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ABSTRACT: This study evaluated the solubility of piperine (PP) BT s comien
in biorelevant media and the effect of its ground mixtures (GMs) " PP/BCD incusion com?le%
and coprecipitates (CPs) on intestinal contractions when presented % .\\ ] PPACD inchusion complex
in inclusion complexes with a-, f-, and y-cyclodextrins (CDs). In ™ '

the powder X-ray diffraction (PXRD) and differential scanning  Piperive ®P) . f.y-Cyclodextiin (CD)
calorimetry (DSC) measurements, CP (PP/aCD) and CP (PP/

yCD) suggest the formation of inclusion complexes. The 'H-

Non-competitive
inhibition

Intestinal contraction rate (%)

nuclear magnetic resonance (NMR) analysis showed the integrated uton of hvsicochenical orcpertis
intensity ratios of CP (PP/aCD) and CP (PP/yCD) protons to be SR, Dssolvon e, et £Cso//
1/2 and 1/1, the same as the respective molar ratios in the l Competitive inhibition
respective GM inclusion complexes. The intestinal contraction test , f— =

Inclusion complex “log[Carbachol], M

confirmed that the intestinal contraction rate of carbachol (CCh)
in the presence of 2.0 X 10~ M PP was comparable to that in the absence of PP. On the other hand, CP (PP/aCD), GM (PP/aCD
=1/2), and GM (PP/fCD = 1/1) formed inclusion complexes that significantly suppressed the intestinal contractility at PP 1.0 X
10~® M. No significant differences were observed between CP and GM. The solubility of the PP/aCD inclusion complex was 6—7
times higher than that of PP in the fasted-state-simulated intestinal fluid (FaSSIF, pH 6.5). PP functioned to suppress intestinal
contraction by forming an inclusion complex. Based on this result, PP/aCD might be expected to be effective as an antidiarrheal.

1. INTRODUCTION relaxation of intestinal contraction results from the inhibition of
cAMP-mediated Cl~ secretion and suppression of Ca*'-
activated CI~ channels.” Intestinal contraction and relaxation
effects change the amount of wet feces excretion in mice
depending on the dose of PP." PP is considered to have a
therapeutic effect on gastrointestinal motility disorders. PP is
expected to be used as a laxative, an antidiarrheal, and a
therapeutic agent for functional gastrointestinal disorders.
Cyclodextrins (CDs) are cyclic polysaccharides of D-

Pepper is the most useful and important among all spices
worldwide;" it has been used for home cooking, fever reduction,
and as a carminative in Asian countries and Europe. The demand
for pepper is expected to increase by 2% annually and the supply
is expected to increase by 8—10%,” stimulated by the rapid
development of seasonings and heightened health conscious-
ness. Pepper is classified into black, white, green, etc., according
to the processing method of Piperaceae (Piper nigrum). Black

. . . . lucopyranose linked by a-1,4 glycoside bonds. CDs are
—9% of PP). th g pyr Yy T gLy
}c) (e)p P;:rzgnttsmsh?te ifpc}))eglgzgngere(en ;)))etppeerr) ungent ingredient, classified as a-, f-, and y-CDs according to the number of D-

. lucopyranose units (6—8). The CD structure forms a central
PP [(2E,4E)-1-[5-(1,3-benzodioxol-5-yl)-1-0x0-2,4- gucopyr '
[(2E,4E)-1-[5-(1,3-benzodioxol-5-yl)-1-oxo-2, hydrophobic cavity due to the ether groups located inside it,

while the outer ring is hydrophilic. Brewster reported that CDs
interact poorly with water-soluble drugs and drug candidates,
resulting in an increase in their apparent water solubility.’ Del
Valle reported that CDs are useful molecular chelating agents;

pentadienyl]piperidine] is an amide with a methylenediox-
yphenyl group, a pentadiene chain, and an amide substituent
(piperidine). PP forms intramolecular conjugation from the
amide group to the ether group of the methylenedioxyphenyl
moiety. The steric position of the amide group of PP affects
intramolecular conjugation; consequently, the change in the

molecular energy affects its solubility.” PP has been reported to Received: December 21, 2020
have antipyretic and intestinal contraction-regulating effects and Accepted:  February 18, 2021
is an important ingredient of pepper.* It has a muscarinic Published: March 3, 2021

intestinal contractile effect, -opioid receptor activation, Ca>*
channel blocking effect, and other properties that affect the
relaxation of intestinal contraction. It has been reported that the
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Figure 1. PXRD patterns of (a) PP intact, (b) aCD intact, (c) PM (PP/aCD =1/2), (d) CP (PP/aCD), (e) fCD intact, (f) PM (PP/SCD = 1/1), (g)
CP (PP/SCD), (h) yCD intact, (i) PM (PP/yCD = 1/1), and (j) CP (PP/yCD). @: original PP, A: aCD original, A: channel, &: fCD original, :

head-to-head and head-to-tail, OJ: yCD original, B: tetragonal.

owing to the supramolecular structures, they carry out chemical
reactions that involve intramolecular interactions where
covalent bonds are not formed between interacting molecules.”
Tan reported that the taste of the bitterness component is
masked by making the pyridostigmine bromide/f#CD complex a
dispersible tablet.” Also, the CD is used for controlled release of
drugs,” protection of active ingredients against thermally
accelerated decomposition,'’ and used to improve the
antimicrobial activity, solubility, and stability.'* As an example,
the results of phase-solubility studies showed that ellagic acid
formed the inclusion complexes with JCD and (2-hydrox-
ypropyl)-ACD in the molar ratio of 1:1 increased solubility, and
the antioxidant activity of ellagic acid was increased.'” Based on
these findings, this study used nontoxic CDs, which are used as
solubilizers for pharmaceuticals.’

Various methods such as ground mixtures (GMs) and
coprecipitates (CPs) exist for the preparation of inclusion
complexes. The GM method utilizes the mechanochemical
effect to prepare an inclusion complex by a solid—solid
reaction.'* The preparation of inclusion complexes of PP with
a-, f-, and y-CDs using the GM method have already been
reported.””~"” The CP method uses an inclusion complex by a
liquid—liquid reaction utilizing the difference in solubility
between the drug and CD."® Physical mixtures (PMs) were
prepared for comparison with GMs and CPs. The inclusion
complex formation and solubility of caffeic acid/CD that differ
dependin§ on each CD and preparation method have been
reported. »"?

Preparing the inclusion complex of PP with each CD by
different methods may lead to an understanding of the chemical
properties and inclusion complex formation that improves the
poor water solubility of PP. Furthermore, from an inclusion
complex formation, PP may increase the regulatory response of
intestinal contractions. The biological activity of each inclusion
complex may change to an action different from that of PP alone,
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depending on the CD used. The purpose of this study is to
understand the physicochemical properties and guide the
selection of specific PP/CD inclusion complexes for use in the
regulation of intestinal contraction. Here, the PP/CD inclusion
complexes were prepared using the coprecipitate method in
addition to the previously reported GM method and used to
evaluate the solubility in biorelevant media. Further, the effect
on intestinal contractions by PP inclusion complexes with
different CDs was evaluated.

2. RESULTS AND DISCUSSION

2.1. Powder X-ray Diffraction (PXRD) Measurements.
PXRD measurements were performed to examine the variation
in the crystallinity of the PP/CD complexes (Figure 1). PP intact
showed characteristic diffraction peaks (indicated by @) at 20 =
14.3 and 25.6°.

In the aCD system, PM (PP/aCD 1/2) showed
characteristic diffraction peaks of PP at 20 = 14.3 and 25.7°.
CP (PP/aCD) showed characteristic diffraction peaks of the
inclusion complex due to channel-type crystals (indicated by
A) at 26 = 107, 12.7, and 19.6°.>° This suggests that PP is
bound in the aCD cavity and does not form the characteristic
crystal sequence of PP.

In the SCD system, PM (PP/SCD = 1/1) showed a
characteristic diffraction peak of PP at 20 = 25.6°. GM (PP/
PCD = 1/1) of the inclusion complex prepared by the ground
mixture method lacked the characteristic crystal diffraction peak
of PP."* On the other hand, CP (PP/SCD) showed character-
istic diffraction peaks of head-to-head and head-to-tail
(indicated by 4p) at 20 = 11.7 and 15.3°, reszpectively, with
PP-derived diffraction peaks seen at 26 = 25.7°.”*

In the yCD system, PM (PP/yCD = 1/1) showed a
characteristic diffraction peak of PP at 20 = 25.6°. CP (PP/
yCD) showed characteristic tetragonal diffraction peaks
(indicated by W) at 26 = 5.3, 7.5, 12.1, and 16.6°. The GM

https://dx.doi.org/10.1021/acsomega.0c06198
ACS Omega 2021, 6, 6953—6964
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Figure 2. DSC curves of (a) PP intact, (b) aCD intact, (c) PM (PP/aCD =1/2), (d) CP (PP/aCD), (e) fCD intact, (f) PM (PP/CD =1/1), (g)
CP (PP/fCD), (h) yCD intact, (i) PM (PP/yCD = 1/1), and (j) CP (PP/yCD).
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Figure 3. Raman spectra of (a) PP intact, (b) aCD intact, (¢) PM (PP/aCD =

PM (PP/yCD = 1/1), (h) CP (PP/yCD), and (i) GM (PP/yCD = 1/1).
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1/2), (d) CP (PP/aCD), (¢) GM (PP/aCD = 1/2), (£) yCD intact, (g)

(PP/yCD 1/1) of the inclusion complex showed an
amorphous crystal diffraction peak. When it was incubated at
40 °C and 82% RH for 1 week, multiple crystal diffraction peaks
(tetragonal, monoclinic, and hexagonal) appeared.'” The crystal
structure of the CD inclusion complex changes depending on
the water content and the inclusion form. It has been reported
that the van der Waals forces and hydrogen bonds of inclusion
complexes differ depending on the preparation method.'” The
appearance of multiple crystal diffraction peaks may result from
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the molecular motility of PP loosely associated with yCD. On
the other hand, CP (PP/yCD) showed only the characteristic
tetragonal diffraction peaks. It can be inferred from this that
there was a difference between the coprecipitation and the GM
method that contributed to the motility of PP molecules.

2.2. Differential Scanning Calorimetry (DSC) Measure-
ments. DSC measurements were performed to confirm changes
in the PP thermal behavior due to inclusion complex formation
(Figure 2). The PP intact showed an endothermic peak at 131

https://dx.doi.org/10.1021/acsomega.0c06198
ACS Omega 2021, 6, 6953—6964
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°C.PM (PP/aCD = 1/2), PM (PP/BCD = 1/1), and PM (PP/
yCD = 1/1) showed an endothermic peak corresponding to the
PP melting point at around 130 °C. In contrast, this peak was not
seen for CP (PP/aCD) and CP (PP/yCD). The endothermic
peak of the guest molecule disappeared upon the formation of
the inclusion complex as previously reported by us for GM (PP/
aCD = 1/2), GM (PP/BCD = 1/1), and GM (PP/yCD = 1/
1)."*7'7 Therefore, CP (PP/aCD) and CP (PP/yCD) formed
an inclusion complex.”® On the other hand, CP (PP/ACD)
showed an endothermic peak corresponding to the PP melting
point at approximately 131 °C. Since SCD forms strong
hydrogen bonds at C,— and C;—OH of glucose, it has low
solubility in water as compared with aCD and yCD.** The
difference in the CD’s solubility contributed to the formation of
CP inclusion complexes and might have affected their thermal
behavior.

2.3. Raman Spectroscopy. The results of PXRD and DSC
measurements indicate the formation of inclusion complexes of
PP with aCD and yCD (Figure 3). The PP structure contains
single and double C—C bonds.

Raman spectroscopy easily detects different carbon—carbon
bonds and has been used to evaluate differences in interactions
between the GM and CP. The single-crystal X-ray analysis
confirmed that the structure of PP does feature 7— stacking
with the closest intermolecular contacts being carbon—carbon
bonds.””> NIR and solid-state fluorescence measurements
revealed that the molecular behavior of PP inside the a, , and
yCD cavities changed by water and heat factors depends on the
mobility of the methylenedioxyphenyl group.'® Also, from a
Raman spectroscopy measurement, PP/aCD, PP/SCD, and
PP/yCD inclusion complexes prepared by the GM method have
been confirmed to suppress the motility of the methylenediox-
yphenyl group and pentadiene chain that are hydrophobic parts
of PP."” From these reports, it is important to evaluate the
carbon—carbon bonds of PP to understand the intermolecular
interaction with CD.

The Raman spectrum of PP intact showed scattering bands for
the aromatic C=C (1584 cm™"), aliphatic C=C (1625 cm™"),
CH, (1203, 1448 cm™!), 0=C—N- (1597 cm™!), =C—-0-C
(1256 cm™"), and CH (1103 cm™") (Figure 3a).

In the aCD systems, PM (PP/aCD = 1/2) indicated Raman
scattering bands for the aromatic C=C (1582 cm™"), aliphatic
C=C (1625 cm™'), CH, (1203, 1446 cm™'), O=C-N-
(1598 cm™), =C—0—-C (1255 cm™), and CH (1103 cm™")
(Figure 3c). The GM (PP/aCD = 1/2) spectrum indicated
broad scattering bands for the aromatic C=C and CH, groups,
with reduced intensity. The scattering peak at 1104 cm™'
corresponding to the CH group of PP shifted to 1098 cm™
(Figure 3e). The CP (PP/aCD) spectrum exhibited broad
scattering bands for the aromatic C=C and pentadiene CH
groups, with an amide group scattering peak at 1635 cm™". The
scattering peak at 1103 cm™" corresponding to the CH group of
PP shifted to 1087 cm™" (Figure 3d).

In the yCD systems, PM (PP/yCD = 1/1) indicated Raman
scattering bands for the aromatic C=C (1583 cm™"), aliphatic
C=C (1624 cm™'), CH, (1203, 1446 cm™'), O=C-N-
(1597 cm™), =C—0-C (1257 cm™"), and CH (1105 cm™")
(Figure 3g). The GM (PP/yCD = 1/1) spectrum showed broad
scattering bands for the CH peak and a reduced intensity of the
aromatic C=C peak at 1582 cm™" (Figure 3i). The CP (PP/
yCD) spectrum showed broad scattering bands for the aromatic
C=C, =C—-0-C, and CH, peaks, a reduced intensity of the
pentadiene C=C peak at 1625 cm™’, and the amide group
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scattering peak at 1634 cm™' (Figure 3h). Depending on the
CD’s ring size, the aCD system significantly suppressed the
motility of the aromatic ring and the pentadiene chain compared
with the yCD system. PP is indicated to form an intramolecular
bond from the amide group to the ether group of the
methylenedioxyphenyl moiety. The coprecipitate method
placed the aromatic ring and pentadiene chain of PP deeply
inside the CD cavity compared to the GM method. The
molecular motility of the amide group appeared to significantly
distort the piperidine ring that is a nitrogen substituent.

2.4. 'H-Nuclear Magnetic Resonance (NMR) Measure-
ment. The molar ratio of CA with aCD and yCD in the CP was
determined based on 'H NMR spectroscopy (Figure 4). The

Piperine
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HC HF I“} [ N H
HH ; o H
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Figure 4. '"H-NMR spectra of (A) CP (PP/aCD) and (B) CP (PP/
yCD) in dimethyl sulfoxide (DMSO)-dg.

ratios of the integrated intensity of H-J of PP and the integrated
intensity of H-1 of CD or yCD were calculated. The integrated
intensity of H-1 of aCD was approximately 6.41 and that of H-J
(2 protons) of PP was 1. The structure of aCD has 6 -
glucopyranose units linked together in a ring, so about 2 aCD
molecules are present relative to each PP molecule. On the other
hand, the integrated intensities of H-1 of aCD was about 4.62
and of H-J (2 protons) of PP was 1. yCD has 8 p-glucopyranose
units linked together in a ring, so about 1 yCD molecule is
present relative to each PP molecule. Therefore, CP (PP/aCD)
and CP (PP/yCD) showed the same inclusion molar ratio of
GM (PP/aCD = 1/2) and GM (PP/yCD = 1/1).

2.5. Examination of Dissolution Characteristics in the
1st Fluid for Dissolution Test. The solubility of PP and the

https://dx.doi.org/10.1021/acsomega.0c06198
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Figure S. Dissolution profiles of PP with CDs in (a) first fluid for the dissolution test (pH 1.2, 900 mL), (b) FaSSIF (pH 6.5,300 mL), and (c) FaSSIF
(sodium taurocholate and lecithin not included, pH 6.5, 300 mL). Results were expressed as mean + standard deviation (SD) (n = 3).

various inclusion complexes at pH 1.2 was evaluated (Figure Sa).
The solubility of PP in the dissolution test (pH 1.2) first fluid
was 4.2 pg/mL after 120 min. After 15 min of dissolution, GM
(PP/aCD = 1/2) showed a high solubility of 19 ug/mL; no
change in solubility was observed between 15 and 120 min. GM
(PP/BCD = 1/1) showed a sustained-release dissolution
behavior because it undergoes hydrophobic interactions
compared to aCD and yCD. In coprecipitates, the high
solubility of PP (PP/aCD) and CP (PP/yCD) was indicated
compared with various GMs. CP (PP/yCD) showed a
maximum solubility (40.5 pg/mL) in 1S min; supersaturation
was induced by the salt and pH, and the solubility decreased to
31.1 pug/mL in 120 min. CP (PP/aCD) showed a maximum
solubility (38.7 ug/mL) in 120 min without being affected by
supersaturation. CP (PP/aCD) forms a stronger inclusion
complex than GM and CP (PP/yCD). This suggests that the
molecular arrangement and molecular morphology of PP in the
CD cavity contribute to improved PP solubility.

2.6. Examination of Dissolution Characteristics in
FaSSIF. A dissolution test was performed using FaSSIF to
evaluate the intestinal solubility of PP and its inclusion
complexes (Figure Sb).

The solubility of PP in FaSSIF was 11.6 yg/mL in 120 min;
the solubility of GM (PP/aCD = 1/2) was 38.7 yug/mL in 120
min. The aCD systems of GM (PP/aCD = 1/1), GM (PP/aCD
=1/2),and PM (PP/aCD =1/2) showed comparable solubility
in 120 min. PP/aCD was confirmed to have higher solubility
compared to PP/BCD and PP/yCD inclusion complexes
prepared by the GM method. aCD has been reported to easily
form inclusion complexes with phospholipids.”® Also, the
stability constant values of PP/aCD were reported to be K, ,;
=7473 M~ and K, ), = 47 M1 Since the stability constant
(K,1/2) of PP/aCD = 1/2 showed a low value, the dissociated
aCD forms an inclusion complex with lecithin. As a result, the
proportion of PP/aCD = 1/1 inclusion complex increased
leading to the higher solubility of PP. The solubility of PP was
attributed to the molecular arrangement of PP that depended on
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the size of CD cycles. CP (PP/aCD) showed higher solubility
(52.7 pg/mL) in 15 min compared to GM and CP (PP/yCD);
its solubility decreased due to the supersaturation phenomenon
but it showed a high value of 34.5 yg/mL in 120 min. The
solubility of CP (PP/yCD) was 41.1 pg/mL in 15 min. It
decreased to 36.8 pig/mL at 120 min due to the supersaturation
phenomenon and showed the same solubility as CP (PP/aCD).
The reason for the high solubilities of CP (PP/aCD) and CP
(PP/yCD) might be that, based on Raman spectra data, the CPs
significantly suppressed the aromatic ring and pentadiene chain
of PP molecules compared to GMs. A strong inclusion complex
was formed (Figure 3). Taurocholic acid and lecithin are major
components of gallbladder bile that solubilize fat-soluble
substances; both have been reported to form mixed micelles
and increase the absorption of cholesterol from the small
intestinal lumen.”® The solubilization behavior of the CP
inclusion complex showed high solubility aided by taurocholic
acid and lecithin. In the absence of taurocholic acid and lecithin,
the solubilities of CP (PP/aCD) and CP (PP/yCD) were the
same at 15 min. At 120 min, CP (PP/yCD) showed lower
solubility compared to CP (PP/aCD), affected by the
supersaturation phenomenon (Figure Sc). In the presence of
taurocholic acid and lecithin, CP (PP/yCD) was less affected by
the supersaturation phenomenon than CP (PP/aCD), possibly
because aCD has been reported to easily form the inclusion
complex with lecithin. Furthermore, guest drugs of the yCD
inclusion complex can be easily encapsulated in taurocholic
acid.”” With CP (PP/aCD), the solubilized PP molecules were
incorporated into the mixed micelles with aCD forming an
inclusion complex with lecithin that induced the supersaturation
phenomenon. With CP (PP/yCD), PP was encapsulated in
taurocholic acid that helped to maintain solubility.

2.7. Evaluation of Fluorescence in the Liquid State.
Depending on the molecular orientation of molecules, the
fluorescence wavelength is known to differ for the excited and
ground states.”® The increase in the fluorescence intensity due to
CD indicates the formation of inclusion complexes; hydro-
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phobic interactions decrease the fluorescence maximum wave-
length of PP.>>*° Thus, the fluorescence spectrum measure-
ments were performed to evaluate the molecular behavior that
might contribute to the PP’s solubility in FaSSIF. In the FaSSIF
solution, Raman scattered light was detected at 399 nm, and the
secondary scattered light due to excitation light was at 540 nm
(Figures 6 and 7— 8a—d). The maximum fluorescence
wavelength of the lecithin solution was seen at 362 nm (Figures
6 and 7—8 ¢). The maximum fluorescence wavelength of lecithin
was blue-shifted (362—359 nm) when each CD was added to the
lecithin solution (6Figures 6 and 7—88c). This suggests that the
shift to the lower wavelength was due to the hydrophobic
interactions between lecithin and the inside of the CD cavity.
In the FaSSIF solution in the presence of taurocholic acid and
lecithin, the maximum fluorescence wavelength was seen at 352
nm. This suggested a mixed micelle formation (Figures 8 and
9—10a). PP intact, PM (PP/aCD = 1/2), PM (PP/CD = 1/1),
and PM (PP/yCD = 1/1) were confirmed at 382, 478, 378, and
380 nm (Figures 6 and 7—8a), respectively. Debnath and Mishra
reported that PP exhibited higher-order micelle aggregates at the
maximum fluorescence wavelength near 380 nm in the presence
of taurocholic acid.®" Thus, PP intact and PM (PP/aCD = 1/2)
appear to form higher-order micelle aggregates in the FaSSIF
solution. GM (PP/aCD = 1/1) and GM (PP/aCD = 1/2)
showed a decreased fluorescence intensity at approximately 380
nm and an increased fluorescence maximum wavelength
intensity at approximately 470 nm compared with PP and PM
(PP/aCD-1/2) (Figure 6a). CP (PP/aCD) did not easily form
higher-order micelle aggregates compared with GMs. In GM
(PP/BCD = 1/1), the fluorescence intensity around 380 nm
decreased and the fluorescence intensity around 470 nm was
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equivalent to that of PP intact (Figure 7a). These results suggest
that GM (PP/BSCD = 1/1) was solubilized in the FaSSIF
solution without forming higher-order micelle aggregates. The
maximum fluorescence wavelength of GM (PP/yCD =1/1) was
at 369 nm (Figure 8a). In the lecithin solution, PP showed the
maximum fluorescence wavelength at 367 nm likely due to the
formation of higher-order micelle aggregates (Figures 6 and
7—8c). Therefore, the fluorescence maximum wavelength of
GM (PP/yCD = 1/1) in the FaSSIF solution indicates a higher-
order micelle aggregate formation. The fluorescence intensity of
CP (PP/yCD) decreased significantly around 380 nm and the
maximum fluorescence wavelength was observed at approx-
imately 480 nm (Figure 10a), suggesting that the solubility
difference between CPs and GMs was influenced not only by the
formation of strong PP/CD inclusion complexes but also by
higher-order micelle aggregate formation.

2.8. Evaluation of the Intestinal Contraction Effect.
Molecular mobility and solubility of PP were confirmed to be
different depending on the CDs and preparation method. From
a pharmacological point of view, this study focused on the
intestinal contraction-regulating effect, which is the main
function of PP, and evaluated the difference in the effect due
to inclusion complex formation (Figures 9 and 10—11).

The Magnus method was performed using carbachol (CCh).>
CCh is a synthetic choline ester drug that exhibits muscarinic
and nicotine-like effects. These effects induce intestinal
contraction by increasing spontaneous excitement. Since PP
has been reported to have a muscarinic intestinal contractile
effect, the contractile response of the intestine was induced with
CCh and the effects of PP/CD inclusion complexes on the
contractile response were examined.
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The ileal contraction rate of CCh was evaluated in the
presence of various PP concentrations (Figure 11). With CCh,
the intestinal tract began to contract at 1.0 X 107" M, with a
maximum response at 1.0 X 10~ M. The maximum contraction
response induced by CCh was not significantly different from
that exerted by 1.0 X 10 to 6.67 X 10~ M PP but an increase in
shrinkage by 120—140% was observed. This suggests that the
muscarinic effect of PP may contribute to intestinal contraction.
PP at 2.0 X 107> M exhibited almost the same behavior as the
contractile response of CCh.

Based on the above data, PP alone, PMs, GMs, and CPs were
used at 2.0 X 107> M PP.

In aCD systems, the contractions of aCD induced with 1.0 X
10~® M CCh were approximately 114% of the largest contractile
response. PP alone and PM (PP/aCD = 1/2) showed no
significant difference in the ileum contraction response to CCh.
Contractions of GM (PP/aCD = 1/1) induced with 1.0 X 107%
M CCh were approximately 58% of the largest contractile
response. GM (PP/aCD = 1/1) was not significantly different
from PP alone but a tendency to suppress the ileum contraction
response was noted. Contractions of GM (PP/aCD = 1/2) and
CP (PP/aCD) induced with 1.0 X 107 M CCh were about 49.2
and 38.5%, respectively, of the largest contractile response,
compared with PP alone, showing a significant statistical
significance. Furthermore, the CCh concentration eliciting
50% of the largest contractile response (ECs,) of GM (PP/
aCD = 1/2) and CP (PP/aCD) was higher compared with PP
alone. No significant difference was found between GM (PP/
aCD = 1/2) and CP (PP/aCD) (Figure 10a).
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Contractions of fCD induced with 1.0 X 10™% M CCh were
approximately 115% of the largest contractile response but were
not significantly different from PP alone and PM (PP/SCD =1/
1). GM (PP/SCD = 1/1) suppressed the largest contractile
response by 30.5 and 31.6% compared with PP alone and PM,
respectively. The ECs, of PP was between 1.0 X 107'% and 1.0 X
10~ M CCh. The ECy, of GM (PP/SCD = 1/1) changed to
between 1.0 X 107" and 1.0 X 10~ M CCh (Figure 10b).

Contractions of yCD induced with 1.0 X 1077 M CCh were
approximately 82% of the largest contractile response and not
significantly different from PP alone and PM (PP/yCD = 1/1).
Contractions of GM (PP/yCD = 1/1) and CP (PP/yCD)
induced with 1.0 X 1077 M CCh were about 50 and 51% of the
largest contractile response, respectively, and not significantly
different from PP alone. No significant difference was found
between GM (PP/yCD =1/1) and CP (PP/yCD) (Figure 10c).
The fact that the PP/yCD inclusion complex has a low stability
constant, forms weak hydrogen bonds, and exerts low
intermolecular forces may explain why its inclusion complex
showed no significant difference from PP alone.

At 1.0 X 1077 M CCh, GM (PP/aCD = 1/2), CP (PP/aCD),
and GM (PP/SCD 1/1) significantly suppressed the
contractile response compared with PP (Figure 12¢). Since an
increase in ECyy was confirmed for these three inclusion
complexes, competitive inhibition of the muscarinic M, receptor
was suggested (Figure 12a,b). According to previous studies, the
stability constant values of PP/aCD were found to be K;,, =
7473 and K, , = 47 M™" and those for PP/CD and PP/yCD
K,); = 3244 and 248 M, respectively. The above result suggests
that aCD is more likely to form an inclusion complex with PP
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than f- and y-CDs.'” Raman spectra measurements also
suggested that the PP/aCD inclusion complex significantly
suppressed the molecular motility of PP (Figure 3). PMs do not
significantly suppress the intestinal contractile response
compared to GMs and CPs. The solid-state formation of
inclusion complexes appears to contribute to pharmacological
effects. Since the largest contractile response is suppressed
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compared to PP, the effect of inclusion complexes may involve
some noncompetitive inhibition. In other words, the inclusion
complexes may act not only on the muscarinic M; receptor but
also other specific intestinal contraction inhibitory effects that
may be different from those of PP. In silico studies, Haque
reported that the aromatic ring of PP shows a hydrogen bond
with tryptophan 503 present in the protein pocket of the
muscarinic acetylcholine receptor.”” Also, PP has piperidine and
amide as well as loperamide. di Bosco reported that loperamide
exhibits a hydrogen bond between the protonated nitrogen of
the piperidine ring and the carboxylic acid group of asparagine in
the protein pocket of the opioid y receptor.’ That is, depending
on the inclusion complex style, PP exposed from the inclusion
complex may have shown different effects than PP alone.
Although the detailed mechanism of the action is unknown, the
inclusion complexes inhibit muscarinic M; receptor-mediated
competition. Also, cAMP-induced protein kinase A activation
and IP;-induced Ca®* emission control are expected. In the
safety assessment by the FAO/WHO Joint Expert Committee
on Food Additives, the acceptable daily intake was defined as
“up to 5 mg/kg/day” for CD. Moreover, yCD is rapidly and
completely digested by pancreatic amylase. Among various PP/
CD inclusion complexes, GM (PP/aCD = 1/2) and CP (PP/
aCD) may have potential use as antidiarrheals and therapeutic
agents for functional gastrointestinal disorders.

3. CONCLUSIONS

The intestinal contraction test confirmed that PP/aCD and GM
PP/FCD inclusion complexes suppressed the contractile
response of the ileum via competitive and noncompetitive
inhibitions. PP/CD inclusion complexes have a unique
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pharmacological function that is different from PP alone. No showed a higher solubility compared to GMs. The solubility of
significant difference was found between the GMs and CPs. In the inclusion complexes was higher than the PP concentration of
the FaSSIF dissolution test, CP (PP/aCD) and CP (PP/yCD) 2.0 X 107° M (5.7 pg/mL) that suppressed the intestinal
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contractile response. Therefore, GM (PP/aCD = 1/2) and CP
(PP/aCD) are expected to be used as antidiarrheals and
therapeutic agents for functional gastrointestinal disorders.

4. MATERIALS AND METHODS

4.1. Materials. 4.1.1. Chemicals. PP was purchased from
FUJIFILM Wako Pure Chemical Co., Ltd. «CD, fCD, and yCD
were donated by Cyclo Chem Co., Ltd. (Tokyo, Japan) and
stored at 40 °C and 82% RH for 7 days. The humidity was
controlled to obtain aCD 6.6-hydrate, CD 10.5-hydrate, and
yCD 12-hydrate (Figure 12). All other chemicals were
purchased from Wako Pure Chemical Co., Ltd.

4.1.2. Preparation of the Inclusion Complex. It was reported
that the GM method molar generated inclusion complexes
having ratios PP/aCD =1/2,PP/fCD =1/1,and PP/yCD =1/
1.7 PP/CD inclusion complexes were prepared with optimal
inclusion molar ratios. GM was prepared by grinding the
samples (1.0 g) for 60 min using a vibration rod mill (TI-SO0ET,
CMT Co.) at a molar ratio of PP/aCD 6.6-hydrate = 1/2 and
PP/BCD 10.5-hydrate = 1/1.

A coprecipitate (CP) was prepared by dropwise addition of §
mL of an acetone solution of PP (0.11 mmol/mL) to S mL of an
aqueous solution of CDs (0.11 mmol/mL). The solution was
stirred for 1 h at 60 °C and then allowed to stand at room
temperature for 24 h. The sample was filtered through a filter
paper, and the precipitate was washed with S mL of acetone and
vacuum-dried in a desiccator for 24 h.

4.2. Methods. 4.2.1. PXRD Measurements. Changes in the
samples’ crystal diffraction patterns were measured using a
powder X-ray diffractometer (MiniFlex II, Rigaku). The
irradiation dose was a Cu wire. The diffraction intensity was
measured using a Nal scintillation counter. Measurements were
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carried out at a voltage of 30 kV, current of 15 mA, a scan range
of 20 = 3—35°, and a scan rate of 4°/min.

4.2.2. DSC Measurements. The thermal behavior of the PP,
CDs, and CP was determined using a differential scanning
calorimeter (Thermo plus Evo, Rigaku) with a N, gas flow rate
of 60 mL/min and a heating rate of 5 °C/min. Samples weighing
approximately 3 mg were placed in an aluminum pan.

4.2.3. Raman Spectroscopy Measurements. Raman spectra
of samples were recorded on a Cart-Mountable Raman Rxn2TM
Analyzer-1000 nm, KAISER spectrometer with a scan range of
1000—1700 cm™', a spectral resolution of S cm™’, an f/1.8
imaging spectrometer with a holographic transmission grating
and a detector (TE-Cooled, 1024 Array Detector).

4.2.4. Fluorescence Spectrum Measurements of the Liquid
State in FaSSIF. Fluorescence spectra of the liquid state were
measured using a fluorescence spectroscopic altimeter (RF-
5300pc, Shimadzu) at an excitation wavelength of 270 nm, an
excitation and fluorescence bandwidth of 5§ nm, and a
measurement range of 280—600 nm.

4.2.5. "H-Nuclear Magnetic Resonance (NMR) Spectra
Determination. The '"H NMR spectra (1D) of the samples in
DMSO were measured using an NMR spectrometer (Varian
NMR System 400, Agilent) at a pulse width of 90°, relaxation
delay of 6.4 yis, the scan time of 3.723 s, and a temperature of 295
K. The molar ratio of PP to aCD or yCD was calculated using
eqs 1 and 2

X=Y/6 (1)

X=2/8 ()

where X is the number of CD molecules per 1 PP molecule, Y'is
the integrated intensity of H-1 in @CD, and Z is the integrated
intensity of H-1 in yCD.
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Table 1. Composition of Dissolution Media

ingredient first liquid of the pharmacopoeia Tyrode’s
pH 12 65
HCl 7 mL/L
NaOH
NaCl 2g/L 134 mM
KCl 2.68 mM
NaHCO; 11.9 mM
NaH,PO,
NaH,PO,2H,0 0.417 mM
MgCl-6H,0 1.0S mM
CaCl,-2H,0 1.8 mM
glucose 5.56 mM

sodium taurocholate

lecithin

FaSSIF (sodium taurocholate and lecithin are not included) FaSSIF
6.5 6.5
~13.80 mM ~13.80 mM
134 mM 134 mM
~28.66 mM ~28.66 mM
3 mM
0.7S mM

4.2.6. Dissolution Test. Dissolution testing was carried out
according to the paddle method described in the 17th edition of
the Japanese Pharmacopoeia, using the first fluid for dissolution
test (pH 1.2, 900 mL) and FaSSIF (pH 6.5, 300 mL) as test
media. The amount of the FaSSIF test solution was set to 300
mL to mimic the water content of the human gastrointestinal
tract. FaSSIF’s composition mimics the upper small intestine
gastrointestinal environment (Table 1). It was prepared by
including taurocholic acid and lecithin from the stock solution.

4.2.7. Preparation of the lleum. Male ddY mice were fasted
for 24 h and sacrificed by severing the cervical vertebrae. The
abdominal wall was opened, and the small intestine was
removed. The ileum specimens of the small intestine
approximately 1.5 cm long were prepared. The animal
experiments were conducted according to the Josai University
guidelines and were approved by the University’s Committee on
Laboratory Animal Care.

4.2.8. Isolated lleum (Magnus Technique). The isolated
ileum was suspended in 50 mL of Tyrode’s solution. Oxygen was
supplied to a bath at 34—36 °C at a rate of 3—S bubbles (radius:
0.5 mm) per second. Preparations (PP, CD, PM, GM, and CP)
were subjected to a dissolution test involving Tyrode’s solution
and the resulting solutions served as test solutions.

4.2.9. Determination of the lleum Contraction Height.
Specimens of the ileum with verified contractility were washed
twice with 50 mL of Tyrode’s solution and immersed in 50 mL
of fresh Tyrode’s solution in an organ bath. The isolated ileum
was left for approximately 3 min to adjust to the bath
temperature. Test solution (100 uL) was added and allowed
to elute PP for about 3 min as the ileum adjusted. Carbachol
(CCh) was added cumulatively to induce ileal contractions. The
intestinal contraction rate after the addition of each test article
was calculated as a ratio with the maximum contraction height
(100%) of 107 M CCh.

4.2.10. Statistical Analysis. A one-way analysis of variance
was performed to compare the means of the study samples. After
that, all groups were compared using Tukey’s test to determine
the significance of differences between the test groups. The P-
values < 0.05 were considered statistically significant. All sample
measurements were performed at n = S.
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B ABBREVIATIONS USED

PP, piperine; CD, cyclodextrin; GM, ground mixture; CP,
coprecipitate; PM, physical mixture; CCh, carbachol; PXRD,
powder X-ray diffraction; FaSSIF, fasted-state simulated
intestinal fluid; DSC, differential scanning calorimetry; C,—
OH, hydroxyl group attached to the carbon at position 2 of
glucose; C;—OH, hydroxyl group attached to the carbon at
position 3 of glucose
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