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Abstract

The rapid advancement of emerging genomics technologies and their application for assessing 

safety and efficacy of FDA-regulated products require a high standard of reliability and robustness 

supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the 

FDA implemented a novel data submission program, Voluntary Genomics Data Submission 

(VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the 

FDA has led an international consortium of regulatory agencies, academia, pharmaceutical 

companies, and genomics platform providers, which was named MicroArray Quality Control 

Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, 

and data interpretation. Three projects have been completed so far assessing these genomics 

technologies: gene expression microarrays, whole genome genotyping arrays, and whole 

transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for 

fit-for-purpose application of these new data streams in regulatory environments, and the solutions 

have been made available to the public through peer-reviewed publications. The latest MAQC 

project is also called the SEquencing Quality Control (SEQC) project focused on next-generation 

sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that 

relative gene expression can be measured accurately and reliably across laboratories and RNA-seq 

platforms. Besides prediction performance comparable to microarrays in clinical settings and 

safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal 

novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole 

genome sequencing and targeted sequencing.
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INTRODUCTION

A decade ago, microarrays were the mainstream genomics technology used by the 

biomedical and pharmaceutical research communities. Using this technique, a large expanse 

of microarray data has been generated to support the drug development process. For 

example, genomics data has been used to evaluate drug safety and efficacy in support of both 

investigational new drug applications (IND) and new drug applications (NDA). To facilitate 

the submission of genomics data, the FDA created a novel data submission program known 

as Voluntary Genomics Data Submission (VGDS) and later extended it to Voluntary 

eXploratory Data Submission (VXDS) so that other omics data could be included. The idea 

behind this novel submission program was to facilitate FDA’s communication with the 

sponsor and to identify the best ways to apply omics data in regulatory application. The 

results of these efforts have helped to develop the Guidance for Industry on 

Pharmacogenomics (PGx) Data Submission (1). The VXDS program encourages the 

sponsor to interact with the FDA through submission of PGx data on a voluntary basis. In 

addition to that, it provides a forum for scientific discussions with the FDA outside of the 

regulatory review process. This whole process has helped to establish a regulatory 

environment within the FDA for receiving, analyzing, and interpreting the PGx data.

In order to achieve the goals of the VXDS process, the FDA created a data repository to 

keep track of all the data submitted by the sponsors (2). The submitted information was 

important to shape future regulatory policies regarding PGx data submission and review. In 

an effort to create new standards for receiving PGx data, the FDA sought to reproduce the 

analysis results and conclusions provided by the sponsor. In addition to that, alternative 

analysis and biological interpretation were also conducted and compared with the sponsor’s 

analysis. These efforts established FDA’s view for analysis and interpretation of PGx 

information.

During these efforts, it was identified that even the slightest change in the statistical methods 

could lead to substantial differences between the results from the sponsor and those from the 

agency (1, 2). Differences in the statistical analysis results led to discrepancies in biological 

interpretation. The high variations in analysis results were not just related to the microarray 

technology, but were also observed in most of the high-throughput screening technologies, 

including those utilized in proteomics and metabolomics.

Whenever a new technology is introduced to assist in the process of drug development, the 

biomedical and pharmaceutical research community tries to evaluate its potentials in 

understanding the underlying mechanisms of drug efficacy and toxicity. These evaluation 

efforts enhance the understanding of the utility of the technologies, and the research 

community learns their appropriate fit-for-purpose applications. However, it may take 15–20 

years for an innovative technology to be translated to fit-for-purpose applications in a 

regulatory setting (3). It is thus of FDA’s interest to be involved in the evaluation efforts in 

order to expedite such translation. Through the efforts reviewed here, the FDA has 

demonstrated its commitment to expedite the process of incorporating the application of 

innovative technologies. These efforts were carried out in collaboration with the research 

community and stakeholders, with an emphasis on promoting the optimization, 

Xu et al. Page 2

AAPS J. Author manuscript; available in PMC 2016 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reproducibility, and standardization of the analysis protocol, data interpretation, and data 

sharing.

MAQC CONSORTIUM

The MicroArray Quality Control (MAQC) consortium is a community-wide effort led by the 

FDA to address the above mentioned reproducibility concerns about the genomics 

technologies. It was started about 10 years ago, involving most FDA centers along with the 

international research community and industry. Its objective was to analyze the technical 

performance and utility of emerging molecular technologies (e.g., microarrays, next-

generation sequencing) for clinical application and safety assessment. Throughout MAQC 

efforts, there was a consistent emphasis on transparency. The results and conclusions were 

published in peer-reviewed journals. The data generated during these efforts has been made 

freely available to the public. Additionally, some biological samples from which the data 

were generated are also available from commercial vendors. The consortium started in 2005 

and by the end of 2014, three projects were completed. During the course of these projects, 

three different genomics technologies were evaluated. Under the project MAQC 1 and 2, 

microarrays were evaluated. Various issues related to the genome-wide genotyping arrays 

were evaluated in the MAQC 2 project (4–15). The third MAQC project, also known as 

SEquencing Quality Control (SEQC), evaluated the RNA-seq technology. All three projects 

evaluated the fit-for-purpose application for clinical and regulatory aspects of those 

genomics technologies. The entire project published a total of 28 peer-reviewed articles 

(http://www.fda.gov/ScienceResearch/BioinformaticsTools/

MicroarrayQualityControlProject/), and 11 of them were published in Nature Biotechnology 
(4, 16-24). The paper published from MAQC 1 project supported the FDA in the 

development of “Guidance for Industry: Pharmacogenomics Data Submission – Companion 

Guidance.”

The MAQC 1 project demonstrated inter- and intraplatform reproducibility of gene 

expression measurements by microarrays. The comprehensive study design was centered on 

cross-site cross-platform performance evaluation through the titration of two reference RNA 

samples. DNA microarray results were compared with the quantitative PCR platforms for 

gene expression, and high correlation was observed between them. Additionally, external 

RNA controls for the assessment of microarray performance were also evaluated, along with 

various microarray data normalization techniques. Importantly, MAQC 1 studies 

demonstrated that the combination of fold-change ranking and a non-stringent P value cutoff 

led to increased consistency in differential gene expression analysis and downstream 

biological interpretation. The reference RNA samples chosen by the consortium have since 

become standard material widely adopted by the research community and the biotechnology 

industry for laboratory proficiency testing and development of new genomics technologies. 

As a natural progression, the MAQC 2 project studied the development and reliability of 

microarray-based predictive models for a variety of preclinical and clinical endpoints. Over 

30,000 models were developed by 36 data analysis teams using numerous model building 

methods. Performance evaluation through a strictly blind external validation process 

demonstrated the utility of well-implemented internal cross validation in gauging the model 

prediction performance. This carefully designed and executed consortium effort with six 
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large clinical and preclinical microarray datasets demonstrated that reliable predictive 

models can be developed when including sound and unbiased cross-validation techniques in 

the process. We expect the conclusions from the MAQC 2 project to be applicable to models 

based on gene expression data from other high-throughput technologies besides microarrays.

CHALLENGES FOR NGS

The next-generation sequencing (NGS) technologies were first introduced to the market in 

2005 and have since seen tremendous growth in both technology advancements and research 

adoption. NGS has a wide spectrum of application in biomedical research including but is 

not limited to genome and exome sequencing, whole transcriptome sequencing (i.e., RNA-

seq), microRNA sequencing, and metagenomics. Some common challenges related to NGS 

include data storage, transfer, sharing, analysis, and visualization due to the sheer size of 

NGS datasets, which are referred to as big data challenges. As a tool, the specific application 

of NGS mainly defines the challenges and issues associated with this technique. Our 

literature survey on the use of NGS as a tool found that about 50% of the applications are 

mainly related to the use of NGS to understand genetic variations and their effect on disease 

and drug response. About a quarter of the applications are related to RNA-seq while the rest 

of them are split into various areas including microRNA sequencing and metagenomics. 

Challenges and issues associated with human genome sequencing differs greatly from these 

associated with microRNA sequencing because the size of the molecular object under 

investigation varies greatly, i.e., the human genome has 3.2 billion base pairs in contrast to 

the microRNA size of only 18–25 nucleotides.

THIRD PHASE OF MAQC PROJECT

Due to rapid advances in NGS technologies, the third phase of the MAQC Project was 

initiated while the second phase was still under the way. As mentioned above, this phase is 

also known as the SEQC project with its focus on RNA-seq. Over 180 participants from 73 

different organizations across 12 different countries participated in the SEQC project. The 

project generated over 10 TB of data with over 100 billion reads. On submission of this 

dataset to the Gene Expression Omnibus (GEO) repository in June 2014, it represented 

around 6% of the total RNA-seq data in the repository at that time. This rich data provides 

ample opportunities for RNA-seq data analysis method development. Under this project, 

four different datasets were generated. The first dataset was generated from six reference 

samples. These reference samples were sequenced by various laboratories using different 

RNA-seq platforms such as Illumina HiSeq, Life Technologies SOLiD, and Roche 454. The 

second dataset was composed of sequencing data for about 500 neuroblastoma samples from 

pediatric patients. The third dataset was from 100 rat liver samples. The last dataset was a 

survey of rat transcriptomes using 11 different organs across 4 different developmental 

stages for both male and female rat. The SEQC project evaluated technical performance, 

quality control, and cross lab and cross platform reproducibility of RNA-seq. RNA-seq data 

was also compared with data generated from the same samples by mature microarray 

technologies. In addition to that, evaluations were made on the use of RNA-seq for clinical 

applications and safety assessments. The observations from these efforts were published in 

10 manuscripts (3, 22-30). Here we present five major findings:
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1. Relative measurement is more consistent than absolute measurement.

We generated large datasets for six reference samples. The samples were 

sequenced in 11 different laboratories using various platforms (i.e., HiSeq, 

SOLiD, and 454) (27) with multiple library preparation replicates for each 

sample at each laboratory. This study design offered us an opportunity to 

evaluate cross lab and cross platform consistency using the same sample. 

It allowed us to study both intra-laboratory and cross laboratory 

variability. Ideally, no gene would be differentially expressed for the same 

sample when it is sequenced with the same platform in different labs. We 

observed that as many as 10,000 genes could pass the statistical test to be 

considered as differentially expressed. In contrary, when differentially 

expressed genes (DEGs) from any pair of samples were compared across 

laboratories and platforms, the results were quite consistent (22). Thus, the 

analyses demonstrated that relative measurement is much more consistent 

and reproducible than the absolute measurement.

2. RNA-seq vs microarrays.

Among its broad application, RNA-seq has two major applications, first is 

to determine DEGs by comparing different conditions, e.g., treatment or 

disease status. The second use is to develop gene expression-based 

predictive models. However, microarrays have been used for a long time to 

perform similar tasks. Bioinformatics methods for analyzing and 

interpreting the results from microarray data have been assessed and 

established through the first two MAQC projects. In comparison, RNA-seq 

is a relatively new technology and analysis methods are continuously 

being developed. Thus, there is a great interest in the community to 

compare microarrays and RNA-seq to identify the benefits of using RNA-

seq over microarrays. To address the comparison, the SEQC project 

implemented several studies to comprehensively assess the difference and 

similarity between these two technologies. In one of them, rat livers 

treated with 15 chemicals and matched controls were profiled with both 

technologies and the DEGs detected for each chemical were compared 

between the two technologies. Of note, these chemicals yielded a wide 

range of treatment effect with a 10-fold difference between the smallest 

and largest number of DEGs detected. With this design, we could evaluate 

the concordance in DEG analysis between RNA-seq and microarrays in 

various levels of treatment effect. We found that the concordance in DEGs 

between microarray and RNA-seq was positively correlated with the 

strength of treatment effect. Further analyses indicated that the 

discordance was mostly due to the difference between two platforms in 

quantifying the lowly expressed genes. Specifically, for highly expressed 

genes, we were able to achieve a concordance of about 75% while the 

concordance was only 35% for lowly expressed genes. Thus, the major 

difference between microarrays and RNA-seq lies in their accuracy of 

measuring lowly expressed genes. Further comparison with quantitative 
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PCR indicated that RNA-seq would likely perform better than microarrays 

for lowly expressed genes (24).

3. RNA-seq and Gene Discovery.

An important potential of RNA-seq is its ability to discover novel, 

unannotated exon-exon junctions, which is affected by read depth. On 

increasing the number of reads from 10 million to 10 billion, both known 

genes and novel junctions were continually detected. Importantly, using 

quantitative PCR to validate some selected novel junctions, we determined 

that over 80% of them can be verified but their biological functions are 

unknown (14). This observation opens the door for the research 

community to peruse the area of increased read depth analysis and identify 

new transcripts and evaluate the contribution of such new transcripts or 

genes to understand the underlying biological mechanisms related to 

disease and toxicity.

4. Pipeline for RNA-seq.

One of the most asked questions in the research community is which 

pipeline(s) is to be used for RNA-seq data analysis. To address the 

question in the context of big data, we evaluated 12 different pipelines in 

this project. For each pipeline, there are different parameter settings that 

lead to 278 major permutations covering the common gene modes, various 

quantification, and normalization methods. The comprehensive assessment 

was extremely costly in terms of computational time. We identified DEGs 

and compared the results with quantitative PCR and also evaluated the 

performance of downstream prediction models. We developed a composite 

metric including accuracy, precision, sensitivity in detecting lowly 

expressed genes, specificity in detecting DEGs, and prediction 

performance to derive the best practice for choosing RNA-seq data 

analysis pipelines. We observed that the pipeline giving the better 

estimation of the gene expression likely also gave better performance in 

predictive modeling. Multiple pipeline components jointly and 

significantly impacted the quantification of gene expression and 

downstream prediction performance. The manuscript is currently under 

review at Nature Methods.

5. Legacy microarray data in the RNA-seq era.

Microarrays have been widely used in biomedical research and drug 

development since 1995. Major pharmaceutical companies usually 

generate thousands of microarrays per year. In this analysis, we tried to 

address whether RNA-seq-based gene signatures can be applied to 

microarray data to leverage the investment previously made. We tested 

three different classifier methods with three gene mapping categories to 

identify the transferability of microarray information to the RNA-seq data 

and vice versa. RNA-seq and microarrays were comparable for predictive 
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models. Importantly, signature genes were reciprocally transferable 

between these two technology platforms. Microarray models can 

accurately predict RNA-seq-profiled samples. However, RNA-seq was less 

accurate in predicting microarray-profiled samples, and the performance 

was affected by modeling algorithms and the gene mapping complexity 

(26).

PERSPECTIVES AND FUTURE DIRECTION

NGS technologies have emerged as an important tool for many regulatory activities. Various 

FDA centers have encountered NGS data in regulatory science research and/or regulatory 

applications. These include but are not limited to (i) FDA oversight of NGS-based assays for 

diagnosis and prognosis, (ii) applying NGS in food pathogen identification and outbreak 

detection, (iii) reviewing NGS data for drug efficacy and safety for both clinical and 

preclinical assessments, and (iv) NGS as an improved tool for studying immunogenicity of 

vaccines. More specifically for biological products, NGS data can be utilized in various 

ways to support their development with one current major use being the identification of 

microbial contaminations (31).

Building upon the success of the previous MAQC projects, which were fundamental for the 

development of FDA companion guidance to industry on pharmacogenomics data 

submission, we are in the process of developing a follow-up project, named SEquencing 

Quality Control Phase 2 (SEQC2). SEQC2 aims to develop quality control metrics and 

benchmark bioinformatics approaches for the analysis of the whole genome sequencing and 

targeted gene sequencing data to achieve best practices, to develop standard analysis 

protocols, and to apply these newer methods in regulatory settings. The ultimate goal of 

SEQC2 is the development of standards for using NGS data that will provide the FDA with 

objective criteria and metrics for data quality assessment that can be applied in regulatory 

settings and to provide information for precision medicine.

In summary, the primary aim of these FDA-led efforts for emerging genomics technologies 

is to engage the stakeholders and research community for consensus building with respect to 

the reliable use of genomics data with objective criteria and assessment metrics for data 

quality and reliability, which can be employed in the FDA for their fit-for-purpose 

application.
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