. There is some literature on the development
of human–robot handshakes, even though most of it focuses
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on the shaking motion. For instance, [57] studies the hand-
shakemotions between twohumanparticipants. They studied
the velocity profile of human writs during handshake request
and response and modeled a transfer function to generate
the motion of the respondent based on the requester’s move-
ments. They implemented it on a robotic hand and performed
a perception study with humans to test their method for sev-
eral parameters. In one of their subsequent works [58], they
adapt their model for small-sized robot arms. Later, they
study the best arm and gaze movements for their robot to
request a handshake [59]. Following this, they studied the
timings and the lag between the start of a request of a hand-
shake and the start of a response [85] [86]. In one of our
past works [11], we implemented a handshake system on
the Vizzy robot. We used information from the robot’s Hall-
effect-based tactile sensors [88] to control the robot’s grip
force with a PID controller and detect whether the handshake
grasped a human hand or not with a K-Nearest Neighbors
classifier with Dynamic Time Warping. People rated the
handshake grip positively in terms of perceived enjoyment
and safety. More recently, Mura and colleagues [83] imple-
mented a human–robot handshake controller on a FRANKA
robot arm with a custom silicon glove with pressure sen-
sors. Their work focuses on stiffness and synchronization,
and they use an EKF to learn human handshake sinusoidal
motion parameters. They use hand pressure information as
a control signal for arm stiffness control and hand closure
control. Their results show that people positively evaluated
the handshake and that people perceive distinct personality
qualities with different motion controllers.

However, a social robot cannot be limited to handshake
greetings, and individually modeling each behavior can
become troublesome. A possible approach to have multiple
greeting behaviors is to imitate humans. In [6], the authors
propose and test two imitation learning algorithms: (i) Prob-
abilistic Principal Component Analysis-Interaction Model,
and (ii) Path Map-Interaction Model. They train their algo-
rithms with motion capture data of two humans interacting.
Later, they propose Interaction Primitives [7], an algorithm
that learns the dependency between two agents’ actions and
follows the human action with the appropriate robot motion.

The previous algorithms require a motion capture of the
humans’ interactions, which still requires a considerable
amount of time and extra equipment. A better option would
be for the robot to learn these behaviors directly from cheaper
sensors, which was proposed by Shu et al. [117]. FromRGB-
D data containing human–human interactions, they attempt
to learn action possibilities that follow social norms (which
they define as “social affordances”) and perform real-time
inference based on the learned interactions. They test the
following behaviors with a Baxter robot: (i) handshake, (ii)
hand wave, (iii) high five, (iv) pull up, and (v) hand over a
cup.

7.2 Social Problem Solving

Qureshi and colleagues [94] use a Multimodal Deep Q-
Network to make a robot learn when to use one of four
behaviors: (i) wait; (ii) look toward a human; (iii) wave the
hand; and (iv) handshake. The network takes grayscale and
depth images and learns to choose one of the four actions. The
robot receives a positive reward for a successful handshake
(someone touches the robot’s hand) and a negative reward
for a negative one. In one of their recent works [95], they
use an extra network to predict people’s reactions (smile,
eye contact, or smile) for each possible robot action. The
reward function of the Q-net is computed based on the pre-
dicted reaction and the actual reaction of the person. In recent
work, Porfirio and colleagues [90] used a state-machine-like
formulation with Linear Temporal Logic (LTL) to update
the interaction script from human feedback. They defined
“interaction traces” as sequences of robot states and human
actions. Through human–robot interaction, they ask humans
to rate the robot’s traces as positive (+1), neutral (0), or
negative (−1). They propose an adaptation algorithm the
edits the script to maximize the score while complying with
social norms encoded with LTL. A user study showed that
the adapted model significantly improved user experience in
the interaction.

7.3 Research Gaps

During the first encounter between a robot and a person,
the robot does not have information about the person’s cul-
ture. It can have priors related to its current location, but
that is no longer a piece of strong information in an increas-
ingly multicultural society. Thus, the robot must be able to
switch between greeting models in real-time to match the
subject’s greeting. Finally, given the lack of works were the
robot detects that it misbehaved, there are also noworks were
it automatically apologizes after getting negative feedback.
Even though sometimes apologizing is not the best strategy
[37], the robot must be aware of the human’s dissatisfaction
and employ the best recovery behavior for the situation. For
instance, the robot could appologise to people after receiv-
ing negative social feedback, and attempt to explain why
it failed. It is also important to study how the incongruency
effect manifests in human–robot interaction and how distinct
robot repair behaviors can lessen its effects.

8 Conclusions and Future Directions

In this survey, we covered the existing body of knowl-
edge on robots that engage humans in first encounters and
the necessary skills for perception, reasoning, and action.
The current state-of-the-art still needs considerable improve-
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ments to make graceful engagement between humans and
robots a reality.We proposed a taxonomy based on Kendon’s
and Greenspan’s models to analyze and categorize the sur-
veyed works, covered methods used to open interaction with
people in first encounters, and went through the state-of-the-
art of individual skills needed do so.

We found that research works that implement robot archi-
tectures to approach people do not follow the same taxonomy.
However, an analysis of the interaction stages of these works
allowed us to classify their interaction stages under the same
taxonomy, followingKendon’s greetingmodel. This way, we
could compare them and identify their gaps. None of the cov-
eredmethods fully implements all stages of Kendon’s model,
and we could not find comparisons between them under
the same conditions. Besides, although Kendon’s greeting
model results from human behavior observations, one may
askwhether robots can learn to engage people in first encoun-
ters even more effectively than humans. Analyzed works
used state-machines, thus assuming that the interaction stage
was perfectly known. As stated by [54], such an approach
might not be robust to errors. The exchange of social sig-
nals involved in the greeting to open the interaction is a tool
for humans to keep track of the interaction stage [64], and
even with them, human–human first encounters can fail, as
reported by Schiffrin [110]. From this discussion, we high-
light the following open questions:

– Which theories and methods can make a robot success-
fully open interaction with a human in a first encounter?

– How do models in the literature perform against each
other and a fully implemented Kendon’s model?

– Which techniques can we use to manage and track the
interaction,with robustness to uncertain observations and
imperfect models?

– Can data-drivenmethods improve human-designed inter-
action opening scripts for first encounters?

We believe that social context inference is a crucial topic
for first encounters. Current technologies already detect
significant information for autonomous robots. However,
being able to integrate several reliable perceptual modules
without using external computational power can be very dif-
ficult if these modules are computationally intensive, as is
the case of several state-of-the-art deep learning methods
[53,63,97,132]. A possible research direction would be to
study howdistinct perceptual algorithms could share features
and information to improve the results. That is the approach
used in OpenHeadPose [23] that leverages the knowledge
of convolutional pose machines to estimate the head pose.
These observations lead to the following open question:

– How can perceptual skills of social sensitivity be inte-
grated in a robust and computationally efficient way?

Being able to define and learn social norms explicitly may
improve their design and the system’s explainability.Carlucci
and colleagues [24] used Petri-nets to represent social norms
explicitly, but they are hand-designed. A possible direction
would be to explore behavior trees [29] as a representation
of social norms. Some methods can learn behavior trees for
robot control [14], and it may be possible to enhance them to
learn social norms as behavior trees. As for navigation, the
literature has not yet considered the need to adapt encoded
social norms to react to environmental constraints. That is
a relevant feature since there can be situations where the
robot might need to violate social norms to engage with the
target. Given these insights, we highlight the following open
questions:

– How can a robot represent and learn social norms and
scripts to open first encounters?

– How can the robot adapt norms and scripts to cope with
dynamic navigation restrictions?

To be able to communicate its intentions to interact and
comply with the social scripts in a first encounter, the robot
should be able to adapt the salutation to match the one used
by the interaction target. Moreover, we believe it would be
interesting to teach new salutations to robots through human
demonstrations. Thus, the following question arises:

– How can we develop nonverbal communication skills
and strategies to open interaction during first encounters
effectively?

Finally, we believe that social feedback should have more
information than positive and negative values. Contextual
information may give meaning to social feedback and reduce
the search space of behaviors. Moreover, following the sug-
gestion of the previous paragraph, a behavior tree could learn
which recovery behavior might be appropriate after receiv-
ing negative feedback due to norm violations. The following
open questions cover these problems:

– Which methods can perceive signals of social feedback?
– Howcan robots learn communication strategies to recover
from failures during interaction-opening in first encoun-
ters?

Throughout our survey, we identified difficult problems
thatmake interaction opening during first encounters an open
challenge. Our analysis identified significant research gaps in
all categories. We believe that strong multidisciplinary col-
laborations between the robotics, psychology, and sociology
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communities are a powerful way to address these open chal-
lenges.
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