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Acute myeloid leukemia (AML) is a collection of hematologic malignancies with specific 
driver mutations that direct the pathology of the disease. The understanding of the origin 
and function of these mutations at early stages of transformation is critical to understand 
the etiology of the disease and for the design of effective therapies. The chromosome 
inversion inv(16) is thought to arise as a founding mutation in a hematopoietic stem cell 
(HSC) to produce preleukemic HSCs (preL-HSCs) with myeloid bias and differentiation 
block, and predisposed to AML. Studies in mice and human AML cells have established 
that inv(16) AML follows a clonal evolution model, in which preL-HSCs expressing the 
fusion protein CBFβ–SMMHC persist asymptomatic in the bone marrow. The emerging 
leukemia-initiating cells (LICs) are composed by the inv(16) and a heterogeneous set of 
mutations. In this review, we will discuss the current understanding of inv(16) preleukemia 
development, and the function of CBFβ–SMMHC related to preleukemia progression 
and LIC activity. We also discuss important open mechanistic questions in the etiology 
of inv(16) AML.
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inTRODUCTiOn

The core-binding factor (CBF) transcription factor has critical roles in hematopoietic stem cell 
(HSC) maintenance and differentiation by regulating expression of genes associated with cell 
fate decisions and proliferation in lymphoid and myeloid compartments (1). The CBF has two 
core subunits and is frequently associated with cofactors that modulate their activity or provide 
target specificity. The subunit CBFβ increases RUNX affinity to DNA approximately 40-fold and 
stabilizes RUNX protein from proteasome degradation (2–4). The subunit RUNX (encoded by 
either RUNX1, RUNX2, and RUNX3 genes) binds to DNA at promoters and enhancers (consensus 
sequence TGYGGT). RUNX is the docking subunit that interacts with CBFβ and cofactors and has 
the nuclear localization signal (5, 6).

From the clinical and mechanistic points of view, AML is a collection of hematologic malig-
nancies marked by specific driver mutations. RUNX1 and CBFB genes are recurrently mutated in 
AML. Although a variety of mutations in RUNX1 have been described in hematologic malignan-
cies, the only rearrangement associated with CBFB is the pericentric inversion inv(16)(p13q22), 
henceforth inv(16), in leukemia (7–9). The inv(16) generates the fusion gene CBFB-MYH11, 
encoding the leukemia fusion protein CBFβ–SMMHC (10). Most of inv(16) AML cases have a 
myelomonocytic morphology with abnormal eosinophils and are classified as AML subtype M4-Eo, 
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FigURe 1 | Protein organization of CBFβ–SMMHC. Schematic 
representation of the CBFβ–SMMHC fusion protein, including the RUNX1-
binding domain (RBD) at the N-terminus of CBFβ, the high-affinity binding 
domain (HABD) at the proximal end of SMMHC, and the assembly 
competence domain (ACD) near the C-terminus in the SMMHC region. 
Functional regions are marked with dash line at the bottom.
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and in rare occasions as AML subtypes M0, M1, M2, and M5 
[French–American–British system (11)]. In spite of the morphol-
ogy, the inv(16) AML transcriptome clusters as a single entity, 
suggesting a common underlying molecular alteration (12). The 
World Health Organization grouped “inv(16) AML” within the 
“AML with recurrent genetic abnormalities” based on genetic, 
molecular, and clinical features (13).

The name preleukemia has been used in different contexts 
in hematologic malignancies and has evolved in the past years 
(14). The preleukemic HSCs (preL-HSCs) can be considered as 
HSCs with inv(16) as a founding mutation that generate a clonal 
expansion of myeloid progenitor cells primed for leukemia (15). 
In this review, we summarize the current understanding in 
preleukemia progression of inv(16) AML.

CBFβ–SMMHC DOMAinS THAT 
RegULATe LeUKeMiA DeveLOPMenT

Two domains in CBFβ–SMMHC that are critical for its leuke-
mogenic function: the RUNX binding domain (RBD) and the 
assembly competence domain (ACD) (Figure 1). The RBD, cor-
responding to the 135 N-terminal amino acids of CBFβ region at 
the N-terminus of the fusion protein, binds to the RUNX factors 
(16, 17). Genetic evidence, using Cbfb+/MYH11 knock-in mice, 
revealed that RUNX activity is essential for CBFβ–SMMHC-
associated leukemia function. Accordingly, reduction of Runx1 
or Runx2 expression inhibited CBFβ–SMMHC-mediated 
diff erentiation block in embryos and leukemia onset in mice 
(18, 19). Furthermore, the increase in Runx2 levels reduced 
leukemia median latency (20). RUNX1 also interacts with 
the high-affinity binding domain (HABD), at the N-terminus 
of SMMHC. Surprisingly, RUNX1 binds to CBFβ–SMMHC 
with approximately 10-fold higher affinity to than to CBFβ. Its 
dual interaction with the RBD and HABD provides a rationale 
for the observed dominant negative function of the fusion 
protein outcompeting CBFβ for RUNX1 binding (21). A later 
study using Cbfb+/MYH11d179-221 knock-in mice expressing CBFβ–
SMMHC lacking the HABD established that HABD regulates 
myeloid differentiation induced by CBFβ–SMMHC but it may 
actually inhibit leukemia by altering the LIC pool (22). These 
findings have direct clinical significance because although the 
majority of inv(16) AML cases include HABD sequence in the 

CBFB-MYH11 transcripts, fraction of cases lack HABD sequence 
due to a different breakpoint on the MYH11 part of inv(16). The 
28 amino acid ACD near the C-terminus is responsible for the 
oligomerization of CBFβ–SMMHC molecules and formation 
of filament structures (23–25). The ACD activity is needed 
for CBFβ–SMMHC’s ability to inhibit myeloid differentiation, 
regulate the expression of CBF targets, and to reduce cell cycle 
and its nuclear localization in vitro (26, 27). Two recent stud-
ies using different inv(16) leukemia models have established 
that the ACD is essential for the expansion of preleukemic 
cells and for leukemia development (28, 29). Furthermore, the 
analysis of preleukemic progenitor cells revealed that ACD 
activity is critical for block in early B-cell differentiation but 
that sequences outside the ACD in the fusion protein impair 
T-cell differentiation. Finally, the C-terminal 95 amino acid 
region of CBFβ–SMMHC, which includes the ACD, binds to the 
histone deacetylase HDAC8 (30, 31). This interaction is essential 
for the inv(16) LIC activity because HDAC8 deacetylates p53, 
rendering it inactive, and modulates the transcription repres-
sion function of the fusion protein (31). Finally, inhibition of 
CBFβ–SMMHC binding to these factors may efficiently reduce 
preL-HSC and LIC activities, resulting in promising candidates 
for targeted therapies (32).

THe ORigin OF inv(16) PReLeUKeMiA

Our understanding on the origin of AML is still evolving, and 
in general terms it seems to follow a clonal evolution model 
(33–35). In inv(16) AML, a small number of studies have tested 
the origin of inv(16) preL-HSCs in the hematopoietic system. 
Studies using a breakpoint backtracking approach evaluated 
whether the inv(16) breakpoint identified in the DNA of a 
patient’s inv(16) AML sample is present in the patient’s neona-
tal bloodspot (also called Guthrie card or neonatal heel prick). 
Two studies identified the inv(16) breakpoint in the bloods-
pots, demonstrating that preL-HSCs can originate during fetal 
development and persist quiescent for years (4 to 10 in these 
studies) before AML diagnosis (36, 37). In a third case with 
inv(16) AML, the bloodspot analysis was negative suggesting 
that either the preL-HSCs were infrequent (below the sensitiv-
ity of the assay) or that inv(16) occurred postnatally. Of note, 
since backtracking studies have only been done in pediatric 
inv(16) AML cases, it is unknown if inv(16) preL-HSCs are 
prenatal in adult AML. Breakpoint backtracking studies for 
other leukemia fusion genes, such as RUNX1-RUNX1T1 and 
TEL-RUNX1, have also confirmed the prenatal origin of preL-
HSCs (38–40).

The screening of leukemia fusion transcripts using RT-PCR 
analysis in healthy individuals revealed that 1 of 10 cord blood 
and 1 of 58 peripheral blood samples from adult individuals were 
CBFB-MYH11 positive (41). These results lack statistical value 
due to the reduced sample size but suggest that preL-HSCs may 
persist in the hematopoietic system for years. However, the use of 
RT-PCR has been disputed because of the challenge in identifying 
the chromosome breakpoints in fusion transcript positive sam-
ples of healthy individuals (42, 43), result that could be explained 
by transplicing (44, 45).
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THe inv(16) PReLeUKeMiC 
PROgReSSiOn

The identification of inv(16) preL-HSCs and progenitor cells 
has important therapeutic value because it is considered the 
source of leukemia development, drug resistance, and relapse. 
From a conceptual point, it would shed light on the etiology of 
disease progression. Studies in mice where allelic CBFB-MYH11 
expression is activated in hematopoietic cells have established 
that leukemia is preceded by a preleukemic period of 4 to 
6 months, and the median leukemia latency can be delayed or 
render incomplete penetrance by reducing the number of HSCs 

expressing CBFB-MYH11 (28, 46). Furthermore, chimeric mice 
(composed by CbfbMYH11/+ embryonic stem cells and wild-type 
blastocyst cells) expressing CBFB-MYH11 in a fraction of their 
HSCs remained healthy and only developed AML when treated 
with chemical or retroviral mutagenesis (20, 47). These studies 
determined that CBFB-MYH11 expression is necessary but not 
sufficient for leukemogenesis.

During the preleukemic period, CbfbMYH11/+ HSCs produce 
abnormal hematopoiesis, with cell compartment-specific defects, 
myeloid bias, and multilineage differentiation block (Figure 2). 
In the early progenitor compartment, CBFβ–SMMHC expression 
induces expansion of the short-term HSCs and multipotential 
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progenitor (MPP) cells, although the frequency of long-term 
HSCs (putative preLICs) is unchanged, indicating that CBFβ–
SMMHC may modulate factors associated with cell-fate deci-
sions (46, 48).

These HSCs undergo normal early lymphoid differentiation, 
with normal numbers of common lymphoid progenitors (CLPs) 
but with reduced expression of transcription factors (Ebf, E2a, 
and Pax5) responsible for the commitment to B and T cell dif-
ferentiation (49). During B  cell commitment, CBFβ–SMMHC 
induces a marked reduction in pre-pro B cells and in pre-B cells 
due to apoptosis. These blocks are probably due to repression of 
RUNX1 activity because similar deficiencies were reported in 
Cbfb- and Runx1-knockout mice (50–52). Similarly, differen-
tiation of CBFβ–SMMHC-expressing CLPs to T cell progenitors 
showed reduced cell number and viability of the double-negative 
compartments (53). Its repressive function in the production of 
lymphoid cells in humans was confirmed by fluorescent in situ 
hybridization analysis of lineage sorted inv(16) AML cells (54). 
Interestingly, the inability of inv(16) preL-HSCs to differentiate 
to B and T cells provides a mechanism for the myeloid leukemia 
bias observed in inv(16) AML.

CBFβ–SMMHC-expressing preL-HSCs undergo partial 
myeloid differentiation, displaying a mixed myeloid-erythroid 
progenitors (MEPs) and common myeloid progenitors (CMPs) 
immunophenotype [Figure 2, red triangle (46)] and a predomi-
nant blast/myeloblast and promyelocyte morphology. Contrary 
to its strong apoptotic activity on the lymphoid compartment, 
CBFβ–SMMHC increases the viability of preleukemic myeloid 
cells and enhances their resistance to genotoxic stress (46, 48, 55).  
The mechanism by which CBFβ–SMMHC blocks myeloid dif-
ferentiation is not fully understood. Expression studies suggest 
that levels of a number of myeloid factors are affected by the 
fusion protein, including the repression of transcription factors 
that regulate myeloid lineage commitment (e.g., Cebpa, PU.1, 
Sox4, Hoxa9, and Irf8), some of which are known Runx1 targets. 
On the other hand, upregulated factors in preleukemic myeloid 
cells are implicated in survival and proliferation pathways 
[e.g., Csf2rb, il1rl1, Fosb, c-Jun, Erg1, and WT1 (28, 55, 56)]. 
Despite significant progress in this area, it is not clear which of 
these targets directs differentiation block in inv(16) AML. For 
example, the myeloid transcription factors C/EBPα and PU.1, 
both CBF targets, act as tumor suppressors in AML (57–59).  
In addition, Sox4 has been shown to function as an oncogene in 
Cebpa-mutated AML (60). On the other hand, expression of the 
colony stimulating factor 2 receptor beta (Csf2rb), is expressed 
in myeloid progenitor cells of Cbfb56M/+;Mx1Cre mice and has a 
negative correlation with preL-HSC activity (56).

Transplantation studies of inv(16) preleukemic myeloid cells 
in mice, revealed that preleukemic cells could not induce leuke-
mia in irradiated recipients (28, 46), indicating that preL-HSCs 
are not LICs, and that “cooperating” mutations are needed for 
leukemia transformation. Alternatively, the LIC activity is pos-
sibly present at a frequency below 1 in 20,000 preleukemic cells. 
Therefore, as rare preL-HSCs differentiate to myelomonocytic 
preleukemic cells and accumulate in the MEP/GMP compart-
ment, additional events seem to be required for leukemia 
transformation.

LiC ACTiviTY in inv(16) AML

Our understanding of LIC activity is evolving rapidly with the 
application of new technologies. Using targeted sequencing 
techniques in diagnostic inv(16) AML samples, studies have 
identified an average of 3 (range  =  0–6) secondary mutations 
per sample (61, 62). The majority of inv(16) AML “cooperating” 
mutations are in genes encoding components of the RTK pathway, 
with predominance KIT, FLT3, and NRAS (63–65). In contrast, 
mutations in genes associated with components of cohesin or 
chromatin complexes are rare (62, 66). Evidence for inv(16) and 
PU.1 associated leukemia in mice suggests that transformation 
of preleukemic progenitors could be enhanced by mutations that 
“weaken” its oncogenic repression activity, thereby moving the 
differentiation block to a more mature myeloid progenitor that 
is permissive for transformation (22, 67). This model has been 
previously illustrated using mouse models for CEBPA-mutated 
AML. Cebpa-null mice show differentiation block at the CMPs 
and remain leukemia free. However, in mice carrying a leukemia-
associated Cebpa point mutation, differentiation continues to stall 
at the committed myeloid progenitors and mice succumb with 
myeloid leukemia (68, 69). The molecular mechanism underlying 
this perplexing function, however, remains unknown.

inv(16) AML follows the clonal evolution model, whereby 
de novo inv(16) AML samples at diagnosis are composed of 
multiple leukemia subclones, which have emerged from the 
same preL-HSCs (Figure 2). The subclones share the founding 
mutation but have a different combination of “cooperating” 
mutations (70). Each subclone originates from an independent 
LIC with a different mutation combination and sensitivity to 
therapies. In addition to the leukemia subclones, the de novo 
AML sample includes preL-HSCs with reduced chemosensi-
tivity, and that may serve as precursors for the expansion of 
resistant clones at relapse (15, 71). Longitudinal (diagnosis/
relapse-matched) studies of AML mutational landscape using 
whole-genome sequencing have confirmed the clonal evolu-
tion model in inv(16) AML (72, 73). In these studies, the AML 
samples contained 1 to 18 “cooperating” mutations (mean = 6), 
corresponding to 1 to 3 mutations per subclone. In addition, 
inv(16) was found in all subclones at both stages of disease pro-
gression while a heterogeneity in the “cooperating” mutations 
indicated clonal evolution and differential sensitivity to therapy. 
Studies in mice have validated the basic premise of this model 
in inv(16) AML (48, 74, 75), and the weak LIC activity reported 
in human and mouse studies was validated in titration dilution 
transplantation experiments (48).

inv(16) AS A “COOPeRATing” MUTATiOn 
in LeUKeMiA

The inv(16) is predominantly a founding mutation that predis-
poses to de novo AML. Accumulating case reports have identified 
inv(16) in other hematologic malignancies clearly showing that 
this inversion, at a low frequency, can also originate as a “cooper-
ating” mutation in the progression of other cancers. The inv(16) 
can emerge in BCR-ABL-positive chronic myelogenous leukemia 
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(CML) cases transitioning to blast crisis (76–80). The appearance 
of a inv(16)-positive predominant clone is accompanied by a 
switch to an immature monocytic morphology and dysplastic 
eosinophils. In CML cells, the occurrence of inv(16) predicts 
rapid evolution and poor outcome (77, 80). In addition, inv(16) 
has been reported in 1–2% of tAML cases that progressed from 
MDS or solid tumors (81). Probably due to the paucity of these 
cases, the mechanism of CBFβ–SMMHC function in the LICs 
from CML-PB or tAML cases has not been studied. However, 
the understanding of its function when acting as a “cooperating” 
mutation could open new insights on leukemia progression. It 
should be noted that CBFβ–SMMHC function in the LIC of 
CML-chronic phase (i.e., with active proliferative signals) or 
post-therapy HSCs/MDS (i.e., with higher mutation content) 
may involve different targets.

COnCLUSiOn AnD PeRSPeCTiveS

The inv(16) is a somatic mutation that activates CBFβ–SMMHC 
expression in an HSC, either in  utero or after birth. Indirect 
evidence suggests that these preL-HSCs can perdure for years to 
produce a clonal population with myeloid bias and impaired dif-
ferentiation. Over time, the preL-HSCs are primed for leukemo-
genesis after acquiring a relatively small number of “cooperating” 
mutations, predominantly in components of the RTK pathway. 
The finding that mutations in genes associated with epigenetic 
complexes, frequently mutated in other AMLs, are practically 
absent in inv(16) AML suggests that CBFβ–SMMHC function 
may deregulate chromatin dynamics.

Future studies are endowed to demonstrate whether preL-
HSCs can produce preleukemia initiating cells in inv(16) AML 
(Figure 2). The application of new technologies, such as single 
cell analysis, next-generation sequencing, CRISPR/Cas9 editing 
in primary hematopoietic stem and progenitor cells, pharmacol-
ogy, and sophisticated animal models will greatly enhance our 
understanding of inv(16) preleukemia biology and minimal 
residual disease. Considering that each LIC in diagnostic inv(16) 
AML has a small number of mutations and a heterogeneity of 
mutations between diagnosis and relapse cases, targeted thera-
pies inhibiting CBFβ–SMMHC binding to RUNX1 and HDAC8, 
and combination with RTK inhibitors may result in effective 
treatment. Pharmacologic approaches directly inhibiting spe-
cific signals could be valuable to define which components drive 

preleukemia to leukemia progression. In addition, little is known 
on the preL-HSC activity in relation with the microenvironment 
and how changes in the immune system affect LIC activity. The 
role of RUNX1 in inv(16) AML seems perplexing, as reduction 
in Runx1 levels decreases leukemia development in mice but 
loss of RUNX1 levels induce cell death in inv(16) AML cells. 
It is, therefore, possible that reduction in RUNX1 levels may 
be required for preleukemia formation and transition to LICs. 
New strategies designed to force increase in RUNX1 expression 
may help define new RUNX targets with potential antileukemia 
functions. The dependence of the RBD and ACD domains in 
CBFβ–SMMHC in preleukemia and LIC activity clearly indi-
cate that SMMHC-multimerization and RUNX1 binding are 
critical leukemogenic functions. Interestingly, mutations in both 
domains interfere with the nuclear localization of the fusion 
protein. Hence, the development of strategies to directly inter-
fere with the nuclear import of CBFβ–SMMHC may abrogate its 
leukemic activity. Finally, the study of the inv(16) LIC activity 
in de novo AML versus tAML and CML-blast crisis may shed 
mechanistic insights on the function of the fusion protein in cells 
with different mutation composition and proliferation capacity.
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