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There is compelling evidence that long-term intake of excessive fructose can have deleterious side effects in different experimental
models. However, the role of fructose in vivo remains controversial, since acute temporary application of fructose is found to protect
yeast as well as animal tissues against exogenous oxidative stress. This review suggests the involvement of reactive carbonyl and
oxygen species in both the cytotoxic and defensive effects of fructose. Potential mechanisms of the generation of reactive species
by fructose in the nonenzymatic reactions, their implication in the detrimental and protective effects of fructose are discussed.

1. Introduction

Over the past decade, considerable scientific debate and
controversy have arisen regarding the biological role of the
reducing monosaccharides, and fructose in particular [1, 2].
Since many nutritionists believe that fructose is safer and
healthier than glucose, fructose often is advocated as a glu-
cose substitute by diabetes mellitus patients and a preferred
sweetener for different population groups. At the same time,
numerous epidemiological, clinical, and experimental studies
demonstrate strong positive relationship between the intake
of fructose and the development of metabolic disturbances
[3-16]. Although consumption of fructose may have the
adverse side effects and some authors state that there are no
data showing a protective effect of fructose [3], it should also
be mentioned that acute temporary application of fructose is
found to be beneficial under some conditions [17-23].
Potential mechanisms underlying both detrimental and
protective effects of fructose are under debate. Nonenzymatic
reactions of fructose and higher production of reactive
carbonyls (RCS) and oxygen species (ROS) compared with
glucose are believed to be causative in negative effects of fruc-
tose [24-26]. However, ROS and RCS are found to play a dual
role in vivo, which appears to be dose and time dependent
[23,27-32]. Therefore, we suggest the involvement of reactive
species in both the cytotoxic and defensive effects of fructose.

This review examines some of the potential mechanisms of
ROS and RCS generation by the nonenzymatic reactions of
fructose, their implication in the detrimental and defensive
effects of fructose in vivo, and some of the differences between
the long-term and short-term applications of fructose.

2. Involvement of Fructose in
the Maillard Chemistry

The nonenzymatic reaction between amino acids and reduc-
ing monosaccharides was first described by Maillard a
century ago [33, 34]. 40 years later, the Maillard reaction
was recognized as one of the main reasons for the occur-
rence of the nonenzymatic food browning demonstrating
an importance in food science [35, 36]. In late 1960s, the
products of nonenzymatic glycosylation similar to the prod-
ucts of food browning were detected in human organism
[37, 38]. It took several decades to realize the physiological
significance of the reaction described by Maillard, which
received renewed attention in biochemistry and medicine.
The nonenzymatic glycosylation has been named “glycation”
in order to differentiate it from the enzymatic glycosylation,
an important posttranslation modification of proteins [39].
In 1980s, Monnier and Cerami postulated that glycation had
a causative role in aging and age-related pathologies [40, 41].
Today, their theory called the “glycation hypothesis of aging”
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is at the origin of the growing interest in the field of in vivo
glycation, aging, and age-related diseases.

Glycation is a process in which various compounds,
including RCS and advanced glycation end-products (AGEs),
are produced [36, 42-45]. An increase in the RCS and
AGEs steady-state levels may result in so-called carbonyl
stress. The concept of “carbonyl stress” was introduced by
Miyata and colleagues in late 1990s [46]. The authors have
defined carbonyl stress as a situation “resulting from either
increased oxidation of carbohydrates and lipids (oxidative
stress) or inadequate detoxification or inactivation of reactive
carbonyl compounds derived from both carbohydrates and
lipids by oxidative and non-oxidative chemistry” RCS are
mainly known for their damaging effects. At the molecular
level, RCS are found to modify the structure of proteins,
nucleic acids, lipids, and carbohydrates. As a consequence,
the loss of functions and even viability can occur at the
cellular and organismal levels. These harmful effects of RCS
are mainly linked to the initiation of glycation [36, 43, 47].
Therefore, a vicious cycle can be created in vivo when RCS
serve as either the initiators or products of glycation.

It should be noted that reactive carbonyls are commonly
generated in vivo as metabolic products [36, 44, 45, 48].
For example, oxidation of such amino acids as threonine
and glycine can lead to RCS formation under physiological
conditions [49]. Different RCS can be generated in vivo by
activated human phagocytes. It has been found that stim-
ulated neutrophils employed the myeloperoxidase-H,O,-
chloride system to produce a-hydroxy and «,f-unsaturated
aldehydes from hydroxy amino acids in high yield [49].

Besides highly reactive RCS, carbohydrates are important
glycating agents. In general, RCS may demonstrate 20,000-
fold higher reactivity than some reducing monosaccharides
[48]; however the latter are more abundant intra- and extra-
cellular glycation agents. The contribution of carbohydrates
to nonenzymatic processes has been extensively investigated
over few last decades. This may be attributed to either
beneficial or detrimental effects of reducing carbohydrates
in vivo, and most studies in the field of glycation are
focused on glucose (glucation). Fructose is another reducing
monosaccharide, a common component of honey, fruit juice
concentrates, table sugar, and high-fructose corn syrup. It
has been excessively consumed in human diets over the
last decades, despite the evidence implicating fructose in
the development of metabolic and other disorders [3-6].
However, glycation by fructose (fructation) has not been as
thoroughly investigated as that of glucose.

The initial step of fructation is the covalent interaction
between free carbonyl group of open-chain fructose and
amino group of biomolecule, producing the Schiff base
(Figure 1). The latter is an unstable compound that can be
subjected to further isomerization (Heyns rearrangement)
and form more stable Heyns adducts. The Heyns compounds
as well as Amadori products derived from glucation are
known as “early glycation products” or “fructosamines”
The fructose moiety of the Heyns products can undergo
enolization followed by dehydration, oxidation, and/or
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fragmentation reactions, consequently producing a variety
of RCS [36, 50-52].

RCS can also be formed due to enzymatic reactions
of reducing carbohydrates (e.g., glucose or fructose). For
example, polyol pathway may be associated with the produc-
tion of glyoxal, methylglyoxal, glucosone, and 3-deoxygluco-
sone [49]. Effective steady-state concentration of such RCS
metabolites as acetaldehyde, glyceraldehyde-3-phosphate,
and dihydroxyacetone phosphate is typically low in the cell
because of their rapid utilization by the next step of the
pathway [49]. However, the concentration of such by-pro-
ducts of glycolysis, polyol pathway, or enzymatic oxidation
of ketone bodies as glyoxal, methylglyoxal, glucosone, and
3-deoxyglucosone is not so tightly controlled [48, 49]. In
general, unlike enzymatic reactions, nonenzymatic processes
are not tightly controlled, and therefore they can be harmful.

Oxidation reactions and ROS have been shown to be
involved and frequently accelerate the fructation, glucation,
and other nonenzymatic processes [24, 36]. In order to
reflect the interplay between glycation and oxidative steps the
“glycoxidation” term has been introduced [53]. Figure 1shows
the mechanism of fructation followed by the generation
of reactive di- and tricarbonyls as well as such ROS as
superoxide, hydrogen peroxide, and hydroxyl radical. Slow
oxidative degradation of monosaccharides under physiolog-
ical conditions also leads to the formation of «-dicarbonyls
and some ROS. This process has been called monosaccharide
autoxidation or the Wolft pathway [44, 54, 55]. Figure 2
demonstrates the mechanism of fructose autoxidation. Like
other early glycation products, the Heyns compounds may
undergo autoxidation (Figure 3). This process leading to
the formation of RCS and ROS has been called the Hodge
pathway [35, 56, 57]. In addition, there is an evidence for the
fragmentation of the Schiff base that results in RCS and ROS
generation (Figure 4). The series of reaction pathways in gly-
cation established the Schiff base fragmentation to RCS and
ROS now collectively called the Namiki pathway [44, 51, 58,
59]. Thus, some stages of glycoxidation demonstrate a strong
relationship between carbonyl and oxidative stress (Figure 5).
Interestingly, some compounds were simultaneously identi-
fied as the intermediates or end-products of glycoxidation
and lipid peroxidation that confirms an interplay between
both the nonenzymatic processes [49].

In the late stage of glycation, the reactive carbonyls
and the Heyns compounds again interact with free amino,
sulthydryl, and guanidine functional groups of intracellular
or extracellular biomolecules like proteins, nucleic acids, and
aminophospholipids, resulting in their nonenzymatic, irre-
versible modification and formation of a variety of adducts
and crosslinks collectively named advanced glycation end
products (AGEs) [44, 45]. Therefore, the Heyns products and
RCS formed during fructation are believed to be important
precursors of nonenzymatic adduct formation in biological
systems. In general, AGEs are poorly degraded complexes
(Figure 6) accumulation of which increases with aging. They
were detected in a variety of human tissues and serve as
biomarkers of aging and age-related disorders [36]. Inter-
estingly, the comparison of nutrition and plasma AGEs in
vegetarian and omnivorous groups showed that the higher
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FIGURE 1: Suggested mechanism for the production of reactive carbonyl and oxygen species by the fructation.
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FIGURE 2: Fructose autoxidation (Wolff pathway).

intake of fructose in alternative nutrition of healthy subjects
may cause an increase of AGE levels [60].

It should be noted that AGEs may undergo covalent
interactions with biomolecules giving more complex cross-
links. In addition, AGEs are efficient in vivo sources of RCS
and ROS [44, 51, 61-63]. Like free-radical chain reaction,
glycation is characterized by unpredictable direction and a
wide variety of intermediates and end-products. That is why

the term “Maillard chemistry” is widely used to describe the
complicity of glycation [36, 43-45, 49].

3. Adverse Side Effects of Long-Term
Consumption of Fructose

Fructose is commonly used as a sweetener and its intake
has quadrupled since the early 1900s, in part because of



FIGURE 5: Formation of reactive species by the fructation leading to
carbonyl/oxidative stress.

the introduction of high-fructose corn syrup [1]. This phe-
nomenon parallels the development and progression of such
disorders as obesity, type 2 diabetes mellitus and its com-
plications, cardiovascular and neurodegenerative diseases,
hypertension, and gout, liver, and kidney disease [1, 3, 7-16].
Experimental studies on animals have shown that chronic
intake of excessive fructose can induce most features of
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‘2&06"0 Although the consumption of large amounts of dietary
Heyns fructose can rapidly induce insulin resistance, most nutrition-
products ists believe that fructose is safer and healthier than glucose;

therefore, fructose is advocated as a preferred sweetener,
particularly for diabetes mellitus patients. Chronic hyper-
glycemia that in part can result from glucose intolerance
induced by long-term consumption of fructose is a major
inducer of vascular complications in diabetes (e.g., heart
disease, stroke, blindness, and end-stage renal failure) which
are responsible for disabilities and high mortality rates in
patients with diabetes. The increased production of ROS,
RCS, and AGE:s as a result of glycoxidation is most preferable
among the various mechanisms, which are supposed to be
involved in vascular complications in diabetes. In general,
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the enhanced levels of glycoxidation products can explain
the detrimental effects of fructose due to its long-term
application in different experimental models [67-71].

To compare glucose and fructose involvement in the gen-
eration of glycoxidation products, recently we used baker’s
yeast as a model and found higher level of carbonyl/oxidative
stress markers, which were correlated with a higher aging
rate of fructose-grown compared with glucose-grown yeast
at stationary phase (long-term model) [25, 26]. We suggested
that fructose rather than glucose is more extensively involved
in glycoxidation in vivo, yeast aging, and development of
carbonyl/oxidative stress. O’Brien with colleagues found that
excessive fructose intake in animal models caused tissue
damage associated with carbonyl/oxidative stress [72, 73]. In
vitro experiments also demonstrated that fructose produced
greater amounts of ROS and RCS than did glucose [24, 68, 69,
74].

At the first glance, from the point of view of basic organic
chemistry it may seem surprising, since due to a greater
electrophilicity and accessibility of the carbonyl group of
aldoses (e.g., glucose), their reactivity is believed to be higher
than that of respective ketoses (e.g., fructose). There is some
information confirming higher reactivity of glucose versus
fructose in nonenzymatic processes in vitro [75-77], while
the opposite is reported in numerous in vitro and in vivo
studies [24, 74, 78-80]. Possible explanation is that glucose is
less reactive due to formation of very stable ring structures in
aqueous solutions (glucopyranose and glucofuranose) which
retards its reactivity. Generally, glucose is the least reactive
monosaccharide and this characteristic can be considered
to the emergence of glucose as the primary metabolic fuel
[36, 81, 82]. Fructose also forms both pyranose and furanose

structures [83] but exists to a greater extent in the open-
chain active form than does glucose. The proportion of acyclic
forms of glucose and fructose in aqueous solution accounts
for 0.001-0.002% and 0.7%, respectively [48, 84]. Thus fruc-
tose is a more potent glycoxidation agent as compared with
glucose that can explain its detrimental effects.

4. Short-Term Application of Fructose Protects
against Oxidative Stress

Although a long-term consumption of excessive fructose
may have adverse side effects, its acute temporary ingestion
can be beneficial under some circumstances. For exam-
ple, short-term application of fructose has been found to
protect astroglial C6 cells against peroxide-induced stress
[21]. In contrast to glucose, fructose inhibited apoptosis
induced by reoxygenation in rat hepatocytes by decreasing
the level of ROS [17]. Fructose has also been found to
defend rat hepatocytes against exogenous oxidative stress
[18, 20]. It has been demonstrated that fructose and its
phosphorylated derivatives such as fructose-1,6-bisphosphate
had significantly higher antioxidant capacities against ROS
than other carbohydrates [22]. Based on these phenomena,
it was suggested that acute infusion or ingestion of fructose
could be of benefit in the cytoprotective therapy of disorders
related to oxidative stress [21]. According to homeostasis
theory, the steady-state concentration of oxidants as well as
antioxidants is maintained at the limited range [85]. That is
why antioxidant therapy is generally found to be ineffective
[30, 31]. In contrast to strong antioxidants, fructose and its
phosphorylated derivatives (e.g., fructose-1,6-bisphosphate)
being important energy substrates are not “fought” by redox
homeostatic mechanisms. The beneficial effects of fructose-
1,6-bisphosphate have been documented in different tissues,
including the heart, liver, kidney, brain, and small intes-
tine [86-89]. The cytoprotective mechanisms underlying
fructose-1,6-bisphosphate are believed to be involved in
its intervention in the glycolytic pathway, as a metabolic
regulator or substrate, as well as an agent modifying the ion
permeability of cell membrane transporters.

Recently we have demonstrated that fructose-grown
yeast at exponential phase (short-term model) exposed to
hydrogen peroxide demonstrated higher survival compared
to glucose-grown cells [23]. In this study, significantly higher
total level of ROS was observed in fructose-grown than
that in glucose-grown cells under control conditions (with-
out H,0,). However, under peroxide-induced stress ROS
amount significantly decreased in yeast grown on fructose,
whereas it increased in glucose-grown cells, which was
very consistent with the work of Spasojevi¢ et al. [21]. The
authors demonstrated a significant increase in oxidative
status of astroglial C6 cells under treatment with hydrogen
peroxide in glucose medium, but it was not the case in a
fructose-containing medium. At the same time, hydrogen
peroxide led to a decrease of C6 cell viability in both media
investigated; however, the survival was higher in fructose-
containing medium. In accordance with another work by



Spasojevi¢ et al. [22], we demonstrated that hydrogen perox-
ide did not markedly change hydroxyl radical level in glucose-
grown cells but it did decrease it significantly in fructose-
grown cells [23].

An obvious question arises: what mechanism(s) is (are)
responsible for the protective effect of fructose short-term
application? Analysis of the literature data leads us to propose
several mechanisms responsible for the defensive effect of
fructose: (1) iron binding and prevention of the Fenton
reaction [18, 21]; (2) stabilization of the glutathione pool in the
cell [17]; (3) upregulation of the pentose phosphate pathway
producing NADPH [22]; and (4) production of fructose-
1,6-bisphosphate, the compound with cytoprotective and
antioxidant mechanisms [86-89].

Our study extended the earlier findings with the involve-
ment of SOD and catalase in the reduction of ROS level in
fructose-grown yeast exposed to H,O, [23]. It was shown that
a reduced ROS level in fructose-grown cells was consistent
with a broad peak of SOD and catalase activation by hydrogen
peroxide, whereas cells grown on glucose demonstrated a
sharp rise of the enzyme activities. We also found that
fructose more markedly than glucose activated glyoxalases,
the fundamental function of which is the metabolism of
reactive a-dicarbonyl metabolites in most living organisms
(43, 90-92].

These findings prompted us to propose additional expla-
nation of fructose protective effect—a short-term applica-
tion of fructose induces a mild carbonyl/oxidative stress-
stimulating cellular defensive mechanisms responsible for
cell survival under lethal stress [23]. The last mechanism can
be posited from the in vitro and in vivo studies reporting
that fructose is a much more potent glycoxidation agent,
capable of producing greater amounts of RCS and ROS
than glucose [21, 23-26, 68, 74]. Generally, ROS and RCS
are found to play a dual role in vivo, which appears to be
concentration dependent [23, 27-32]. At high concentrations,
reactive species are potentially dangerous, as they can cause
damage to cell constituents that, in turn, accompany aging
and age-related disorders. In contrast, the beneficial effects
of ROS and RCS occur at low concentrations and involve
physiological roles in cellular signaling pathways, responses
to environmental challenges, and so forth. It is also well
documented that mild stress caused by low doses of reactive
species can result in the acquisition of cellular resistance to
lethal stress [28, 93-96].

5. Conclusion

Considering the literature data it can be supposed that
at long-term consumption of excessive fructose chronic
increase in the levels of reactive species leads to the accu-
mulation of damaged cellular constituents resulting in cel-
lular disfunction, whereas short-term application of fructose
provokes a mild stress, resulting in the acquisition of cellular
cross-resistance to lethal stress (Figure 6). Therefore, we
suggest the involvement of reactive species like RCS and ROS
in both the cytotoxic and defensive effects of fructose. Thus,
depending on conditions, fructose can play a dual role in the
living cell. Long-term application of excessive fructose leads
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to glycoxidation, generation of ROS and RCS, and accumu-
lation of damaged cellular constituents which is suggested
to accompany the aging process, cellular dysfunction. and
age-related disorders. In opposite, short-term application of
fructose provokes a mild carbonyl/oxidative stress, resulting
in the acquisition of cellular cross-resistance to lethal stress.
Generally, a long-term consumption of excessive fructose is
found to have adverse side effects; however acute temporary
application of fructose can be beneficial under some patho-
physiological conditions.
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