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Abstract: Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and
dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta
promise fine bone ingrowth and new bone formation within the inner space, which further guarantee
rapid osteointegration and bone–implant stability in the long term. Porous Ta has high wettability
and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts.
Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively
avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly,
the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived
from its excellent biological and mechanical properties. With the advent of additive manufacturing,
personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment
of individual patients who need specially designed implants or prosthesis. In addition, many
modification methods have been introduced to enhance the bioactivity and antibacterial property of
porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients
is of great importance to guarantee surgical success after porous Ta insertion.

Keywords: porous tantalum; clinical application; additive manufacturing; surface modification; bone
tissue engineering

1. Introduction

Named after the Greek mythological figure Tantalus [1], tantalum or Ta is a rare,
rigid and ductile metal element with an extremely high melting point (3017 ◦C) [2] and
density (16.6 g/cm3) [3,4]. Ta has excellent biocompatibility and corrosion resistance, has
been used in pacemaker electrodes, suture wire, cranioplasty plates, radiopaque markers,
foil and mesh for nerve repair since the 1940s [5]. In addition, Ta has been used as
single or composite coating material to modify the biological and mechanical properties of
pure titanium(Ti) [6–8], Ti alloy (Ti6Al4V) [9], polyetheretherketone (PEEK) [10], cobalt-
chromium (CoCr) alloy [11,12], magnesium-based alloy [13], pure Fe [14] and 316 L stainless
steel [15]. Recently, the advent of Ti-Ta alloy with different Ta element contents indicates a
novel means to fabricate implants for bone defect restoration with improved mechanical
strength, and satisfactory elastic modulus and biological properties, compared to pure Ti
and Ti alloy [2,16,17].

Though lacking intrinsic antibacterial properties [16], Ta has a lower bacterial ad-
hesion level and colonization compared to titanium (Ti) and stainless steel due to the
spontaneously formed oxide surface layer (Ta2O5) [17,18]. The Ta2O5 layer also has been
proven to facilitate the deposition of bone-like apatite coating in simulated body fluid
(SBF) [19], and further accelerate the adherence of osseous and soft tissues [20]. Moreover,
nanoparticles released from Ta implants have been certified to stimulate the proliferation
of osteoblasts via autophagy, and the osteogenic process can further be enhanced by au-
tophagy inducer [21]. Although the osteogenic signaling pathways of Ta have yet been fully
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explicated, several studies have focused on the TGF-β/Smad3 [22], BMP2/Smad1 [23],
Wnt/β-catenin [22,24], Integrin α5β1/ERK1/2 [25,26] and MAPK/ERK pathways [27] that
may be involved in the osteogenic effects of Ta. It is also reported that Ta can enhance the
osteogenesis of diabetic rabbits by suppressing the activation of ROS-mediated P38 MAPK
signaling pathway [28]. Furthermore, Ta upregulates the expression level of osteoprote-
grin (OPG) and reduces that of RANKL, which means Ta also can inhibit the activity of
osteoclasts [23]. The relative molecular mechanism for the osteogenic effects of Ta has been
illustrated in Figure 1.

Figure 1. Schematic representation of the relative signaling pathway that may be involved in the osteogenic effect of Ta.

Compared to its solid counterpart, currently commercialized porous Ta possesses
modified physical properties including high porosity (range from 75% to 85%), dodeca-
hedral cell structure and pore sizes ranging from 400 to 600 µm. It has been reported that
scaffolds with an average pore size of up to 400 µm and porosity of up to 70% can facilitate
cell migration, proliferation, osteogenic differentiation, and blood vessel and bone tissue
formation [29–32]. In this regard, the higher pore size and porosity of porous Ta can also
contribute to bone and soft tissue ingrowth due to its extensively three-dimensional inner
space and high pore interconnectivity [33,34]. Meanwhile, the high porosity of porous Ta
ensures desirable permeability for vascularization and nutrient flow, which can guarantee
rapid osteointegration at an early stage [35]. Combined with the inherent high wettability
and surface energy, porous Ta can further facilitate the adhesion, differentiation and spread
of stem cells [36], osteoblasts [37,38] and chondrocytes [39], as well as vascularized fibrous
tissues [40] and tendon [41]. Furthermore, bone ingrowth can be found within the pores of
porous Ta as early as 4 weeks after implantation [38] (Figure 2). Many in vivo studies also
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have highlighted its early osteointegration and evidenced bone ingrowth within the inner
pores with Haversian remodeling in the long term [22,41–43]. In vitro, after being cultured
on the porous Ta, osteoblasts obtained from old female patients (>60 years) showed better
proliferation and osteogenesis than those cultured on Ti fiber mesh [44], indicating the
potential efficacy of porous Ta for the treatment of patients suffering from osteoporosis.

Figure 2. The microstructure of porous Ta presented as honeycomb structure (a), and cells that
partially cover the cavity with many calcium nodules (indicated with white arrow) can be detected
(b). Reprinted from ref. [36]. Abundant bone ingrowth can be found in the pores of porous Ta
implant (c). Reprinted with permission from [45]. Copyright © 2021 by American Academy of
Orthopaedic Surgeons.

As shown in Table 1, the mechanical properties of porous Ta can be modified to be
more suitable for bone-tissue regeneration, especially for load-bearing parts of the body, via
various technology due to its elastic modulus and compressive strength being much more
comparable to either cortical or cancellous bones [20,33]. The satisfactory elastic modulus of
porous Ta is of great importance to proportionally distribute load stress to adjacent osseous
tissues, minimize stress shield effect, prevent bone resorption, and further preserve the
adjacent bone stock [46]. In addition, the high friction coefficient of porous Ta also promises
primary stability for the porous Ta-based implants or prostheses [42]. It is worth noting
that higher pore size and porosity are associated with fine biological performance, but the
mechanical strength is the opposite [43]. Therefore, attaining a balance between biological
and mechanical properties of porous Ta by adjusting a rational pore size/porosity ratio is a
critical challenge for future manufacturing and application.
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Table 1. The mechanical properties of osseous tissues and porous Ta produced by different techniques.

Osseous
Tissues

Manufacturing
Technique Porosity (%) Pore Size (µm) Strut Size (µm) Elastic

Modulus (GPa)
Compressive

Strength (MPa)
Yield Strength

(MPa)
0.2% Proof

Strength (MPa) Ref

Cortical bone 3–5 7–30 100–230
[47]

Trabecular bone 50–90 0.01–3.0 2–12

CVD
(porous carbon scaffold) 75–85 400–600 40–60 2.5–3.9 42–78 [33]

CVD
(porous SiC scaffold) 70–85 150–400 40–60 10–30 35–100 [48]

Foam impregnation 65–80 400–600 2.0–4.6 100–170 [49]

Powder metallurgy 100–400 2.0 ± 0.3 50.3 ± 0.5 [50]

LENS
55 1.5 ± 0.3 100 ± 10

[51]45 7 ± 0.6 192 ± 7
27 20 ± 1.9 746 ± 27

SLM 80 500 150 1.22 ± 0.07 28.3 ± 1.2 12.7 ± 0.6 [52]

SEBM
75 540 23.98 ± 1.72

[53]80 392 19.48 ± 1.45
85 386 6.78 ± 0.85

SLM 70 500 400 3.10 ± 0.03 [54]

SLM 80 300–400 2.34 ± 0.2 78.54 ± 9.1 [55]

Notes: CVD, Chemical Vapor Deposition; LENS, Laser Engineered Net Shaping; SLM, Selective Laser Melting; SEBM, Selective Electron Beam Melting.
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The commercially available porous Ta implants fabricated via Chemical Vapor Depo-
sition (CVD) by Zimmer Biomet Inc. (Warsaw, IN, USA), also known as trabecular metal,
resemble cancellous bone due to their microstructure [33]. Meanwhile, many manufactur-
ers, e.g., Runze Pharmaceutical Co., Ltd. (Chongqing, China) [49] and Printing Additive
Manufacturing Co., Ltd. (Zhuzhou, China) [54], have also engaged in the manufacture
of porous Ta. At present, additive manufacturing (AM), also known as 3-Dimensional
printing or rapid prototyping, has been exploited to fabricate porous tantalum scaffolds or
implants. The procedures of AM technology mainly include electron beam melting (EBM),
laser engineering net shaping (LENS), and selective laser melting (SLM). Compared with
CVD or other traditional subtractive manufacturing, AM exhibits superior performance
with satisfactory cost-efficiency, less time and material consumption [53]. With the help
of AM technology, both the macrostructure and microstructure of porous Ta can be pre-
cisely controlled, during the producing process, according to the design parameters. The
Additive manufactured porous Ta scaffolds also show satisfactory fatigue strength and
load-bearing capacity [56]. Moreover, many modification methods have been employed to
enhance the bioactivity and antibacterial property of porous Ta for its future application in
bone tissue engineering.

So far, porous Ta-based implants or prostheses have been extensively applied in
orthopedics and dentistry (Figure 3, and typical products are shown in Figure 4). Therefore,
the aim of this research is to review the clinical application of porous Ta-based implants or
prostheses which have been implemented in orthopedics and dentistry, and summarize
new manufacturing and modification methods for this promising porous biomaterial.

Figure 3. Application of porous Ta in different parts of the human body.
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Figure 4. The typical products of porous Ta-based implants manufactured by Zimmer Biomet Inc. Acetabular cup with
porous Ta coating (a). Reprinted with permission from [45]. Copyright © 2021 by American Academy of Orthopaedic
Surgeons. Porous Ta lumbar interbody fusion cage (b) Reprinted from ref. [57], porous Ta rod (c) Reprinted from ref. [58]
and dental implant (d) Reprinted from ref. [59]. The porous Ta cones were used to reconstruct femoral metaphyseal defect
(e–g). Reprinted from ref. [60].

2. Clinical Application of Porous Ta in Orthopedics and Dentistry
2.1. Femoral Head Osteonecrosis

Osteonecrosis of the femoral head can be an extremely harmful disease for young and
middle-aged patients who are physically active [61,62]. Therefore, appropriate measures
should be taken at an early stage to preserve the femoral head before the final collapse of
the femoral head and subchondral plate.

Core decompression has been applied in the salvage of the femoral head for many
years, but the lack of mechanical support to the subchondral bone after debridement of
the necrotic bone may further result in the collapse of the head [63]. Meanwhile, in their
histopathology study, Gonzalez Del Pino et al. [64] found that the new bone formation
originated mainly from the host bones rather than the vascularized grafts. In this regard, as
a reasonable substitute for vascularized fibular autografts, porous Ta rod has been used as a
supplementary approach to sustain the bony defect portion after core decompression [65].

Primarily designed to sustain the structure of the subchondral plate and stimulate
osteogenesis of the host bone, porous Ta rod has been proven to alleviate the deterioration
of femoral head necrosis and postpone the final conversion to total hip arthroplasty, in
the majority of publications, for early or intermediate stage patients [65–68]. Although the
efficacy of this tantalum rod remains controversial in the long-term [69], removal of the
rod would be an obstacle during conversion to total hip arthroplasty [70]. The survival
rates after porous Ta rod insertion is impacted by multiple factors including the stage of
the disease, corticosteroid usage, osteonecrosis lesion volume and location, bone marrow
edema, and joint effusion [71,72]. The presence of bone marrow edema has been proven to
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be a poor prognostic factor of femoral head osteonecrosis and also a predictor of conversion
to total hip arthroplasty (THA). Furthermore, patients with bone marrow edema had a
significantly higher likelihood of eventually resorting to THA [72].

It should be noted that the diameter of a porous Ta rod is only 10 mm, which confines
the supporting area of the rod; if the lesion size was larger than that diameter, collapse
would occur at other areas [73]. Moreover, the histopathological analysis of 15 retrieved
porous Ta rods revealed 1.9% bone ingrowth, and mechanical support for the subchondral
bone was proven to be insufficient [74]. Thus, improvements in implant design and surgical
technique are needed, and the patients’ necrotic stages should also be scrutinized before
the surgical procedure is undertaken [75]. Accordingly, many modified surgical techniques
have been introduced to enhance the osteogenesis ability of porous Ta rod, including a
combined technique involving bone marrow aspired from iliac crest [58], combination
with vascularized bone grafting alone [76], or with bone marrow mesenchymal stem cells
(BMMSCs) and vascularized autografts [77]. However, longer-term follow-up clinical trials
are still desired to verify the efficacy of these modified methods.

2.2. Hip Arthroplasty

The porous Ta acetabular cup for primary THA is fabricated by directly compressing
the ultra-high molecular polyethylene into an elliptical porous Ta shell. This kind of
monoblock acetabular component design has theoretically diminished the occurrence of
backside wear, and the absence of screw holes prevents the access of polyethylene wear
debris, which can infiltrate the bone–implant interface, and which has long been regarded
as an initiating factor resulting in aseptic loosening of the cup [78]. The porous Ta shell
with low elastic modulus, high friction coefficient and excellent osteoconductivity can
help to preserve or even increase the bone stock of adjacent acetabulum and, if necessary,
facilitate the revision surgery [79].

In a preclinical research, 22 porous Ta acetabular components were exploited in a
canine model [37]. The results revealed that the bone ingrowth depth of the 22 cups ranged
from 0.2 to 2 mm after 6 months. Furthermore, the average bone ingrowth was 16.8% in all
sections and 25.1% in the periphery; both were better than the results of another canine
model study in which bone ingrowth in titanium fiber and Co-Cr was 21.5% and 13.4%,
respectively [80]. Clinically, 151 hips were followed up for 8–10 years post primary THA
in a prospective study [81]. Although periacetabular gaps with lengths ranging from 1 to
5 mm could be found in 25 hips at early stage, those gaps disappeared after 24 weeks. The
follow-up radiograph verified the absence of radiolucency, osteolysis of the adjacent bone,
polyethylene wear debris and cup loosening. All these indicated the design advantages of
the porous Ta cup. Substantial bone deposition could be found on the surface of a retrieved
acetabular component after 50 months due to dislocation in this study. However, the lack of
screw holes of the cup may have hampered the direct observation of dome contact during
surgery and the final seating of the cup into acetabular socket could not be accurately
ensured [81].

As for revision THA, it is a surgical challenge to reconstruct acetabulum with huge
bone defects and to restore the primary stability, rotational center and maximal bone–
implant contact [82]. Porous Ta acetabular prostheses has been revealed as an optimal
option to cope with these formidable challenges [83–87]. The modular design of the porous
Ta revision prosthesis provides augmented or buttressed sections to be screwed onto the
supra-acetabulum for bone defect reconstruction; subsequently, the elliptical cup is im-
planted in the acetabular socket against the section with cement laying at the interface of the
two components [88]. Many short and medium-term studies have shown promising results
of the modular porous Ta acetabular shell and augmentation in the treatment of acetabular
dome defects with or without osteolysis of ischium, teardrop and Kohler line disruption
(Paprosky type II or III) [85,87,89–94]. A ten-year follow-up after revision surgery with
porous Ta shell and augmented implantation was conducted by Löchel et al. [95]. The
survival rate of 51 patients (53 hips) who had completed the follow-up was 92.5%, with a
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significant increase in Harris Hip Score (55 before surgery vs. 81 post surgery) after the
revision surgery. Meanwhile, the authors strongly recommended the application of screws
toward the load transferring and inferior direction in every patient with acetabular defects
to stabilize the shell and augmentation, diminish the fretting at the interface of shell–host
bone or shell–augmentation and guarantee the primary stability of the long-term survival
rate [95]. In addition, porous Ta acetabular implants and augmentations were suggested
in the reconstruction of the hip joint after resection of peri-acetabular tumors, in order to
ensure satisfactory clinical results at early stage [96]. The irradiated pelvis was reported to
always be associated with high aseptic loosening rates of acetabular components [97–99].
Even so, porous Ta cups still obtained satisfactory results in THA treatment of irradiated
pelvis owing to their high friction coefficient and porous microstructure, as well as rapid
bone ingrowth rate [97–99]. However, it is imperative to note that transverse acetabulum
fracture may occur during or after the revision surgery if excessive reaming is performed
to insert large cups (average 58 mm) during the operation [100,101].

2.3. Knee Arthroplasty

Porous Ta prosthesis for keen primary and revision reconstruction comprises the
monoblock tibial component, the tibial or femoral cone and augmentation, as well as the
patella prosthesis. The design of the monoblock tibial component for primary arthroplasty
is similar to that of the monoblock acetabular component, with the polyethylene directly
compressed into a porous Ta baseplate, which also eliminates the potential occurrence
of wear debris infiltrating into bone–implant interface. The mechanical and biological
properties of porous Ta guarantee the primary stability of the tibial component and en-
sure its long-term survival rate [102]. Several short and long term results have shown
encouraging efficacy of this cemented or uncemented monoblock tibial component for the
treatment of relatively young and active patients [103–108]. A histological analysis of a
retrieved porous Ta tibial component from a chronically infected knee prosthesis revealed
significant bone ingrowth in the posts and post–baseplate interface rather than baseplate,
suggesting that fine bone–implant integration could still be obtained even in the infected
environment [109]. However, caution should be taken with patients who have heavy
weight (average 241.9 lbs) and tall height (average 71.8 inch) and have previously received
total knee arthroplasty (TKA) with cementless porous Ta tibial prostheses, as this patient
group may easily encounter early medial collapse due to the overload cyclically posed on
the medial portion of the tibial prosthesis [110].

Severe distal femoral and proximal tibial bone defects are the greatest challenge
in revision total knee arthroplasty. Without adequate bony support and inferior bony
structure, the collapse of the tibial or femoral component will inevitably occur. Therefore,
porous Ta cones for substitution of tibial and femoral metaphyseal bone defects have been
introduced to function as structural grafts, to enhance bone stock, and to regain normal
articular alignment with multiple flexibilities for different sizes and positions of bone
loss [102,111]. The results of a 5-year study reported by Potter et al. [112] indicated that
porous Ta femoral cones could effectively fill the metaphyseal defects of the distal femur
and sustain the femoral component after revision TKA. Another five to nine year follow-up
study supported the efficient application of porous Ta tibial cones for the restoration of
huge osseous loss and facilitated early weight-bearing [113]. However, long-term and
comparative analysis is still needed to further verify the viability of these porous cones
for massive metaphysis defect reconstruction, and the high price per cone (approximately
$4.000) would impede their clinical application at a large scale [114].

Restoring the normal function and structure of the patellofemoral joint will be an
integral portion in TKA or revision TKA if the extensor mechanism has been impaired
due to patellar resection or severe osseous deficiency. Owing to its capability to favor
soft tissue and bone ingrowth [38,40], porous Ta patellar prosthesis has been used to
reconstruct the fulcrum role of patella [115]. However, the stability of this novel patellar
prosthesis depends mainly on the residual bone stock of patella, rather than soft tissue [116].
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Moreover, abundant bone–implant contact and blood supply to the residual patella are
critical factors for the long term success of porous Ta patellar prosthesis [117]. Therefore,
prudent selection of proper patients should be the prior step before definite surgery is
performed, so as to avoid the recurrence of complications such as persistent pain, weakened
extensor mechanism, and patellar shell fracture.

2.4. Shoulder Arthroplasty

Glenoid component loosening is always a disturbing complication of total shoulder
arthroplasty (TSA) or reverse total shoulder arthroplasty (RTSA) despite various methods
having been implemented to address it [118–122]. Based on the successful experience in
hip and knee arthroplasty, the porous Ta baked monoblock glenoid component has been
introduced for TSA [123] and RTSA [124], utilizing the properties of rapid osteointegration
and high friction coefficient of porous Ta, which can elongate survivorship of the shoulder
prosthesis in the long-run.

Budge et al. [123] reported that prosthetic fracture of the first generation of the porous
Ta glenoid component occurred in 4 of 19 patients after 30 months. All four glenoid
component fractures appeared at the interface of the keel and the metal plate, indicating
a combined effort of cyclic loading and insufficient bony support to the glenoid portion
of the prosthesis that finally ignited the fatigue failure at the junction of the keel and the
metal plate [123]. Therefore, emphases should be placed on gaining a compacted press-fit
pattern of the metal component in surgery [125]. Reinforced with anterior-posterior keels
and extended interdigitating at the interface of polyethylene tray and porous Ta plate,
the redesigned second generation of porous Ta glenoid prosthesis is introduced to cope
with the annoying keel–glenoid plate junction fracture that frequently occurred in the first
generation [126].

Improved clinical performance of the second generation porous Ta glenoid component
was revealed in 40 patients who were followed up for 38 months post TSA [126]. Significant
progress of shoulder function scores were found in all 40 patients without conspicuous pros-
theses loosening, migration or fracture [126]. After 76 shoulders were replaced with porous
Ta glenoid components and followed up for an average of 43.2 months, Panti et al. [127]
also reported satisfactory clinical results in terms of improved range of motion, pain relief
and advanced function scores with the absence of severe complications such as implant
fracture or loosening. The mechanism behind the successful results obtained in the two
aforementioned studies mainly depended on the amplified cruciform pegs, which guaran-
teed the compact press-fit mechanism of the glenoid component in the host bone without
cement, and effectively withstood the eccentric loading force that was exerted. Meanwhile,
the expanded interlocking between polyethylene tray and porous metal plate helped to
resist debonding force and diminish the possibility of potential glenoid component fracture.

Nevertheless, it should be noted that the monoblock porous Ta glenoid component
may cause trouble when revision TSA is to be performed, for it would be difficult to be
removed due to the stable bone–implant interlocking and substantial bone ingrowth even
associated with infected host bone [128], and may subsequently result in central osseous
defect or scapular fracture [125]. Still, accumulated metallic debris deposition derived from
the porous Ta component with a time-dependent pattern can still be found after anatomic
shoulder arthroplasty, which means that mechanical failure remains a threat in terms of
long-term survival rate, and that regular radiographic follow-up should be implemented
to verify the stability of the porous Ta glenoid component [129].

Superior migration of greater tuberosity is a critical factor, which often results in surgi-
cal failure after shoulder hemiarthroplasty in the treatment of complex proximal humeral
fractures. The migrated great tuberosity is the main cause of subacromial impingement,
shoulder joint stiffness and persistent pain [130]. Humeral stem prostheses fabricated with
porous Ta have been proposed to accelerate the anatomic union of greater tuberosity, which
can effectively minimize the occurrence of greater tuberosity malposition after surgery and
ensure eventual surgical efficacy [131,132].
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In addition, porous Ta glenoid augmentations have recently been used to correct
glenoid retroversion, with satisfactory efficacy, in 10 patients undergoing repositioning
of the retroverted glenoid to a neutral position [133]. Glenoid retroversion caused by
dysplasia or degenerative deformity can lead to eccentric loading, permanent posterior
subluxation of the humeral head and severe prosthetic failure [133]. Therefore, porous Ta
glenoid augmentation can be an optimal approach to correct glenoid deformity, though
more evidence is desired to verify its exact efficacy.

2.5. Spine Intervertebral Fusion

The efficacy of porous Ta cages applied in anterior cervical spine fusion has been
confirmed in a prospective randomized controlled clinic trial conducted by Fernández-
Fairen et al. [134]. Compared with traditional autologous iliac bone graft combined with
anterior plating, the porous Ta cage insertion group showed an equivalent fusion rate (89%
vs. 85%) and post-surgery stability at the end point of a 2-year follow-up, but additional
fixation and graft harvesting-related injuries no longer occurred [134]. After 11 years
of follow-up, the clinical and radiological results of patients who had received single
porous Ta cage insertion for interbody fusion remained satisfactory despite the subsidence
of implants, presented within 2–3 mm, occurring without significant complication in
12 patients [135]. Furthermore, several observational studies had also affirmed the efficacy
of porous Ta in terms of interbody fusion rate, low complication rate and improved short or
long term post-surgery evaluation scores including the SF-36, neck disability index (NDI)
and visual analog score (VAS) [136–138].

On the contrary, another prospective randomized multicenter study showed a frus-
trating fusion rate of the stand-alone porous Ta device insertion group compared to the
iliac crest autograft group (44% vs. 100%) after a 2-year follow-up [139]. In addition, the
histological analysis of two retrieved tantalum blocks from patients diagnosed as nonunion
at 6 months and 12 months, respectively, revealed substantial fibrous ingrowth instead of
bony tissues [139]. Similarly, Löfgren et al. [140] found a significantly lower fusion rate of
porous Ta than iliac crest bone grafting (69% vs. 92%). Considering potential nonunion,
Wigfield et al. [141] terminated their prospective study prematurely due to radiolucent lines
appearing at the anterior–inferior border of porous Ta implants in four patients, implanted
with either blocks or rings, at 6 weeks, though the lucent lines disappeared 12 months
post-surgery and the final outcomes of the porous Ta insertion group were better than the
autologous bone grafted group.

Accordingly, two meta-analyses [142,143] have recently analyzed the intro-operation
and post-surgery parameters including operating time, blood loss, hospital stay, fusion rate,
NDI and VAS scores, as well as satisfaction and complication rates of relative clinical trials.
Through the two meta-analyses, it has been established that porous Ta implants possess
the same efficacy and safety in the surgical treatment of anterior cervical degenerative
disc diseases as autologous iliac bone grafting, which has long been regarded as the gold
standard [142,143]. However, more randomized controlled trials with large samples are
still desired to reinforce the clinical evidence of porous Ta implants.

In addition to a high friction coefficient, porous Ta can offer suitable conditions for
rapid bone ingrowth [34], which further guarantees its long-term stability for lumbar
intervertebral fusion either with or without the augmentation of pedicle screws [144].
Lequin et al. [145] used standalone porous Ta cages in the treatment of 26 patients suffering
from recurrent lumbar disc herniation. Though moderate satisfactory clinical results were
revealed and significant relief of back and leg pain was only reported in 46% of patients,
85% of patients showed remarkable improvement in their working-status at 1 year post-
surgery [145]. Meanwhile, Lebhar et al. [146] and Butler et al. [57], respectively, reported
reliable clinical, functional and radiographic results after the application of porous Ta
implant for lumbar intervertebral fusion in their retrospective cohort studies.

Furthermore, in a randomized controlled trail (RCT), 80 patients were either en-
rolled into a standalone porous Ta cage fusion group or a pedicle screws-supplemented



Materials 2021, 14, 2647 11 of 32

group [147]. Similar clinical evaluation results including the Oswestry Disability Index
(ODI), VAS and SF-36 scores, were revealed at a 2-year follow-up point [147]. Furthermore,
equivalent X-ray results of both groups evaluated at 6-year follow-up proposed that porous
Ta standalone fashion could provide stability for lumbar spine interbody fusion without
additional fixation or bone grafting [147]. However, RCTs are still rarely used to definitely
corroborate the clinical value of porous Ta cages for lumbar spine fusion surgery used either
in a standalone fashion or augmented with posterior screws. In addition, the radiopaque
property of tantalum makes the radiographic examination of the intervertebral bone fusion
rate difficult.

2.6. Ankle Arthrodesis and Arthroplasty

As with femoral head osteonecrosis, the end-stage ankle arthritis can also be a very
severe and debilitating disease for younger and active patients [148,149]. Therefore, surgical
intervention, e.g., ankle arthrodesis and total ankle arthroplasty, should be taken into
consideration when conservative methods have failed.

Regarded as a promising alternative to traditional bone autograft or allograft, porous
Ta spacer has been applied in ankle arthrodesis without the limits of size, volume and
source [150–153]. Furthermore, the cost of a single porous Ta spacer (approximately
$989.5–1000) has been reported to be approximately comparable to that of an iliac crest
autograft (approximately $600–700) and an allograft (approximately $850); however, the
latter two may take more time for preparation during the surgery [150–152]. The porous
Ta spacer is an optimal choice for reconstruction surgery, and is especially suitable for
huge bone defects [154,155]. This is the case because it has adequate structural strength to
maintain the restored height and angular correction of the ankle joint until the appearance
of osseous fusion between the porous Ta spacer and adjacent bony tissues [33,151], which
is significantly different from bone autografts or allografts, either of which may collapse
due to absorption after implantation [45,146,152]. Moreover, as with cancellous bone,
the porous Ta spacer provides the necessary space and osteoconductive environment for
vascularized bone tissue ingrowth, obviating autograft-related harvest lesions [156,157]
and allograft-related infectious diseases [153].

The clinical results of porous Ta spacers used for the salvage of failed total ankle
arthroplasty are also favorable [151,152,155]. More often, accompanied by nonunion, leg
shortening, infection or even severe bone defect after debridement, failed total ankle
arthroplasty can be difficult reasonably address [158,159]. To enhance the fusion efficiency
of porous Ta spacer, Sundet et al. [160] combined the use of retrograde nailing, a porous Ta
spacer and an osteoinductive pad augmented with autologous bone marrow concentrate
for revision surgery of 30 patients (31 ankles) with failed total ankle arthroplasty. The mean
fusion rate at the average 23-month follow-up was 93.5%, and the vast majority of patients
were satisfied with the surgery in terms of pain relief and improved activity, though
additional expenditure were entailed in this clinic trail [160]. Similarly, Kreulen et al. [155]
introduced a new surgical strategy for reconstruction surgery of two patients with failed
total ankle arthroplasty and four patients with ankle collapse post infection. In this study,
porous Ta spacers were also augmented with autologous bone marrow obtained through
the Reamer/Irrigator/Aspirator technique from the femoral marrow cavity and fixed with
tibiotalocalcaneal nail, and the bone morphogenetic protein 2 (BMP-2) or platelet derived
growth factor was further supplemented to boost bony fusion. With the help of this novel
method, thorough osseous fusion at the implant–bone interface appeared at the early
stage of 4–6 weeks post-surgery and no failure cases were observed [155]. In contrast,
Aubret et al. [159] reported disappointing outcomes after the insertion of porous Ta spacers.
Even augmented with iliac crest autograft and allograft bone chips for revision of failed
total ankle arthroplasty in 10 patients, two patients had failed integration of porous Ta
spacers, one patient presented with talocrural joint nonunion and three patients needed
secondary revision surgery due to severe pain. However, the main reason for these failed
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cases was supposed to be the weak fixation strength provided by nails compared with
6.5 mm screws [151] or reconstruction plates [158].

Despite being reported as having a lower survival rate than hip and knee arthro-
plasty [161–163], total ankle arthroplasty (TAA) has been suggested to preserve the mobility
of ankle joint and normal gait instead of being fused with triple arthrodesis which has long
been considered as the gold standard for the treatment of end-stage ankle arthritis.

A newly designed porous Ta-based total ankle prosthesis was approved by the Food
and Drug Administration in 2012 and marketed by Zimmer Biomet Inc. [164,165]. Com-
bined with the use of porous Ta-based ankle prosthesis in TAA, promising prognosis can
be foreseeable in terms of pain relief and functional improvement in the short-term, even
without supplementation with cement augmentation, due to the fact that the stability of
tibial and talar components mainly depends on bony interlocking between the porous Ta
base and the host bone [164–170]. Moreover, the pattern of porous Ta bases of the two
components resembles that of the subchondral bone of tibia and talus and can distribute
loading stress rationally and diminish the occurrence of peri-implant osteolysis, which
often resulted in aseptic loosening of the implants [165,171]. This novel ankle prosthe-
sis is implanted through the lateral approach, associated with distal fibular osteotomy,
which theoretically offers direct exposure to both the sagittal and coronal plane of the
tibiotalar joint and obviates surgery-related neurovascular injuries [171]. Incorporated
with an extramedullary alignment frame, the innovate surgery approach can minimize the
amount of bony resection, optimize tibial and talar components positioning and preserve
the bone–implant contact area, all of which finally guarantee the survival rate of porous Ta
ankle prosthesis [164].

The histological analysis of this porous Ta-based ankle prosthesis retrieved from
a 50-year old female patient revealed that the bone ingrowth percentage in tibial and
talar components was more than those found in the retrieved porous Ta hip and knee
components [172]. Meanwhile, active bone remolding was found within the porous Ta layer
even at 3 years post-surgery. However, regional osteolysis and metal wear debris could not
be avoided, both of which did not jeopardize the stability of the prosthesis. Nevertheless,
decreased bone density of distal tibia adjacent to the tibial component still presented in
this patient, indicating that the stress shielding effect and related bone resorption could not
thoroughly be eradicated through the use of porous Ta-based ankle prosthesis [172].

2.7. Dental Implants

Aimed to increase surface energy, extend the bone–implant contact area, improve
surface hydrophilicity and facilitate mesenchymal cells’ or osteoblast progenitor cells’ ad-
herence, the surface roughness design of dental implants has now become very widely used
and has been proven to enhance the progress of osteointegration and angiogenesis [173,174].
Therefore, the spongy bone like structure of porous Ta could be one explanation for its
superior biological and mechanical property to many other metal materials in terms of
rapid osseous ingrowth and bone-to-implant contact, both of which directly influence the
survival rate of dental implants in the long run [175]. The histological and histomorphome-
tric analysis has validated the osseoincorporation property of porous Ta implants derived
from the rapid formation of vascularized bone tissues not only on the surface but also
in the inner pores, which further reinforced the interlocking force between the implants
and human jaws [176]. The canine model test revealed that the porous Ta section could
provide a more rapid new bone formation and stronger stability for the porous Ta enhanced
titanium implants compared to its conventional screwed titanium counterparts [177].

The porous Ta-enhanced tianium dental implant is now considered to be an effective
therapeutic method for implanting treatment of certain patients associated with periodon-
titis [178], alveolar bone defects [179] and even maxillofacial tumors [180,181]. The porous
Ta segment can provide an expanded three-dimensional space for the infiltration and dif-
ferentiation of osteoblasts as well as the accumulation of vascular endothelial cells [40,182].
In addition, this novel implant has also been used in immediate revision surgery for previ-
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ously failed dental implantation based on the superior osteointegration of porous Ta [183].
The immediate loading tests of porous Ta enhanced implants demonstrated significantly
less marginal bone loss than that of threaded implants (0.43 ± 0.41 mm vs. 0.98 ± 0.67 mm)
after 1-year of functional loading [184]. This result was then further corroborated in a
retrospective study in which an average of 0.28 mm bone gain could be found in the porous
Ta enhanced group, but the Ti group showed an average of 0.2 mm marginal bone loss after
1-year of implant loading [185].

However, mechanical flaw of this porous Ta enhanced dental implants may be located
at the junction of the middle and distal third portion, for the middle portion is produced as
slender sharp in order to accommodate the porous Ta sleeve and is welded to the distal
apex portion [186]. Accordingly, potential fragile fracture may occur at this facet when
the implant is to be inserted in the socket of maxilla or mandible with high bone density.
Meanwhile, the unsterile oral cavity, where more than 500 kinds of bacteria are harbored,
can be a challenge for the dental application of porous Ta [186]. Therefore, in-depth studies
that can enhance the antibacterial property of porous Ta are still needed because the
microbial environment of oral cavity and orthopedic sites is obviously different.

3. New Development of Porous Ta for Bone Tissue Engineering
3.1. Additive Manufactured Porous Ta

Except for conventional techniques including CVD [33,48], foam impregnation [49] and
powder metallurgy [50], various additive manufacturing methods have been introduced to
produce novel porous Ta scaffolds with different pore size and porosity, but comparable
mechanical properties with human cortical and trabecular bones [47] (Table 1). Comparison
tests performed with cellular and animal models have revealed similar or even better
biological and mechanical performance of printed porous Ta scaffolds than their porous Ti
counterparts with the same porosity and pore diameter (Table 2) [51,52,54,55,187]. More-
over, as a high-end technique, additive manufacturing can help manufacturers to produce
porous Ta implants with tailored pore size and porosity to resist different biomechanical
loading stress in different parts of the human body. Incorporated with Computer Aided
Design (CAD) software, additive manufacturing thus makes personalized porous Ta im-
plants or prostheses for individual patient possible. Recently, several printed porous Ta
products have successfully been applied in clinical settings.

Wang et al. [188] have designed and produced a printed porous Ta knee prosthesis for
revision surgery for an 83-year old female patient suffering from chronical inflammation
and unendurable pain of the left knee after a previous total knee arthroplasty (Figure 5).
The X-ray showed severe bone defect in the medial tibial plateau, varus deformity of the
left knee and loosening of the tibial component, all of which were formidable challenges
to be addressed by conventional surgical techniques. With the help of CAD, the authors
corrected the anatomic alignment of the left lower limb and fabricated personalized knee
prosthesis which can precisely match the bone defect area for the definite revision surgery.
Twelve months after the final revision surgery, the patient recovered to normal activity
with no more complaints about the affected limb. After that, the same team fabricated
personalized porous Ta fibular and femur implants for reconstruction surgery following
the same design and manufacturing process [53].
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Table 2. The biological properties of additive manufactured porous Ta scaffolds.

Porosity%/Samples In Vitro Tests Results In Vivo Tests Results Ref.

80% Ta
Cytotoxicity test (L929 mammalian cells)

• No cytotoxicity

Histological evaluation (rat femur defect model)

• The bone defect can be bridged by the new bone with the help of printed
porous Ta scaffold.

Torsion test

• Rigid bone–implant connection can be obtained.

[52]

70% Ta vs. 70% Ti

Cell morphologies (hBMSCs)

• Cells’ adhesion, proliferation and vitality were similar.

Cell differentiation

• ALP and mineralized nodule staining levels were comparable.

Quantitative RT-PCR Analysis

• Sp7 and OCN genes levels were comparable.

Histological evaluations (rabbit distal femoral defect model)

• Bone ingrowth rate and depth were similar in the two groups.
• Ti group showed a quick-slow-quick new bone formation pattern.
• Ta group showed a gradual slowdown style of new bone formation.

Push out test

• The two groups had similar push out force.

[54]

80% Ta vs. 80% Ti

Cell morphologies (hBMSCs)

• Ta group showed better cell viability than Ti group.

Cell proliferation

• Ta group was higher than Ti group after 5–7 days.

Cell differentiation

• Ta group had superior ALP levels and calcium nodule numbers.

Quantitative RT-PCR Analysis

• Levels of Runx2, ALP, Col-1, OCN and OPN genes were higher in
Ta group.

Histological evaluations and fluorescence labeling (rabbit distal femoral
defect model)

• Ta could stimulate new bone formation as early as 4 weeks.
[55]
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Table 2. Cont.

Porosity%/Samples In Vitro Tests Results In Vivo Tests Results Ref.

30% Ta vs. 30% Ti modified
with TiO2 nanotubes,
30% Ti and solid Ti

Not mentioned

Histological analysis (rats distal femur model)

• Ta group had the most significant bone formation after 12 weeks.

Push out test

• Four groups had similar bone–implant interlocking strength.

FESEM micrographs

• Ta groups had persistent bone ingrown in the pores at 12 weeks.
• Ti modified with TiO2 nanotubes groups showed comparable seamless

bone–implant interface with Ta groups.
• The other two Ti groups had inferior bone–implant contact.

[187]

27% Ta and 45% Ta vs.
27% Ti

Cell morphologies (hFOB CRL-11372)

• Ta groups presented more flattened cell morphologies, filopodia
extensions and mineralization than Ti group.

Cell proliferation

• Cells proliferated rapidly on Ta samples instead of Ti samples.

Immunochemistry

• Porous Ta facilitated cells’ adhesion and differentiation via a
porosity-dependent pattern.

Not mentioned [51]

Note: FESEM, field emission scanning electron microscope; hBMSCs, human bone mesenchymal stem cells.
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Figure 5. The printed personalized porous Ta knee prosthesis (a), distal femoral component (b) and proximal tibial
component (c). The porous Ta prosthesis was inserted into distal femur and proximal tibia, respectively, during the surgery
(d,e). Reprinted from ref. [188].

Developmental dysplasia of the hip (DDH) can lead to degenerative osteoarthritis of
the hip in adults due to the malposition of acetabulum and femoral head [189]. In order to
restore normal acetabular coverage of the femoral head and acetabulum index, the additive
manufactured porous Ta acetabular patch was introduced in the treatment of eight adult
DDH patients with Crowe type I [190]. Each individualized porous Ta acetabular patch was
designed by Mimics 17.0 and 3-matic 9.0 software (Materialise, Leuven, Belgium) before
surgery. Then, the loading stress distribution between the acetabulum restored by porous
Ta patch and the femoral head was analyzed by Ansys 17.0 software (Ansys, Canonsburg,
PA, USA). If the stress distribution was uniform, the designed porous Ta acetabular patch
would be printed for the final surgery. After an average follow-up of 8.2 months, the
VAS scores of eight patients were drastically decreased (2.92 ± 0.79 before surgery vs.
0.83 ± 0.72 after surgery). Meanwhile, the Harris scores (69.67 ± 4.62 before surgery vs.
84.25 ± 4.14 after surgery) and the results of gait analysis were greatly improved after the
implantation of the porous Ta patch.

A printed porous Ta osteosynthesis plate has been used for the treatment of a 30-year
old male patient with tibial nonunion [191]. The patient had undergone intramedullary
nail fixation three times previously, but failed to attain healing even associated with the
iliac crest autograft. Owing to its biological and biomechanical advantages, this novel
porous Ta plate (80% porosity, 1.5–10 GPa elastic modulus) reunited the tibial shaft fracture
uneventfully 5 months after the fourth surgery, and the patient regained normal mobility
(Figure 6).
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Figure 6. The AP (a) and lateral view (b) of X-ray examination at 5-month follow-up showed that the fracture healed after
the implantation of the printed porous Ta osteosynthesis plate. Reprinted from ref. [191].

Nevertheless, the high demand and high price of the medically applicable tantalum
powder used to produce porous Ta products are the main negative factors that hinder the
extensive clinical implementation of novel porous Ta implants or prostheses.

3.2. Surface Modification

The critical drawbacks that may impede the further application, in bone tissue en-
gineering, of porous Ta are its inertness and low level of bioactivity. Therefore, vari-
ous methods have been introduced to modify porous Ta for further clinical application
(Table 3). These methods can mainly be cataloged into biomaterial coating and surface
treatment, all of which are aimed to endow porous Ta-based implants or prosthesis with
improved osteoconductivity, osteoinductivity and antibacterial properties (Figure 7).
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Table 3. The biological performance of different methods for Ta modification.

Surface Modification In Vitro Test Results In Vivo Test Results Ref.

ACP nanospheres–PLA coating
HA nanorods–PLA coating

Mineralization in SBF

• Abundant mineral deposition could be formed in 1 week.

Hydrophilicity

• After being soaked in SBF for 1 day, the hydrophilicity of the two coatings
was improved.

Protein adsorption and release

• The two nanostructures possessed satisfactory VEGF-FITC adsorption.
• The amount of BSA release from ACP nanospheres–PLA coating was

faster and larger.

Cell viability and morphology (MG63 cells)

• The two nano-coatings showed no toxic effects on cells.
• Cells’ adhesion, interconnecting and spreading were better than those

cultured on unmodified samples.

Subchondral bone defect repair

• Significant new bone formation could be found in samples
modified by two coatings.

• By contrast, new bone tissues were lacking in the
unmodified samples.

[192]

CaP nanospheres–PLA coating

Mineralization in SBF

• CaP nanospheres coating transformed into HA nanosheet which could
continuously accumulate on the surface of Ta.

Hydrophilicity

• CaP nanosheres–PLA coating showed satisfactory hydrophilicity.

BSA release

• The transformation from amorphous CaP to HA induced the rapid release
of BSA at an early stage.

Cell viability (MG63 cells)

• Cells established fine adhesion to CaP nanosheres–PLA coating.

Subchondral bone defect repair

• The modified porous Ta scaffold effectively repaired the
defect after 12 weeks.

[193]
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Table 3. Cont.

Surface Modification In Vitro Test Results In Vivo Test Results Ref.

BMP-7 coating Not mentioned

Cartilage defect restoration (rabbit model)

• Modified porous Ta significantly facilitated cartilage
restoration at 4, 8 and 16 weeks.

Microscopic and histological analyses

• Modified porous Ta groups facilitated calcium salt
deposition, as well as formation and maturity of bone and
cartilage tissues.

Micro-CT analyses

• Sixteen weeks post-surgery, new bone formation could be
found around the modified porous Ta.

• The amount of new bone formation was more than those of
unmodified samples.

Push out tests

• The modified groups possessed higher maximum push out
force.

[194]

Ta2O5 nanotubes films

Anticorrosion test

• Ta2O5 nanotube films had excellent biocompatibility and prevented the
release of ions.

Contact angle and surface energy

• Wettability and surface energy of Ta were enhanced by Ta2O5 nanotube
films.

Protein adsorption

• Adsorption of BSA and Fn were significantly more on Ta2O5 nanotube
films than bare surface,

Cell adhesion and proliferation (rBMSCs)

• Adhesion and proliferation of rBMSCs were highly enhanced on Ta2O5
nanotube films.

Not mentioned [196]
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Table 3. Cont.

Surface Modification In Vitro Test Results In Vivo Test Results Ref.

Osteogenesis-related genes expression

• Levels of Osterix, ALP, Collagen-I and Osteocalcin were significantly high
on the Ta2O5 nanotubes films.

Fluorescence microscopy image

• Cells cultured on Ta2O5 films presented as polygonal morphology and
had more filopodia than those on bare surface.

Nanoporous Ta oxide layers

Cell proliferation and morphology (L929 mouse fibroblasts)

• Nanoporous Ta oxide layers with 25 nm pore size greatly enhanced
adhesion, proliferation and extension of fibroblasts.

Not mentioned [196]

MAO combined with NaOH
treatment

Mineralization in SBF

• Substantial mineral deposition can be found on the surface of porous Ta
treated with MAO and NaOH etching.

Cell proliferation (3T3-E1 cells)

• Cell proliferation on the modified samples was better than the untreated
ones at 24, 48 and 72 h.

Cell morphology

• Cells spread over the surface and migrated into the pores of the modified
samples, with increasingly filiform protrusions and calcium crystals
presented.

Bone ingrowth (rabbit cranial defect model)

• New bone formation could be found around the modified
samples at 4 weeks.

• Bone remolding and neovascularization were also found
within the pores.

• The cranial defect could be filled by new bone at 12 weeks.

[197]

PHAs (PHB, PHBV and
PHB4HB)–Genta coating

Cytotoxicity and cell adhesion (SaOS-2 cells)

• PHAs coating showed no toxicity to the cells.

Antibacterial properties (S. aureus and E. coli)
• The concentration of Genta released from PHAs coating effectively

inhibited the proliferation of S. aureus and E. coli.

Not mentioned [198]
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Table 3. Cont.

Surface Modification In Vitro Test Results In Vivo Test Results Ref.

ZnO nanorods−nanoslices
hierarchical structure coating

Antibacterial Properties (S. aureus and E. coli)
• The novel ZnO coating showed a two-stage release pattern and effective

antibacterial properties.

Cytotoxicity (MC3T3-E1 cells)

• The ZnO nanorods–nanoslices coating had no toxic effect on cells.

In vivo Infected Studies (KM mice subcutaneous implantation)

• The ZnO nanorods–nanoslices coating modified Ta foils
had ideal antibacterial performance which could last for
over 2 weeks in vivo.

[199]

ACP: amorphous calcium phosphate; HA: hydroxyapatite; PLA: polylactic acid; SBF: simulated body fluid; PHAs: polyhydroxyalkanoates; Genta: gentamicin sulfate; BMP-7: bone morphogenetic protein 7;
BSA: bovine serum albumin; Fn: fibronectin; rBMSCs: rabbit bone mesenchymal stem cells; BSA: bovine serum albumin; CaP: calcium phosphate; MAO: micro-arc oxidation; E. coli: Escherichia coli; S. aureus:
Staphylococcus aureus.
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Figure 7. Schematic diagram of the surface modification for porous Ta. Amorphous calcium phosphate (ACP) nanospheres
and HA nanorods coating on the surface of Ta scaffold (a). Reprinted from ref. [192]. ZnO nanoslices and ZnO nanorods
coating on Ta substrate (b), the ZnO nanoslices will be released at an early stage—within 48 h (c), while the ZnO nanorods
are released in a slow pattern over 2 weeks (d). Reprinted with permission from [199]. Copyright © 2021 by American
Chemical Society.

Calcium phosphate (CaP) and hydroxyapatite (HA) are not only the mineral compo-
nents of human bones, but have also been exploited in porous Ta modification for surface
modification and drug delivery [200–202]. Furthermore, the alendronate–CaP coated
porous Ta has been verified to fill the bone–implant interface gaps, with an average length
of 0.6 mm, in rabbit models after 4 weeks [200]. The mechanism behind this successful
restoration of simulated bone defects could be attributed to the slowly released alendronate,
which inhibited the activity of osteoclasts but enhanced that of osteoblasts at the same time.
Similarly, the zoledronic acid-HA coated porous Ta rod also gained significantly more bone
formation both at the peri-implant area and within the inner space compared with the
unmodified porous Ta groups in canine models [201]. Zhou et al. introduced amorphous
calcium phosphate (ACP) nanosphere and HA nanorod coating to modify porous Ta [192].
When immersed in SBF, the two nanostructures showed rapid mineralization on their sur-
face and the mineral deposition increasingly accumulated within 1 week. Simultaneously,
the hydrophilicity of two structures was also significantly improved due to the capillary
effects. The ACP nanospheres were observed to transform into HA nanosheets in a rapid
pace after being soaked in SBF, and this transformation promised rapid mineralization,
improved wettability and faster protein release rates [192,193]. In vivo, both kinds of
modified porous Ta scaffolds repaired the subchondral bone defects with substantial new
bone formation, indicating a promising clinical prospect for bone defect restoration.

Bone morphogenetic protein 7 (BMP-7) has been applied in bone and cartilage repair
since 2001 due to its powerful osteoinductivity [203–205]. BMP-7 can act as a bone stimu-
lating agent that induces differentiation of mesenchymal stem cells into osteoblasts and
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chondroblasts [206]. By soaking porous Ta in the solution of BMP-7, Wang et al. [194] coated
BMP-7 on the surface of porous Ta rods. Subsequently, the BMP-7 modified porous Ta rods
obtained satisfactory results of subchondral bone and cartilage repairing in rabbit models
with substantial chondroid-like tissues recovering in the defect areas within 16 weeks.
Furthermore, bone ingrowth depth was found to be 0.2–1.2 mm in the modified samples,
which finally resulted in rigid bone–implant interlocking.

Fabrication of Ta2O5 nanotube layers on the surface by anodization [195,196] or
micro-arc oxidation (MAO) [207] is another approach to ameliorate the bioactivity of Ta.
With the formation of nanotubes, the Ca and P elements contained in electrolytes can
be incorporated into the oxide nanotubes by either of the aforementioned methods [208].
However, MAO may result in toxic effects on cell viability due to the by-products, i.e.,
reactive oxygen species (ROS) and reactive nitrogen species (RNS). Combined with alkali
pretreatment, these toxic elements produced by the process of MAO were dissolved and
the newly formed sodium tantalate layer and could further facilitate the deposition of
apatite in SBF. It is well defined that the substantial apatite layer formed on the surface
of implants is the prerequisite for bone–implant integration [19,197]. In this regard, the
combination of MAO and alkali treatment will be an effective way to modify porous Ta to
boost its osteoconductivity.

Implant-associated infection has long been a thorny problem in clinical settings, which
always results in catastrophic failure and additional expenditure [209,210]. It is imperative
to find rational methods to endow porous Ta with antibacterial property. Polyhydrox-
yalkanoates (PHAs) are biodegradable and biocompatible materials which can be used
as natural carrier for drug delivery and scaffold for tissue replacement [211]. Loading
PHAs coating containing antibiotics on the surface of porous Ta and obtaining a controlled
antibiotics release will be an optimal choice to avoid implant-associated infection [212].
Rodríguez-Contreras et al. [198] coated the PHA–Genta composite layer both on the outer
and inner surface of porous Ta cervical fusion cages. The continuously released Genta
from PHA coating with homogeneous concentration protected these porous Ta cages from
infection of Gram+ and Gram− bacteria. On the other hand, a ZnO nanorod–nanoslice
hierarchical coating was proposed by Liao et al. [199]. In vitro, the ZnO nanoslice was
first released from the superficial layer to kill bacteria during the early stage, and the
antibacterial efficacy lasted for 24 h. By contrast, the release of ZnO nanorod showed a
slow but stable pattern. Therefore, the combined ZnO nanorod–nanoslice coating pos-
sessed a two-stage release pattern and could last for over 2 weeks in vivo, avoiding the
implant-associated infection which commonly occurred within 1 week post-surgery [199].

4. Conclusions

Owing to its excellent biological and mechanical properties, porous Ta is an optimal
biomaterial for bone tissue engineering and has gained satisfactory clinical results, though
modifications are needed to refine it. With the advent of additive manufacturing, the
printed porous Ta has shed light on the design and manufacture of novel porous Ta-based
implants for individualized healthcare as the macrostructure, pore size, pore geometry and
porosity of porous Ta implants can be adjusted to meet the needs of the host, especially
when huge and complex bone defects are present at the load-bearing parts. Moreover,
various modification methods have been emerged to enhance the bioactivity and antibacte-
rial activity of porous Ta. In addition, the modified porous Ta will definitely be used to
cope with various pathological conditions, e.g., osteoporosis, infection, diabetes and even
tumors. However, in-depth studies are still desired to explore the potential development of
porous Ta. Firstly, the impact of the topological structure on the biological and mechanical
properties of porous Ti or Ti alloy has been fully detected, but the relative research on
porous Ta is rare. Since Ta has entirely different characteristics compared with Ti or Ti
alloy, porous Ta scaffolds with different topological macro- or micro-structures should be
determined to verify their biological and mechanical properties and for further application
in different biological and mechanical environments. Secondly, abundant randomized con-
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trolled clinical trials (RCT) with sufficient samples and long-term follow-up are still desired
to further verify the clinical practicability of modified porous Ta implants. At present, the
clinical application of additive manufactured porous Ta implants is mainly confined by the
high price of printing individual porous Ta implants. With the development of additive
manufacturing technology and the expansion of the additive manufacturing market size,
the price of printed porous Ta will decrease sooner or later, and the extensive application
of printed porous Ta implants is thus on the horizon, given that the prevalence of aging
populations entails increases in orthopaedic arthroplasty and dental implantology.
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