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Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in
women worldwide. Some therapeutic drugs and approaches could cause side effects and
weaken the immune system. The combination of conventional therapies and traditional
Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer.
However, the chemical composition and underlying anti-tumor mechanisms of TCM still
need to be investigated. The primary aim of this study is to provide unique insights to
screen the natural components for breast cancer therapy using high-throughput
transcriptome analysis. Differentially expressed genes were identified based on two
conditions: single samples and groups were classified according to their
pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour.
generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654
downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311
upregulated and 103 downregulated). KEGG pathway analyses showed five significant
pathways associated with the inflammatory and metastasis processes in cancer, which
include the TNF, IL−17, NF-kappa B, MAPK signaling pathways, and transcriptional
misregulation in cancer. Samples were classified into 13 groups based on their
pharmaceutical effects. The results of the KEGG pathway analyses remained consistent
with signal samples; group 3 presents a high significance. A total of 21 genes were
significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were
enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2,
PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even
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the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis
(WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most
relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as
the hub genes. In conclusion, we screened out three new TCM (R. communis L., E.
cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs
for breast cancer therapy, and obtained the therapeutic targets.
Keywords: breast cancer, traditional Chinese medicine (TCM), high-throughput sequencing, transcriptome
analysis, WGCNA
INTRODUCTION

Among numerous diseases, cancer is the leading threat to
modern human health. According to the GLOBOCAN 2020
estimates of cancer incidence and mortality produced by the
International Agency for Research on Cancer/World Health
Organization, there were 19.3 million new cancer cases and
10.0 million cancer deaths worldwide in 2020. The global
cancer burden is expected to reach up to 28.4 million cases in
2040, a 47% rise from 2020 (1). Surgery, radiotherapy, and
chemotherapy are the three major clinical measures to treat
cancer effectively. Chemotherapy, however, produces serious
adverse effects, and chemotherapy drugs also badly damage the
immune function of the body. Breast cancer is one of the most
commonly diagnosed malignant tumors among females. Female
breast cancer has surpassed lung cancer as the most commonly
diagnosed cancer, with an estimated 2.3 million new cases
(11.7%). Death rates of female breast cancer were considerably
higher in developing countries than developed ones (15.0 vs 12.8
per 100,000) (1). Currently, the main treatments for breast
cancer include surgery and postoperative chemotherapy, but
most chemotherapy drugs kill both cancer and normal cells
(2–5). Their side effects of chemotherapies somewhat impact the
quality of life of the patients.

On the other hand, traditional Chinese medicine (TCM)
relieves adverse effects and enhances the efficacy of drugs (6–8).
Clinical trials have shown that the combination ofmodernmedical
methods andTCM in the cancer treatment significantly reduces the
toxicity and side effects of both radiotherapy and chemotherapy,
decreases surgical complications, prolongs patient survival, and
effectively improves their life quality (3, 9). Hence, owing to its high
efficiency, low cost, andminimal side effects, plant-basedmedicinal
therapies are very important for the treatment of cancer (10).
TCM is also found to have cytoprotective properties during
combinational chemotherapy without hindering the anti-cancer
activity of conventional drugs (11). An increasing number of
medical practitioners have focused on finding the active anti-
cancer ingredients from TCM and reporting their anti-cancer
mechanisms (12, 13). Therefore, research to develop new drugs
for breast cancer treatment has focused on finding natural
ingredientswith low toxicity andhigh efficiency fromTCM(14, 15).

Guangxi Botanical Garden of Medicinal Plants, Nanning,
China has collected and conserved a number of plant species
belonging to different families including Euphorbiaceae (Ricinus,
Mallotus, Euphorbia, etc.), Araliaceae (Panax), Asteraceae
2

(Acmella, Arctium, Gynura, etc.), Fabaceae, Malvaceae,
Solanaceae, and so on. Almost 74 kinds of fractions
(Supplemental Table 1) have significant medical effects,
including promoting blood circulation and removing stasis;
heat-Clearing; Rheumatism treatment; hemostatic; tonic;
asthmatics, expectorants and antitussives; water-disinhibiting
and damp-percolating; Qi-regulating; heat-clearing astringent;
detoxifying, analgesia, antipruritic, etc. In previous studies, some
of the plant materials with potential anti-cancer effects have been
analyzed, such as Excoecaria cochinchinensis Lour., Breynia
fruticosa, Salvia miltiorrhiza Bunge, Gynura procumbens,
Euphorbia hirta, Forsythia suspensa, Senecio scandens, Polygonum
perfoliatum, Malva verticillata var. crispa, Mallotus apelta, Pteris
semipinnata, Acmella paniculate, Aristolochia tagala, Schisandra
chinensis, Gelsemium elegans, Ricinus communis L., Ligustrum
confusum, etc. (10, 16–20). Most of them have been found to
contain anti-cancer compounds like terpenoid, flavonoid,
alkaloid, quercetin, epigallocatechin-3-gallate (EGCG),
epicatechin, oleanolic acid, ursolic acid, and tanshinone, which
are involved in multiple important pathways in breast cancer such
as epithelial to mesenchymal transition (EMT), TGF-ß, PTEN/
PI3K/Akt, NF-kappa B (NF-kB), MAPK, p53 signaling pathway,
and Wnt/b-catenin pathways (21–24).

However, the anti-cancer compounds and molecular
mechanisms of TCM are still unclear, therefore, it is still necessary
to further investigate their actual effectiveness and active compounds.
Previous studies have reported that the chemical compounds with
anti-cancer activities, such as Cisplatin, Paclitaxel, Docetaxel,
Doxorubicin, Gefitinib, Cabozantinib, and so on (5, 21, 25–28), can
be used in a combination chemotherapy for breast cancer.
Undoubtedly, high-throughput screening is an effective and
systematic approach to analyze TCM-mediated gene expression
modifications in breast cancer cells. The underlying anti-cancer
mechanisms of conventional drugs and traditional medicines can
be analyzed on the basis of gene expression and pathway enrichment
variations in different treatments. Afterwards, the pharmaceutical
effects and effective components are comprehensively considered to
infer the potential TCM fractions for breast cancer therapy.
Moreover, this may help to identify the molecular mechanisms and
anti-cancer compounds involved to help develop natural cancer
treatment drugs.

Transcriptome analysis reveals the full information about
differentially expressed genes in different treatments from specific
cell types or tissues (29, 30). The regulatory mechanisms of cancer
cells are associated with various signaling pathways and their
August 2021 | Volume 11 | Article 684351
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differentially expressed genes. Comparative transcriptome analysis
can be used to assess the interactions between drugs and cellular
activities, expression levels of functional genes of different cell lines,
and changes in the activity of cellular regulatory mechanisms and
signaling pathways (31–35). The data from this analysis can be used
to characterize anti-cancer compounds anddrugdevelopment.Thus,
these findings on drug-cell interactions provide accurate scientific
insights for the development of alternative chemotherapies (33).

Weighted gene co-expression network analysis (WGCNA) is a
bioinformatics data mining method that has been used to explore
the relationships among the gene modules of various cancer cell
lines (36, 37). The modules of co-expressing genes are found to
maintain a consistent phenotype-independent expression
relationship and they may co-regulate and share common
biological functions (37). Expression alterations and intrinsic
properties of gene sets, correlation between gene modules,
phenotype-correlated modules, candidate biomarker genes, and
targets of therapeutic drugs can be analyzed through WGCNA
(38). In previous studies, WGCNA was used to analyze
biomarkers and targets of various diseases like schizophrenia,
Alzheimer’s disease, sickle cell disease, and breast cancer (39–42).
WGCNA is a systematic biological method which has been used
in cancer studies including bladder cancer, clear cell renal cell
carcinoma (ccRCC), Non-Small-Cell Lung Cancer (NSCLC),
Acute myeloid leukemia (AML), and Pancreatic ductal
adenocarcinoma (PDAC) (38, 43–46). Tang et al. applied
WGCNA to construct a gene co-expression network and to
explore and measure the relationships between genes, modules,
and clinical traits, and they identified five hub genes, CCNB2,
FBXO5, KIF4A, MCM10, and TPX2, which are found to be
associated with the progression and poor prognosis of breast
cancer (47). Liu et al. used 22 human osteosarcoma cell lines to
construct gene co‐expression modules to predict the groups of
candidate genes responsible for the pathogenesis of osteosarcoma,
and they identified seven co‐expression modules containing 2,228
differentially expressed genes (36). Using WGCNA, Zhai et al.
constructed the co−expression network of DEGs and identified
the recurrence-associated genes (SERP2, EFEMP2, FBN1,
SPARC, and LINC0219) in colon cancer to prevent tumor
recurrence (48). Lin et al. used weighted gene co-expression
network analysis to find the genes responsible for tumor
progression and CD8+ T cell infiltration in ccRCC, finding that
CCL5 is a potential biomarker and therapeutic target to treat
ccRCC (49). Moreover, the pathway-related modules and hub
genes have also been identified in other diseases like
schizophrenia (50) and intracranial aneurysm (51). WGCNA
has also been used to analyze the differentially expressed genes
and signaling pathways associated with inflammatory/immune
processes throughout time points after a burn, and to identify key
genes related to pathologic changes after a severe burn (52).

This study used high-throughput transcriptome sequencing to
provide the transcriptome data of breast cancer cell line distilled
with the aforesaid 74 TCM and 10 chemical compounds (positive
control). High-quality data sets are obtained from transcriptome
assembly and comparative analysis, and, subsequently, the key
genes responsible for the pro-inflammatory effects and metastasis
Frontiers in Oncology | www.frontiersin.org 3
of breast cancer were identified and validated by differential
expression and WGCNA. By comparing the changes in the gene
expression among the cancer-related pathway of cell lines treated
withTCMor chemical compoundswith a knownanti-cancer effect,
we identified the potential TCM with anti-cancer effects. The
primary aim of this study is to establish a high-throughput
method to screen both the natural anti-cancer compounds and
their target genes and to provide new insights to develop alternative
anti-cancer chemotherapies for breast cancer.
MATERIALS AND METHODS

Preparation of Medicinal Plant Extracts
A total of 74 medicinal plants samples were obtained from
Guangxi Botanical Garden of Medicinal Plants. Dried plant
materials were ground into fine powder using a mortar and
pestle. We marked the samples with different serial numbers
according to their extraction methods: The samples named “W”
refer to the plant materials that were boiled by hot water then
freeze dried; ‘GX’ refers to the medicinal plants that were
extracted using 60% ethanol for 2 h. The samples were firstly
vacuum concentrated and loaded on a macroreticular resin
column, the product of interest was then eluted by water.
Finally, the eluted fractions were concentrated by vacuum
evaporation and the completely dried samples were used for
the drug preparation. For the dried fruit ofMyristica fragrans, we
applied CO2 supercritical extraction method, and named the
sample as ‘C’. ‘S’ refers to the remaining plant materials which
were firstly extracted by petroleum ether for 2 h and filtered; the
remaining residue was then extracted by ethyl acetate for another
2 h; the extracts were finally vacuum concentrated to dry powder
for the drug preparation. More description on the samples are
shown in Supplemental Table 1. While, 10 conventional anti-
cancer drugs (positive control) were purchased from various
companies (Table 1) and all the plant samples and drugs were
dissolved in DMSO for anti-cancer activity, marked as the
fractions and positive control, respectively.

Cell Culture and Drug Preparation
MCF-7 cell line was procured from Shanghai Cell Bank of the
Chinese Academy of Sciences, and the cell line was cultured in a
DMEMmedium containing 10% fetal bovine serum and placed in a
cell incubator with 5% CO2 at 37°C. When the cell growth density
reached 80–90%, trypsin (0.125%)was used to subculture the cells on
a complete culturemedia. The anti-cancer activity of the test samples
was screened on theMCF-7 cancer cells during a logarithmic growth
phase, a total of 74 TCMand 10 conventional anti-cancer drugswere
used (Supplemental Tables 1, 8 and Table 1). The samples treated
with 10 conventional anti-cancer drugs were considered as the
positive control and the 7 samples without any treatment were kept
as the negative control. The fractions mainly came from
Leguminosae, Compositae, Araliaceae, Euphorbiaceae, Rutaceae,
etc., all of which were verified to have anti-tumor effects through
preliminary investigation.Thepositive controlswerepurchased from
the companies (Table 1).
August 2021 | Volume 11 | Article 684351
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The cell lines were treated with the fractions and positive
control. Initial screening was carried out at a concentration of 100
mg/ml, with a final volume of 200 ml per well, and the cell survival
rate after 24 h of drug treatment was calculated. If the cell survival
rate was more than 80%, 6-well plate screening was carried out
using the same concentration. If the survival rate was less than
80%, the 96-well plate screening was carried out at a reduced
concentration. The fractions were screened with a gradient of two
times. With reference to the cell survival rate observed in the first
screening, the 6-well plate screening would be carried out at the
concentration at which the cell survival rate reached about 80%
(Supplemental Figure 1). This concentration was recorded as the
final administration concentration, at which the cell growth
conditions would be observed under a microscope.

RNA Quality Control, Library Preparation,
and Sequencing
The total RNA of the cell lines was extracted using the FastPure
Cell/Tissue Total RNA Isolation Mini Kit (Vazyme, Nanjing,
China), and identified OD260/280 = 1.8~2.0 using the
NanoDrop 2000 and Agilent 2100 Bioanalyzer (Agilent, USA).
The RIN (RNA Integrity Number) values of all total RNA
samples were above 8, then their concentration was accurately
quantified by Q-bit. The MGIEasy kit was used for mRNA
library preparation. Total RNA samples were used for the
preparation of cDNA-libraries according to the standard
BGISEQ protocol, and insert size is 200–300 bp. Paired-end
sequencing with 100 bp read length were sequenced using the
BGISEQ-500 instrument and BGISEQ-500RS high-throughput
sequencing kit (Supplemental Figure 1).

RNA-Seq Clean Data Preparation
and Quality Checking
The resulting sequencing data were collected in FASTA format
for further analysis. FastQC was used to detect and provide
evidence of problematic sequencing data (53). Post-sequencing
quality assessment can identify problematic libraries: such as
those with low quality base-call scores, a shift from the expected
GC-content, or overrepresented adapter sequences. FastQC can
help ensure that high-quality data is provided to the initial
spliced alignment step. Subsequently, the read sequences were
subjected to adapter trimming and quality filtering using the
Trimmomatic software (v.0.36), which is included in the Trinity
Frontiers in Oncology | www.frontiersin.org 4
package (54, 55). More details about quality checking are shown
in Supplemental Table 2 and the generated clean data has been
uploaded to the NCBI Sequence Read Archive (SRA). In order to
take multiple correlation analysis and screen the potential
natural components for breast cancer therapy, the samples
were classified into 13 groups based on their pharmaceutical
effects (Supplemental Table 1), which included promoting
blood circulation and removing stasis; heat-clearing;
Rheumatism treatment, hemostatic; tonic; asthmatics,
expectorants and antitussives; water-disinhibiting and damp-
percolating; Qi-regulating; heat-clearing astringent; detoxifying,
analgesia, and antipruritic. Samples treated with TCM fractions
were labeled as groups 1–10; group 11 was composed of the
samples that were treated with unclassified fractions. While, the
positive and negative controls were marked as groups 12 and
13, respectively.

General Analyzing of RNA-Seq: Alignment,
Transcript Assembly, Differential
Expression, and KEGG Pathway Analysis
After quality control, the RNA-seq analysis generally requires
four steps: aligning the reads to the reference; assembling the
alignments on the alignment into a full-length transcript;
quantitative expression of genes and transcripts; and
calculation of the differential expression of all genes under
different experimental conditions. The “New Tuxedo” package
including HISAT, StringTie, and Ballgown was used for this
process (Supplemental Figure 2). Our pipeline begins with raw
RNA-seq reads generated by the BGISEQ-500 instrument and
produces several useful outputs, including the lists of genes,
transcripts, and expression levels for each sample, tables showing
the differentially expressed genes in different conditions, and
accompanying measures of statistical significance.

In this pipeline, HISAT (56) was used to align the RNA-seq
reads to the genome. It compares and finds the variable splicing
sites faster and consumes less memory than Tophat2 (57).
StringTie (58) is responsible for assembling transcripts and
constructing isoforms to estimate the gene expression. First, it
receives the alignments from Hisat for transcript splicing. Each
data set is independent. During the splicing process, the
expression of each gene and each isoform is estimated. After
the splicing, all the spliced sequences are merged. This step is
necessary because the transcripts in some samples are only
partially covered by reads, with the result that only the covered
areas are spliced. This error can be reduced by “merge”. The
merged transcript is returned to StringTie again to calculate the
transcript abundance. It uses the same algorithm as the initial
splicing, but if the abundance of the transcript does not change
during the merge process, yet the structure does, the reads also
need to be adjusted accordingly. StringTie also provides a read-
count for each transcript, and this data will be passed to
Ballgown (59), which uses the results of StringTie splicing to
calculate the gene expression, then obtain the FPKM (Fragments
Per Kilobase Million) results.

Differential expression analysis was performed using the
DESeq2 Wrapper included in the TBtools, a toolkit for
TABLE 1 | The list of positive control.

Drug Source (company)

Sorafenib Beijing solarbio science & technology Co., Ltd
Cisplatin Beijing solarbio science & technology Co., Ltd
Lenvatinib Shanghai Topscience Bio-Technology Co., Ltd
Cabozantinib Shanghai yuanye Bio-Technology Co., Ltd
Doxorubicin hydrochloride Shanghai yuanye Bio-Technology Co., Ltd
Gefitinib Shanghai Macklin Biological Co., Ltd
Paclitaxel Shanghai Macklin Biological Co., Ltd
Docetaxel Shanghai Macklin Biological Co., Ltd
Viborelbine Shanghai Aladdin Reagent Co., Ltd
Gemcitabine Beijing OKA Bio-Technology Co., Ltd
August 2021 | Volume 11 | Article 684351
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biologists integrating various biological data-handling tools (60).
The selection criteria for the differential expressed genes (DEGs)
were strengthened with a threshold of padjust ≤ 0.05 and
|log2FC| ≥ 1 (61), and the distribution of each gene was
illustrated by a Volcano plot. Differentially expressed genes
were identified based on two conditions: 1) single sample
distilled with 74 TCM fractions compared to CK, aiming to
investigate the anti-tumor mechanism of each fraction through
enriched pathways and screen the potential medicinal
composition; and 2) groups classified according to their
pharmaceutical effect, comparing the fractions groups with the
positive control (including chemotherapy drugs) and negative
control, to obtain the groups with an anti-tumor effect. The
differential expression was analyzed in both single samples and
groups, so that screening the TCM fractions with significant
effect using the high-throughput and systematic methods.

Finally, the DEGs were imported to analyze the gene ontology
and KEGG pathway by the R package clusterProfiler and
org.Hs.eg.db data set, with the parameters set as pvalue
Cutoff = 0.05, pAdjustMethod = “BH”, and qvalueCutoff = 0.1.
Based on the KEGG results, the candidate pathways associated with
the inflammatory and metastasis processes in cancer, as well as the
genes enriched on these candidate pathways, were selected from the
top 10most significant pathways. Subsequently, TBtools was used to
generate a heatmap of these genes to visualize their expression; the
common genes were screened according to their significantly
differential expression. The analysis steps, software, and main
scripts in our pipeline are listed in Supplemental Table 3.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
The modified WGCNA pipeline used in this study is shown in
Supplemental Figure 2 and Supplemental Table 3. Construction
of weighted co-expressed networks and identification of co-
expression modules were carried out using the WGCNA
package in R with the default parameters. Importing the log2
normalized expression data, a sample information table was
created in 13 groups. In order to ensure a scale-free network,
the power of b = 11 (scale free R2 = 0.8) was selected as the soft-
thresholding and MEDissThres was set as 0.25 to merge similar
modules. After that, a functional enrichment analysis was
performed to examine the enrichment of the modules. The
genes that were included in all 18 modules were extracted and
then imported to the KEGG pathway analysis with the parameters
of pvalueCutoff = 0.05, pAdjustMethod = “BH”, and qvalueCutoff =
0.1. Checking the pathways and comparing them with
the differential expression analysis results, common pathways
associated with cancer were selected to be taken into
consideration as the key pathways. Finally, screened edges by
the criteria with weight value > 0.035 and weight value > 0.24 for
thistle2 module and blue module, respectively, then inputted them
into Cytoscape to (v3.8.1) visualize the co-expression network and
identify the nodes and hub genes (62). Cytoscape (v3.8.1) software
was downloaded from the website (https://cytoscape.org/) and
three models were chosen including “source node”, “target node”,
and “edge attribute” with default parameters (63). These genes
Frontiers in Oncology | www.frontiersin.org 5
may play an important role in the tumorigenesis process, which
can be selected as the targets in future research on cancer therapy.
RESULTS

Data Pre-Processing and Differential
Expressed Genes (DEGs) Screening
In this study, 99 cDNA libraries were sequenced and about 806.33
Gb raw data were produced, consisting of 8,063,347,526 reads with
an average read length of 100 bp (Supplemental Tables 3, 4). Clean
sequencing reads (772.78 Gb and 7,759,550,456 reads) are available
at the NCBI Sequence Read Archive. After quality control, the
obtained sequencing reads were mapped to the reference genome
using STAR and sorted using the Samtools. Subsequently, the gene
expression (FPKM, Fragments Per KilobaseMillion)was generated
using the RSEM. Differential expression analysis was performed by
theDESeq2Wrapper included in the TBTools, the selection criteria
for differential expressed genes (DEGs) were strengthened with a
threshold of padjust ≤ 0.05 and |log2FC| ≥ 1 (61). For the DEGs
analysis, the test sampleswere taken under two conditions: 1) single
treat sample compared toCK; and (2)TCMgroups compared to the
CK group. Condition 1 obtained 91 DEGs sets. The set that
contained the most DEGs is Treat58 vs CK, including 1,459
DEGs, 805 upregulated and 654 downregulated. We listed the top
10 sets shown in Table 2, and selected the DEGs set of three TCM
candidates (R. communis L.,E. cochinchinensisLour.,B. fruticosa) as
illustrated by a volcano plot (Figure 1). Similarly, condition 2
obtained 12 DEGs sets, group 3 vs CK contained the most DEGs,
including 414 DEGs, 311 upregulated and 103 downregulated. The
detailed DEGs information is shown in Supplemental Table 5.

KEGG Pathway Analysis and Candidate
Drugs Screening
In order to identify the biologic pathways, networks, and
functional categories of the differentially expressed genes, we
used the R package clusterProfiler and org.Hs.eg.db data set to
complete the Gene Ontology and KEGG pathway analysis, the
parameters are set as pvalueCutoff = 0.05, pAdjustMethod = “BH”,
and qvalueCutoff = 0.1. In order to investigate which TCM
fractions can be potentially applied for cancer treatment, the
samples were classified into 13 groups according to their
pharmaceutical effect (Supplemental Table 1). KEGG analyses
showed that the pathways which are involved in the cell cycle, cell
proliferation, oncogenic transformation, pro-inflammatory effect,
and cancer metastasis process are significantly present in groups
1–10 and 12. Previous research has shown that biological
processes with a pro-inflammatory effect are important for
cancer tumorigenesis, especially breast cancer (64–68).
Transcriptional regulation is an important biological process in
cancer metastasis (69). Fortunately, group 3 includes three
important pathways involved in the pro-inflammatory and
metastasis process, IL−17 signaling pathway, TNF signaling
pathway, and Transcriptional misregulation in cancer
(Figure 2D). KEGG analysis results of signal samples indicated
that the five pathways were associated with the biological processes
August 2021 | Volume 11 | Article 684351
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of the pro-inflammatory effects and that the metastasis process are
significantly enriched, including the TNF signaling pathway, IL−17
signaling pathway, NF-kappa B signaling pathway, Transcriptional
misregulation in cancer, and MAPK signaling pathway (Figures
2A–C). Among all, the three plant samples (R. communis L., E.
cochinchinensis Lour., and B. fruticosa) significantly regulated the
expression of key genes in the five signaling pathways, which were
screened as the effective TCM candidates for future breast cancer
therapy (Figures 2A–C; Figure 3). Interestingly, all three of these
plants belong to the Euphorbiaceae family, indicating that the plant
species of Euphorbiaceaemayplay an important role in breast cancer
treatment. Among them, E. cochinchinensis Lour. and B. fruticosa
belong to the same group (Group 3)with the pharmaceutical effect of
Rheumatism treatment. R. communis L. was classified as a purgative
drug. They were all known to have anti-inflammatory ingredients
and anti-cancer effect in previous research. The detailed pathway
results of other TCM are shown in Supplemental Table 6.

It is believed that breast cancer, especially HER2+-subtype and
triple-negative breast cancer (TNBC), are associated with local
inflammation. Biological processes with pro-inflammatory effects
may play a potential role in breast cancer (64). Cancer is known to
be regulated by inflammation that recruits resident or circulating
immune cells at several stages of its development to modulate the
tumor microenvironment (67, 68). Inflammation is constantly
present in cancers. Except the Transcriptional misregulation in
cancer associated with the cancer metastasis process, the other
four candidate pathways and included factors were proved to be
proinflammatory cytokines and important in tumorigenesis in
previous research. Interestingly, they are interrelated to some
extent. It is reported that TNF can stimulate apoptosis in certain
pathological situations, whereas the major biochemical functions
ofTNF are realized by inducingNF-kappa B andMAPpro-survival
kinase activities (70, 71).ActivatingNF-kappaBwould enhance the
expression of several inflammatory cytokine genes, including TNF-
a, IL-6, and IL-8 (72). IL-17 signalingpathway is primarilyactivated
by the NF-kappa B and MAPK pathways, and IL-17-family
activated pro-inflammatory factor NF-kappa B in innate immune
signaling. Numerous studies have shown that IL-17A activates
various MAPKs, and the MAPK pathway has an important role
in regulating the expression of IL-17A-induced genes through the
control of mRNA transcript stability (67, 73–75). Similarly,
Transcriptional misregulation also interacted with other pathways,
misregulation of the immune response transcriptional regulator
NF-kappa B has been linked to inflammation in cancer and the
Frontiers in Oncology | www.frontiersin.org 6
transcription factor-controlled genes involved in inflammation, and
it is chronically active in cancer inflammation process (76).

Expression and Regulation of Top Genes
Enriched on These Five Pathways in Three
Candidate TCM
The top 20 genes with the greatest upregulation and
downregulation enriched in these five pathways in three
candidate TCM are shown in Figure 4. The commonly
significantly regulated genes in three candidate TCM associated
with TNF signaling pathway are IL6, LIF, PIK3R1, and PIK3R3;
among which, PIK3R1 is downregulated and the other three are
upregulated. In the IL−17 signaling pathway, IL6, FOSL1,
TNFAIP3, and S100A9 are commonly significantly upregulated
in three candidate TCM. CXCL12 is downregulated and LYN,
NFKBIA, TNFAIP3, BRIC3, and EDARADD are upregulated in
three candidate TCM and enriched on the NF-kappa B signaling
pathway. Besides, CDKN2C and ID2 are downregulated while
IL6, BIRC3, PLAT, PPARG, and CEBPB are upregulated in three
candidate TCM associated with Transcriptional misregulation in
the cancer pathway. In the MAPK signaling pathway, RPS6KA3,
AREG, DUSP6, and EPHA2 are all upregulated in three candidate
TCM. Table 3 summarizes the common genes in three candidate
TCM associated with the five pathways, and Figure 5 shows the
expression of common genes in all the samples.

It is worth noting that some of the common genes have been
demonstrated to play an important role in the inflammatory or
metastasis processes in cancers, especially in breast cancer. All
the common genes analyzed were differentially expressed in the
different TCM treatments. In particular, IL6, S100A9, RPS6KA3,
AREG, ROSL1, LIF, and DUSP6 were significantly upregulated
(Figure 5). Moreover, some genes such as IL-6, PIK3R1, LYN,
TNFAIP3, S100A9, CXCL12, and ARGE exhibited the same level
of expressions across the different treatments. Subsequently,
seven common genes, including FOSL1, S100A9, CXCL12,
ID2, PRS6KA3, AREG, and DUSP6, have been used as the
target biomarkers for cancer diagnosis and therapy. The results
indicated that the TCM candidates significantly inhibited the
breast tumorigenesis by regulating various common genes of
different signaling pathways. Overall, this study has inferred that
our TCM candidates probably possessed the significant curative
effects for breast cancer. Subsequent studies will consider the
identification of effective compounds and functional
investigation of common genes.
TABLE 2 | Differential gene expression of the top 10 sets in condition 1.

Compare Significant Upregulated Downregulated Sample name Note

Treat58_vs_CK 1,459 805 654 E. cochinchinensis Lour. Candidate
Treat73_vs_CK 1,410 803 607 B. fruticosa Candidate
Treat15_vs_CK 1,371 735 636 S. scandens
Treat16_vs_CK 1,321 583 738 G. elegans
Treat24_vs_CK 1,316 647 669 M. azedarach
Treat27_vs_CK 1,265 622 643 R. communis L. Candidate
Treat21_vs_CK 1,047 492 555 M. barbatus
Treat88_vs_CK 767 470 297 P. reticulatus Poir. var. glaberMuell.-Age.
Treat7_vs_CK 747 251 496 A. lappa
Treat28_vs_CK 714 333 381 M. verticillata var. crispa
August 2021 | Volume 11 | Arti
cle 684351

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kui et al. Natural Anti-Cancer Drugs Screening
Construction of Weighted Gene
Co-Expression Network and Identification
of Significant Modules Associated
With Cancer
In order to investigate the association between the pharmaceutical
effectofTCMfractionsandmoduleeigengene (ME), theconstruction
of weighted co-expressed networks and identification of co-
expression modules were built through the “WGCNA” package in
R. The sample dendrogram and trait heatmap are shown in
Figure 6A. In this research, the power of b = 8 was set to guarantee
high scale independenceand lowmeanconnectivity (Figure6B).The
dissimilarity of the modules was set as 0.2, and a total of 18 modules
were generated (Figure 7A). The module trait relationship is shown
inFigure7B, andgroups 2, 3, and5 exhibited ahigher connectivity in
several modules. The blue and thistle2 modules associated with the
cancer stagingwere the deepest,which suggest that thesemodules are
suitable to identify thehubgenesassociatedwith the stagingof cancer.
The interaction relationships of the 18 modules are shown in
Figure 8A. Each module was independent of each other, indicating
ahigh-scale independence anddifferential genes expressionsbetween
the modules. The eigengene adjacency heatmap is shown in
Figure 8B, the 18 modules were mainly divided into four
main clusters.
Frontiers in Oncology | www.frontiersin.org 7
KEGG Pathway Enrichment Analysis
of Blue and Thistle2 Modules
The genes which are contained in each of the 18 modules were
extracted and the KEGG pathway was constructed. As shown in
Figure 9, genes from blue and thistle2 modules were mainly
enriched on pathways involved in cell growth, infection, disease,
and tumorigenesis. Interestingly, two candidate pathways were
included, TNF and MAPK signaling pathways associated with
the inflammatory processes in cancer.
Hub Gene Identification in the
Selected Modules
In general, genes included in the co-expression modules and with
high connectivity are selected as hub genes. In this study, 26 hub
genes (7 in thistle2 module and 19 in blue module) were obtained
(Figure 10, Supplemental Table 7). The edges signifying the
correlations in the thistle2 module was filtered by the criteria
with a weight value > 0.035, then a total of 72 nodes were
identified after importing to Cytoscape (v3.8.1) (Figure 10A,
Supplemental Table 7). Meanwhile, blue module was filtered by
a condition of the weight value > 0.24, 728 nodes were identified
(Figure 10B, Supplemental Table 7).
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FIGURE 1 | Volcano plots of the differentially expressed genes (DEGs) MCF-7 cell lines were treated with three candidate medicines. (A) R. communis L.,
(B) E. cochinchinensis Lour., (C) B. fruticose. The horizontal line at |log2FC| = 1; vertical line at false discovery rate (FDR) = 0.05.
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DISCUSSION

Breast cancer is one of the leading causes ofmortality amongwomen
in developing countries, and among other cancer, breast cancer has
been ranked the highest, with an incidence of 25.8 per 100,000 and a
mortality rate of 12.7 per 100,000 women (65, 77, 78). The main
treatment methods for breast cancer include surgical resection,
radiotherapy, and chemotherapy, however, these conventional
therapies produce serious adverse effects, and chemotherapy drugs
severely affect the function of the immune system. Currently,
immunotherapy and targeted therapy have been widely used to
destroy cancer cells (79). However, the clear information on
biomarkers, target genes, effective components, key pathways, and
interaction network of differential genes involved in tumorigenesis is
required to support the treatment. Utilization of molecular networks
as drug targets has been proved to be a next generation treatment for
various cancers (80). On the other hand, the use of TCM has been
reported as effective andhealthy for cancer therapy and that it relieves
adverse effects and enhances the efficacy of drugs. Moreover, the
combination ofmodernmedicalmethods andTCM in the process of
tumor treatment significantly reduces the toxicity and side effects of
radiotherapy and chemotherapy, decreases surgical complications
and prolongs the survival of patients, and effectively improves their
life quality (3, 9). In our study, we applied differential expression and
WGCNA analysis and estimated the regulatory effect of three TCM
candidates on the genes of five signaling pathways associated with
biological processes including pro-inflammatory effects and
metastasis process of breast cancer.

The Chemical Components of Plant Samples
This study selected 74 TCM plant samples to screen their anti-
cancer activity on breast cancer cell lines by high-throughput
Frontiers in Oncology | www.frontiersin.org 8
sequencing analysis. Some of them were found to have various
chemical components regulating important pathways of breast
cancer. For example, terpenoids can inhibit MCF-7 cell
proliferation, promote apoptosis, and regulate several signaling
pathways, including EMT, PTEN/PI3K/AKT, NF-kappa B, and
Wnt/b-cathenin (21). Moreover, the flavonoids possess regulatory
functions similar to terpenoids (21).The plant samples such as E.
cochinchinensisLour.,B. fruticosa,P. ginsengC.A.Meyer,E. hirta,P.
japonica varmajor, F. suspensa, and S. scandenswere found to have
anti-cancer compounds, terpenoids, and flavonoids. Alkaloids,
especially the steroidal alkaloids, can perturb hedgehog signaling
pathwayand inhibitEMTinbreast cancercells similar to terpenoids
and flavonoids (21). Bioactive alkaloids have been screened in
various plants including G. procumbens, T. divaricate, S. scandens,
T. jasminoides, A. tagala, and C. aurantium L.

Some of the plant samples used in this study, including E.
cochinchinensis Lour., B. fruticosa, E. hirta, P. reticulatus Poir.
var. glaberMuell.-Age., P. massoniana Lamb., and P. aviculare,
were found to have the anti-cancer compound, Epigallocatechin-
3-gallate (EGCG), which regulates EMT and CSCs in several
estrogen receptors (ER)-negative breast cancer cells by
downregulating ER-a36 expression (21, 81). Quercetin is an
important flavanol, its combination with geldanamycin further
potentiates the anti-proliferative and anti-migration effect of
geldanamycin, enhances its inhibitory effects on ALDH+ cells,
and controls mammosphere formation (24). Nine TCM
candidates including P. notoginseng, G. procumbens, S.
scandens, and P. aviculare have been found to have quercetin
as a major active compound. Manassantin and arctigenin are
plant lignans with anti-cancer activities, and regulates multiple
important signaling pathways, including NF-kappa B, PI3K/Akt/
mTOR, and MAPK/ERK, Notch-1, and p38. The plants F.
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FIGURE 2 | KEGG pathways in three candidate drugs and group 3. (A–C) Three TCM (R. communis L., E. cochinchinensis Lour., B. fruticosa) which were enriched
on all five pathways: TNF signaling pathway, IL−17 signaling pathway, NF-kappa B signaling pathway, Transcriptional misregulation in cancer, and MAPK signaling
pathway; (D) group 3 includes three important pathways: IL−17 signaling pathway and TNF signaling pathway participated in the pro-inflammatory process;
Transcriptional misregulation in cancer is important for cancer metastasis process.
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suspensa, S. chinensi,s and K. coccinea were found to contain
Arctigenin, which suppresses the phosphorylation of ERK 1/2
and JNK 1/2 in MCF-7 cells and thereby inhibits the MAPK
signaling pathway. While, Manassantin is isolated from F.
suspensa, S. scandens, T. jasminoides, and Arctium lappa (82).

Additionally, some of our TCM contain various chemical
components associated with breast cancer treatment, it indicated
that we should consider them as the key medicines for further
investigation. E. cochinchinensis Lour. and B. fruticosa contain
terpenoid, flavonoid, EGCG, and ursolic acid. G. procumbens
contains flavonoid, oleanolic acid, quercetin, and quininic acid.
Terpenoid, flavonoid, arctigenin, and lignan are included in F.
suspensa. S. scandens contains terpenoid, quercetin, oleanolic
acid, and hyperin. In E. hirta, terpenoid, flavonoid, and EGCG
are included. P. reticulatus Poir. var. glaberMuell.-Age. contains
terpenoid, flavonoid, and EGCG. Based on all the information
and analysis results, we screened three candidate TCM to further
investigate the medicinal compositions, pathways, and genes.

Therapeutic Activities of the Three
Candidate TCM
The leaves, roots, oils, fruits, and beans of Ricinus communis L.
(R. communis L.) possess various therapeutic properties such as
hepatoprotective, anti-inflammatory, diuretic, anti-cancer, anti-
bacterial, insecticidal, hypoglycemic, and free radical scavenging
activities (83). In particular, the fruit extract of this plant has
been reported to have a potent anti-cancer activity (10, 16).
Furthermore, the same fruit extract showed an anti-proliferative
Frontiers in Oncology | www.frontiersin.org 9
activity by inhibiting the migration, adhesion, and invasion of
MCF-7 andMDA-MB-231 cell lines. It also induced apoptosis by
reducing anti-apoptotic Bcl-2, inducing pro-apoptotic Bax
expression and DNA fragmentation, as well as inhibiting
upstream STAT3 activation responsible for the induction of
MMPs and Bcl-2 (10). Bean extract has been recommended to
use in the development of anti-inflammatory, anthelmintic, anti-
bacterial, laxative, and abortifacient medicines. Meanwhile, Ricin
is a main compound of R. communis L., that has been used to
develop immunotoxins for killing the elimination of cancer cells
(16). In addition, four probable compounds, including Ricinin,
p-Coumaric acid, Epigallocatechin, and Ricinoleic acid, all
showed anti-cancer activities (10).

Excoecaria cochinchinensis Lour. (E. cochinchinensis Lour
Euphorbiaceae), namely “Hong-bei-gui-hua”, is widely
distributed in the South and Southwest of China and cultivated
largely as a green-tree, which has been used in traditional folk
medicine to treat cancer, malaria, dysentery, furuncles, pruritus,
prolonged diarrhea, and urethrorrhagia (84–86). It includes
various compounds, such as highly oxygenated diterpenoids
(named excolabdone D), loliolide, megastigmane glucosides,
flavonoids, triterpenoids, sterols, and phenolic (17, 84). Among
them, only (+)-epiloliolide was evaluated for its bioactivity. The
preliminary pharmacological studies indicated that the EtOH
extract showed cytotoxic activity against human Hela cell lines at
a concentration of 12.5 ug/mL, while the MeOH extract of E.
cochinchinensis Lour. leaves showed significant in vitro anti-
inflammatory effects (18, 85, 86). Furthermore, a bio-assay
A B

C

FIGURE 3 | Plant morphology of the three TCM. (A) Ricinus communis L (Source: Wikipedia), (B) Excoecaria cochinchinensis Lour, and (C) Breynia fruticosa
(Source: www.iplant.cn).
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guided study revealed the strong cytotoxic activity of the EtOAc
fraction of this plant. In addition, betulinic acid and prostratin (a
nontumor-promoting 12-deoxytigliane diterpenoid) have been
shown, respectively, to inhibit HIV-1 replication and HIV
expression in latently infected cell lines (86).
Frontiers in Oncology | www.frontiersin.org 10
Breynia fruticose (B. fruticose, Euphorbiaceae), which is
widely distributed in South China, is a folk medicine to treat
gastroenteritis, sore throat, chronic bronchitis, wounds, and has
an anti-cancer effect (19, 87). Previous research reported that B.
fruticose contains almost 10 bioactive compounds. Among them,
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FIGURE 4 | Expression and regulation of the top genes enriched on these five pathways in three candidate TCM. (A) TNF signaling pathway; (B) IL−17 signaling
pathway; (C) NF-kappa B signaling pathway; (D) Transcriptional misregulation in cancer pathway; (E) MAPK signaling pathway. R: R. communis L.; E: E.
cochinchinensis Lour.; B: B. fruticose; CK: the negative control.
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zizyberanalic acid and isoceanothic acid possess strong cytotoxic
activity against five human cancer cell lines, including breast
cancer MCF-7 (19). Meanwhile, phytochemical studies on B.
fruticosa have revealed that its main active constituents include
tannins, triterpenes, sterol derivatives, and lignins. The anti-
inflammatory ingredients of B. fruticosa are sulfur containing
sesquiterpenoids (breynins), which have strong anti-arthritic,
anti-inflammatory effects of B. fruticosa. Some compounds
similar with breynins, like thiacremonone, reduces inflammation
by inhibiting the NF-kB DNA binding activity and expression of
iNOS and COX-2, breynins may possess the similar mechanism
(20). Furthermore, the chloroplast genome of B. fruticosa has been
reported firstly, which can provide genomic resources of Breynia
species for further research (87).

Analysis of KEGG Pathway Enrichment in
Different Treatments
KEGG analysis results are shown in Supplemental Table 6, the
genes of some important pathways involved in cell cycle,
carcinogenesis, pro-inflammatory effect, cancer metastasis
breast cancer, small cell lung cancer (SCLC), prostate cancer,
and bladder cancer were significantly enriched. The extracts of E.
cochinchinensis Lour., B. fruticosa, R. communis L., S. scandens,
and M. verticillata var. crispa significantly enriched the genes of
the five pathways (TNF/IL-17/MAPK/NF-kappa B signaling
pathway, Transcriptional misregulation in cancer). M.
azedarach extract enriched the genes of the TNF and IL-17
signaling pathways, while the genes of the TNF and MAPK
signaling pathways were enriched in cell lines treated with M.
barbatus extract. G. elegans enriched only the MAPK signaling
pathway. Interestingly, the extracts from the plants belonging to
Frontiers in Oncology | www.frontiersin.org 11
the Euphorbiaceae family significantly enriched the genes of all
the pathways more than those from the plants of other families.
E. cochinchinensis Lour., B. fruticosa, and R. communis L. M.
barbatus enriched the genes of several important pathways and
most of themwere found tohave active compounds like terpenoids,
flavonoids, Epigallocatechin-3-gallate (EGCG), ursolic acid,
Phenols, amino acids, Tannins, and Steroids. Terpenoids,
flavonoids, and EGCG were found to be effective in breast cancer
treatment (82). Ricinin, p-Coumaric acid, Epigallocatechin, and
Ricinoleic acid extracted fromR. communisL.were found topossess
anti-cancer properties (10). Moreover, some plants of the
Euphorbiaceae family such as E. bicolor, E. hirta, and S. Baill were
analyzed for anti-cancer activity (88–90). In the positive controls,
doxorubicin hydrochloride enriched the genes involved in the Cell
cycle, p53 signaling pathway, and multiple cancer pathways,
including breast cancer, non-small cell lung cancer, small cell
lung cancer, bladder, gastric, pancreatic, and prostate cancer. It
suggested that doxorubicin hydrochloride can be used as a broad-
spectrum anti-cancer drug. Gemcitabine enriched the genes of the
PI3K-Akt and FoxO signaling pathways. However, other positive
controls enriched no cancer pathways, even a total of 28 samples
enriched no pathways, they may weakly impact the MCF-7 cell.

Enriched Pathways and Their Functional
Association With Immunity and
Progression of Cancer
Tumor Necrosis Factor alpha (TNF-a, TNF) is a key mediator
and regulator, which regulates immune system development, cell
survival signaling pathways, proliferation, and regulates
metabolic processes. TNF-a is one of the essential pro-
inflammatory cytokines of breast cancer patients found in the
TABLE 3 | The summary of the common genes of the five pathways in cancer cells treated with three TCM candidates.

Pathway Common genes in medicine Regulate

TNF signaling pathway IL6 upregulated
LIF upregulated
PIK3R1 downregulated
PIK3R3 upregulated

IL−17 signaling pathway IL6 upregulated
FOSL1 upregulated
TNFAIP3 upregulated
S100A9 upregulated

NF-kappa B signaling pathway CXCL12 downregulated
LYN upregulated
NFKBIA upregulated
TNFAIP3 upregulated
BRIC3 upregulated
EDARADD upregulated

Transcriptional misregulation in cancer IL6 upregulated
BIRC3 upregulated
CDKN2C downregulated
ID2 downregulated
PLAT upregulated
PPARG upregulated
CEBPB upregulated

MAPK signaling pathway RPS6KA3 upregulated
AREG upregulated
DUSP6 upregulated
EPHA2 upregulated
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tumor microenvironment (TME), being secreted both by stromal
cells (mainly tumor-associated macrophages) and the cancer
cells themselves (70). TNF can also stimulate apoptosis in
certain pathological conditions. Impacting the cell fate and
organismal homeostasis is the main way of TNF-regulated
pathways to participate in diverse cellular and physiological
processes (70, 71).
Frontiers in Oncology | www.frontiersin.org 12
The interleukin-17 (IL-17) family of cytokines is deeply
implicated in chronic inflammatory diseases and is gaining
interest as an actor in cancer immunity. IL-17 signaling is
associated with immunopathology, autoimmune disease, and
cancer progression (67, 75). Its pro-tumoral effects on
proliferation, angiogenesis, invasion, migration, and resistance
to treatments have been observed in a variety of cell lines and
FIGURE 5 | The expression levels of common genes in different treatments.
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mouse models. These effects may be direct via widely measured
IL-17Rs signaling through MAPK and NF-kappa B recruitment
(67), IL-17 signaling pathway is primarily activated by serine/
threonine kinases which characterize the NF-kappa B and
MAPK pathway activation (75). NF-kappa B as a pro-
inflammatory factor, activated by the IL-17-family in innate
immune signaling. Numerous studies have shown that IL-17A
activates various MAPKs, and that the MAPK pathway has an
important role in regulating the expression of IL-17A-induced
genes through the control of mRNA transcript stability (73–75).

The nuclear factor-kappa B (NF-kappa B, NF-kB) complex is
composed of a family of inducible transcription factors found in
almost all cells. Activating NF-kappa B would enhance the
expression of several inflammatory cytokine genes, including
TNF-a, IL-6, and IL-8 (72). NF-kappa B has been proved to
participate in the initiation and progression of inflammation
tumor tissues (91), and has even been regarded as a key
coordinator of inflammation and important endogenous tumor
Frontiers in Oncology | www.frontiersin.org 13
promoter. NF-kappa B is involved in tumor cell growth and
activated relative inflammatory cytokines, adhesion molecules,
and angiogenic factors to expedite the proliferation of tumor cells
(92, 93). NF-kappa B pathway is one of the main inflammation-
mediated pathways, which may lead to the emergence of
resistance to chemotherapy and endocrine therapy via the
evasion of appropriate apoptosis (66).

Mitogen activated protein kinase (MAPK) pathways, which
control proliferation, differentiation, and apoptosis and are also
aberrantly regulated in cancer (94), are considered to play a crucial
role in cellular signal transduction pathways.MAPK deregulation can
lead to various cancer forms including breast, oral, lungs, colorectal,
ovarian, and thyroid (65). In particular, it is an important signaling
pathway associated with breast cancer progression (95). Targeting
MAPK pathways along with conventional anti-cancer drugs
enhances the effectiveness of drugs (96).

Transcriptional regulation is an important biological process
of the cell and organism respond to multiple signals over their
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lifetime (97). Similarly, it is the core process in cancer
progression and metastasis. Transcription factors (TFs) are the
key regulators of gene transcription, and are often amplified,
deleted, or rearranged to the gain or loss of function in a cancer
cell (76). Therefore, transcriptional misregulation has a strong
impact on the cancer metastasis process, such as local invasion,
dissemination, and eventual colonization of the tumor to distant
organs (69). Transcriptional misregulation also interacted with
other pathways, for example, misregulation of the immune
response transcriptional regulator NF-kappa B has been linked
to inflammation in cancer, the transcription factor-controlled
Frontiers in Oncology | www.frontiersin.org 14
genes are involved in inflammation and was chronically active in
cancer inflammatory process (76).

The Common Genes of Five Pathways
in Cancer Cells Treated With Three
TCM Candidates
Pleiotropic cytokine IL-6 gene of the three key pathways (TNF,
IL 17, and NF kappa B signaling pathways) was significantly
upregulated in each of the treatments. It has been reported to be a
key player in systemic inflammation and a biomarker for tumor
burden and physical inactivity, since it possess the function of
0
.2

0
.4

0
.6

0
.8

1
.0

Cluster Dendrogram

H
e
ig

h
t

Dynamic Tree cut

Merged dynamic

−0.4

−0.2

0

0.2

0.4

G
ro

up
1

G
ro

up
2

G
ro

up
3

G
ro

up
4

G
ro

up
5

G
ro

up
6

G
ro

up
7

G
ro

up
8

G
ro

up
9

G
ro

up
10

G
ro

up
11

G
ro

up
12

G
ro

up
13

MEwhite

MElightcyan1

MEmediumpurple3

MEthistle2

MEbrown

MEsteelblue

MEblue

MElightgreen

MEbisque4

MEgreen

MEnavajowhite2

MEivory

MEdarkgrey

MEmagenta

MEsalmon4

MEbrown4

MElightsteelblue1

MElightpink4

MEgrey

0.11

(0.3)

0.25

(0.02)

0.084

(0.4)

−0.03

(0.8)

0.21

(0.04)

0.047

(0.6)

−0.028

(0.8)

0.079

(0.4)

0.043

(0.7)

0.14

(0.2)

0.13

(0.2)

−0.52

(5e−08)

−0.39

(1e−04)

0.19

(0.06)

0.06

(0.6)

−0.057

(0.6)

−0.17

(0.1)

0.25

(0.01)

0.063

(0.5)

−0.066

(0.5)

0.042

(0.7)

0.045

(0.7)

0.048

(0.6)

−0.0061

(1)

−0.18

(0.08)

−0.23

(0.02)

0.057

(0.6)

0.056

(0.6)

−0.072

(0.5)

−0.14

(0.2)

0.2

(0.05)

0.0061

(1)

0.1

(0.3)

−0.027

(0.8)

0.13

(0.2)

−0.027

(0.8)

0.057

(0.6)

−0.22

(0.03)

−0.062

(0.5)

−0.0071

(0.9)

0.13

(0.2)

0.34

(8e−04)

0.059

(0.6)

−0.1

(0.3)

−0.046

(0.7)

−0.094

(0.4)

−0.058

(0.6)

0.029

(0.8)

0.094

(0.4)

0.16

(0.1)

−0.24

(0.02)

−0.19

(0.06)

−0.013

(0.9)

0.12

(0.2)

0.041

(0.7)

0.11

(0.3)

0.044

(0.7)

−0.036

(0.7)

0.097

(0.3)

0.11

(0.3)

0.044

(0.7)

−0.017

(0.9)

0.14

(0.2)

−0.3

(0.003)

−0.24

(0.02)

0.13

(0.2)

0.11

(0.3)

−0.004

(1)

−0.012

(0.9)

0.13

(0.2)

0.0092

(0.9)

−0.018

(0.9)

0.1

(0.3)

0.079

(0.4)

0.05

(0.6)

0.16

(0.1)

−0.28

(0.006)

−0.39

(1e−04)

−0.051

(0.6)

0.26

(0.01)

0.12

(0.2)

0.18

(0.08)

−0.027

(0.8)

−0.0049

(1)

0.062

(0.5)

0.086

(0.4)

0.032

(0.8)

0.068

(0.5)

0.2

(0.05)

−0.48

(6e−07)

−0.28

(0.006)

−0.0028

(1)

0.27

(0.007)

0.031

(0.8)

0.12

(0.2)

0.19

(0.06)

0.038

(0.7)

0.083

(0.4)

0.13

(0.2)

0.033

(0.7)

0.029

(0.8)

0.094

(0.4)

−0.6

(9e−11)

−0.26

(0.01)

−0.15

(0.1)

0.042

(0.7)

0.078

(0.4)

0.16

(0.1)

−0.14

(0.2)

−0.099

(0.3)

0.13

(0.2)

−0.02

(0.8)

0.049

(0.6)

−0.093

(0.4)

0.15

(0.1)

−0.091

(0.4)

0.043

(0.7)

−0.12

(0.3)

0.16

(0.1)

−0.018

(0.9)

0.2

(0.05)

0.031

(0.8)

−0.0019

(1)

0.14

(0.2)

0.054

(0.6)

0.023

(0.8)

−0.068

(0.5)

0.052

(0.6)

−0.34

(7e−04)

−0.0065

(0.9)

−0.12

(0.2)

0.048

(0.6)

−0.031

(0.8)

0.2

(0.05)

−0.13

(0.2)

0.026

(0.8)

−0.025

(0.8)

−0.0056

(1)

−0.12

(0.2)

0.034

(0.7)

−0.083

(0.4)

0.057

(0.6)

0.12

(0.2)

−0.051

(0.6)

0.16

(0.1)

0.00036

(1)

0.19

(0.06)

−0.11

(0.3)

0.026

(0.8)

0.0082

(0.9)

0.0081

(0.9)

−0.0056

(1)

0.066

(0.5)

0.12

(0.2)

−0.25

(0.01)

−0.075

(0.5)

0.015

(0.9)

−0.098

(0.3)

−0.21

(0.04)

0.00025

(1)

0.25

(0.01)

−0.042

(0.7)

0.1

(0.3)

0.088

(0.4)

0.049

(0.6)

−0.074

(0.5)

−0.055

(0.6)

0.0067

(0.9)

−0.0032

(1)

0.045

(0.7)

−0.13

(0.2)

−0.2

(0.05)

0.014

(0.9)

0.26

(0.01)

0.021

(0.8)

0.12

(0.2)

0.063

(0.5)

0.042

(0.7)

−0.17

(0.09)

−0.16

(0.1)

−0.03

(0.8)

0.17

(0.1)

0.0042

(1)

0.027

(0.8)

−0.16

(0.1)

0.12

(0.3)

0.24

(0.02)

0.011

(0.9)

0.14

(0.2)

0.14

(0.2)

0.035

(0.7)

−0.11

(0.3)

−0.074

(0.5)

−0.26

(0.01)

−0.015

(0.9)

0.16

(0.1)

−0.13

(0.2)

−0.39

(8e−05)

0.01

(0.9)

0.17

(0.09)

0.021

(0.8)

0.0035

(1)

0.043

(0.7)

0.064

(0.5)

−0.11

(0.3)

−0.16

(0.1)

0.14

(0.2)

0.095

(0.4)

0.04

(0.7)

−0.2

(0.05)

−0.18

(0.08)

0.0064

(1)

0.19

(0.07)

−0.088

(0.4)

0.062

(0.5)

0.041

(0.7)

0.034

(0.7)

−0.3

(0.003)

−0.23

(0.02)

0.27

(0.008)

0.22

(0.03)

0.17

(0.1)

−0.13

(0.2)

−0.1

(0.3)

0.024

(0.8)

0.29

(0.004)

0.049

(0.6)

−0.24

(0.02)

0.031

(0.8)

0.019

(0.9)

−0.13

(0.2)

−0.024

(0.8)

−0.0084

(0.9)

−0.054

(0.6)

0.22

(0.03)

−0.2

(0.05)

−0.095

(0.4)

−0.089

(0.4)

0.12

(0.2)

−0.074

(0.5)

−0.17

(0.1)

−0.059

(0.6)

0.085

(0.4)

−0.092

(0.4)

0.035

(0.7)

0.15

(0.1)

0.05

(0.6)

A B

FIGURE 7 | The gene set enrichment analysis and module identification. (A) Dendrogram of all filtered gene sets enriched according to a dissimilarity measure (1-
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FIGURE 10 | The co-expression network. (A) The co-expression network of the significant genes in the thistle2 module, including 72 nodes. (B) The co-expression
network of the significant genes in the blue module, including 728 nodes. The hub genes were represented in red color. Cytoscape (v3.8.1) software was
downloaded from the website (https://cytoscape.org/) and three models were chosen including “source node”, “target node”, and “edge attribute” with default
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regulating cell growth, migration and renewal of stem cells,
inflammation, and tissue metabolism (98). Similarly, IL-6
cytokine leukemia inhibitory factor (LIF), which belongs to the
IL-6 family of cytokines, was recently identified as a critical factor in
cancer progression, metastasis, stem cell maintenance and therapy
resistance, and represented as a breast tumor and lung metastasis
suppressor (99, 100). In addition, it has been reported that PIK3R1
and LYN regulate the PI3K/AKT signaling pathway inMCF-7 cell.
PIK3R1 is a critical component of the PI3K/AKT signaling
pathway, deregulation of the phosphoinositide 3-kinase (PI3K)
pathway contributes to tumor development and progression.
LYN is a member of the SRC family of protein tyrosine kinases
(SFKs), which are key regulators of several cellular processes,
including cancer cell growth, migration, invasion, and survival
(101, 102). TNFAIP3 (The TNF-a induced protein 3), a potent
anti-inflammatory and NF-kappa B inhibitory protein, protects
cells from TNF-induced cytotoxicity. TNFa signals activate the
NF-kappa B pathway via TNFR1 and TNFR2 in response to
inflammation. Moreover, TNFAIP3 has been reported to control
NF-kappa B activity and promote liver regeneration by activating
the inflammatory IL-6/STAT3 signaling pathway. Its pro-
proliferative mechanisms are increased and IL-6 induced STAT3
phosphorylation are sustained, decreasing the hepatocyte
expression of the negative regulator of IL-6 signaling (103, 104).
Peroxisome-proliferator activated receptors (PPARs) are related to
the dysfunction of the skeletalmuscle inwomenwith breast cancer.
PPARG (PPAR-gamma) is an important gene responsible for
mitochondrial functions. Thus, PPARG signaling is crucial for
breast cancer-derived factors altering lipid accumulation and
mitochondrial functions (105). CCAAT/enhancer-binding protein
beta (CEBPB) has been identified as a novel transcriptional regulator
of the CLDN4 promoter. PAK4-mediated CEBPB activation
upregulates CLDN4 expression to promote cell migration and
invasion in breast cancer, thus, PAK4/CEBPB/CLDN4 may be a
potential therapeutic target in breast cancer treatment. Furthermore,
CEBPB also interacts with FOXO1, NF-kappa B, and CCL20, and
FOXO1/CEBPB/NF-kappa B/CCL20 axis has been reported as a
target for Colorectal cancer treatment (106, 107). Ephrin type-A
receptor 2 (EPHA2) is a receptor tyrosine kinase (RTK), the
overexpression of EPHA2 is associated with metastasis in a variety
of cancers, including melanomas and ovarian, prostate, lung, and
breast cancers. EphA2 receptor has a pro-oncogenic property which
activates the tumor-suppressive signaling pathways of EphA2, and
inhibits the PI3K/Akt and ERK pathways (108, 109).

Meanwhile, seven common genes, FOSL1, S100A9, CXCL12,
ID2, PRS6KA3, AREG, and DUSP6, have been used as the target
biomarkers and even the diagnostic tools in cancer therapy.
FOSL1 is a basic-leucine zipper transcription factor which
controls cell proliferation, differentiation, angiogenesis, cell
mobility, and apoptosis. It plays a critical role in cancer cell
invasion and metastasis. Overexpression of this gene has
frequently been analyzed in multiple types of human cancers,
including invasive breast cancers. High FOSL1 expression in
TNBC patients leads to poorer survival rates than low FOSL1
expression (110, 111). S100A9 is a member of the S100 protein
which shows a potential cytokine-like function in inflammation
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and is expressed in some cancers, impacting carcinogenesis,
cancer development, and metastasis. It has been reported that
S100A9 probably plays a key role in inflammation-related breast
cancers and induces the expression of pro-inflammatory
cytokines (IL-6, IL-8, and IL-1b), thus, its expression level can
be used to diagnose breast cancer (112, 113). The chemokine
CXCL12 has been shown by therapies against aggressive and
metastatic breast cancer to regulate the cell growth and
metastasis of breast cancer, and to develop the tumor
microenvironment. It can also be used as a cancer biomarker
and adds prognostic information in various cancer types (114,
115). Inhibitors of DNA-binding (ID) proteins contribute to cell
proliferation and differentiation. The member ID2 has been
reported as a prognostic marker in breast cancer patients, as
well as a key regulator of breast cancer metastasis to the brain (116,
117). RPS6KA3 (RSK2). Moreover, it has also been proposed as a
target for cancer therapy due to it working as a transcription factor
in breast cancer, especially, in ER- breast cancer (118).
Amphiregulin (AREG) is an epidermal growth factor (EGF)
receptor ligand found in multiple cancer types. AREG is co-
expressed with AR in invasive breast cancer, which is reported
as one of the prognostic biomarkers and therapeutic targets in
invasive breast cancer, particularly in ER-negative breast cancer
(MCF-7). EGFR‐mediated Akt activation is associated with PD‐L1
expression, which can be reduced by EGFR inhibitors in cancer
cell lines carrying activated EGFR (119, 120). DUSP6 is a member
of the MAPK phosphatase family which plays a pro-oncogenic
role in human glioblastoma, thyroid carcinoma, breast cancer, and
acute myeloid carcinoma via the MAPK signaling pathway. It has
also been reported as a potential therapeutic target and diagnosis
marker for different cancers (121).

Based on these results, future research could probe the
interaction between medicinal plant ingredients and breast
cancer cells, and to explore the differential gene activation
mechanisms for pharmacodynamic substances to identify their
medicinal compositions and action mechanisms (2, 4).
Furthermore, we hope to identify novel makers, screen out
breast cancer therapeutic targets, and develop new natural
drug groups against breast cancer, bringing new ideas to the
development of new drugs screening methods (31, 33, 34).
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