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Abstract: Fibrinogen, involved in coagulation, is a soluble protein composed of two 
sets of disulfide-bridged Aα, Bβ, and γ-chains. In this review, we present the clinical 
implications of the αC domain of the molecule in Alzheimer's disease, hereditary 
renal amyloidosis and a number of thrombotic and hemorrhagic disorders. In 
Alzheimer's disease, amyloid beta peptide (Aβ) is increased and binds to the αC do-
main of normal fibrinogen, triggering increased fibrin(ogen) deposition in patients’ 
brain parenchyma. In hereditary renal amyloidosis, fibrinogen is abnormal, with mu-
tations located in the fibrinogen αC domain. The mutant αC domain derived from 
fibrinogen degradation folds incorrectly so that, in time, aggregates form, leading to 
amyloid deposits in the kidneys. In these patients, no thrombotic tendency has been 
observed. Abnormal fibrinogens with either a point mutation in the αC domain or a 
frameshift mutation resulting in absence of a part of the αC domain are often associ-
ated with either thrombotic events or bleeding. Mutation of an amino acid into 
cysteine (as in fibrinogens Dusart and Caracas V) or a frameshift mutation yielding 
an unpaired cysteine in the αC domain is often responsible for thrombotic events. 
Covalent binding of albumin to the unpaired cysteine via a disulphide bridge leads to 
decreased accessibility to the fibrinolytic enzymes, hence formation of poorly de-
gradable fibrin clots, which explains the high incidence of thrombosis. In contrast, 
anomalies due to a frameshift mutation in the αC connector of the molecule, provok-
ing deletion of a great part of the αC domain, are associated with bleeding.
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Essentials
•	 The C-terminal domain of the fibrinogen α chain (αC domain) is implicated in different severe diseases via clotting abnormalities or 
amyloid deposits.

•	 Certain anomalies of the fibrinogen molecule lead to amyloid deposits in the kidney, inducing renal insufficiency.
•	 In contrast, in Alzheimer's disease, fibrinogen is normal, but due to an inflammatory process, fibrinogen crosses into the brain and 
interacts with Aβ, leading to formation of pathological deposits.
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1  |  INTRODUC TION

Fibrinogen is a soluble plasma glycoprotein comprising two sets of 
three chains, disulfide-bridged (Aα-Bβ-γ)2. It consists of one central 
E domain containing the N terminal portions of the Aα, Bβ and γ 
chains, two lateral D domains connected to the E domain by coiled 
coils formed by parts of the three chains (Aα 50-160, Bβ 81-192, 
and γ 24-134), and two Aα C-terminal domains (Aα 220-610), (αC 
domains) located outside the D domains (Figure 1).1,2

Fibrinogen is converted by thrombin into insoluble fibrin during 
blood clot formation. First, thrombin catalyzes the release of fi-
brinopeptides A and B from the Aα and Bβ chains, respectively, 
to form fibrin monomer. Fibrinopeptide A is released from the N-
terminal part of the Aα chain, making accessible a polymerization 
site “A” that interacts with the complementary “a” site located in the 
γ chain (T374-E396).3 The resulting fibrin monomers interact with 
each other in a half-staggered manner to produce two-stranded 
protofibrils.4 Release of fibrinopeptide B, located at the N-terminus 
of the fibrinogen Bβ chain, unmasks polymerization site “B” to in-
teract with its complementary site “b” located in the C-terminal 
portion of the Bβ chain, thereby generating fibrin fibers that are 
associated laterally.5 In parallel, FXIII activated by thrombin (FXIIIa) 
catalyzes formation of ε-(γ-glutamyl) lysyl covalent bonds between 
two γ chains and several α chains of adjacent fibrin molecules, and 
crosslinks α2-antiplasmin (α2AP), the major plasmin inhibitor, to 
fibrin.6 It was further shown that factor XIII also mediates α2AP 
ligation to plasma fibrinogen on Aα chains prior to initiation of clot-
ting. This process plays an important role in down-regulating the 
rate of fibrinolysis.7 Using a homozygous case of dysfibrinogenemia 
characterized by an amino acid substitution located at the peptide 
bond on the Aα chain that is normally cleaved by thrombin, it was 
shown that clotting of fibrinogen may sometimes occur in absence 
of fibrinopeptide A release.8-10

Recently, it was evidenced that fibrinogen αC domain has several 
roles in coagulation, mediating its activity during various physiolog-
ical and pathological processes. αC domain is composed of residues 
Aα 220-610 consisting of a flexible, unstructured αC connector (Aα 
221-391) and a relatively compact C-terminal portion of fibrinogen 
Aα chain (Aα 392-610).11

In fibrinogen, the two αC domains interact both intramolecularly 
(ie, with each other) and with the central E region, preferentially 

through the N termini of the Bβ chains.2,12 Initially folded on the 
N-terminal part of the fibrinogen molecule, the 2 αC domains open 
outward after fibrinopeptide B (FPB) cleavage,1,12 revealing novel 
cryptic sites for plasminogen and t-PA binding within residues Aα 
392-610 of the αC domains13,14 and for α2 anti plasmin binding 
within residues Aα 504-610.15 Sites also become available for self-
association of the αC domains into αC polymers,16 occurring by 
formation of a hydrogen bond network through their N-terminal 
subdomains via β-hairpin swapping. This structure is reinforced by 
interaction of their C-terminal subdomains with the αC connectors, 
providing the proper orientation of their reactive residues for effi-
cient cross-linking by factor XIIIa.16 Lateral aggregation may occur 
in the absence of αC regions, but their presence enhances it. Clots 
made from fibrinogen lacking αC domains comprise fibers that are 
thinner and denser, and have more branch points than normal con-
trols16; anomalies located in this region of the molecule can induce 
anomalies in aggregation of the protofibrils.

After clot formation, fibrinolysis occurs. The fibrinolytic system 
comprises an inactive proenzyme, plasminogen, which is converted 
by tissue-type plasminogen activator (t-PA) into plasmin, which 
degrades fibrin. Plasminogen activation is regulated by molecular 
interactions between its main components, ie, by the binding of 
plasminogen and t-PA to fibrin.17 Conformational changes upon con-
version of fibrinogen into fibrin result in the unmasking of multiple 
sites that expose fibrin to the action of fibrinolytic enzymes. These 
include the plasminogen and t-PA binding sites in the αC domain (Aα 
392-610) as described above,13,14 in addition to sites found in other 
regions of the molecule. In 1988, Mirshahi et al18 showed, using their 
own monoclonal antibodies, that the Aα 148-197 and γ 86-302 re-
gions were involved in t-PA binding to fibrin. Later, Medved et al19 
found that the conformational change upon conversion of fibrinogen 
to fibrin results in the exposure of specific epitopes involved in t-PA 
binding to fibrin; these epitopes are located in Aα 148-160 and γ 
312-324.

1.1 | Implications of the αC domains in 
several diseases

It was shown that mutation(s) in the αC domain of fibrinogen may 
be responsible for severe coagulation disorders,12 and more recently 
this domain was also implicated in amyloidosis generation, eg, in 
Alzheimer's disease,20 and familial renal amyloidosis.21

Amyloidosis is caused by abnormal deposition of proteins in soft 
tissues, and amyloid deposits are primarily made up of protein fibers 
known as amyloid fibrils. These amyloid fibrils are formed when nor-
mally soluble proteins or peptides aggregate and then remain in the 
tissues instead of being cleared away. Amyloidosis results from a dis-
order of protein folding characterized by a conformational change of 
native globular proteins into fibrils with a β-sheet appearance (ie, β 
strands connected laterally by two or three backbone hydrogen bonds, 
forming a twisted pleated sheet) that deposit in various organs.22 In 
amyloidoses, the deposits contain normal blood proteins and another 
factor not present in plasma, the amyloidosis-enhancing factor (AEF), 

F IGURE  1 Schema of fibrinogen structure showing relationship 
of αC domains (αC connectors and αC compact domains) to the D 
and E domains
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which is probably generated at the site of amyloid deposition and acts 
in accelerating the pre-amyloid phase.23

1.2 | Fibrinogen αC domain in Alzheimer's disease

Alzheimer's disease (AD) is a neurodegenerative disorder that in-
volves vascular pathology20,24; it is characterized by extraneuronal 
deposition of the amyloid β peptide (Aβ) in the form of plaques 
and by intraneuronal deposition of the microtubule-associated Tau 
protein in the form of filaments. Tau interacts with microtubules 
by mediating microtubule assembly and stability, but in AD, Tau is 
hyperphosphorylated, which decreases its biological activity.25 Aβ 
peptide is generated from the transmembrane protein APP (amyloid 
precursor protein), which seems to be a dependence receptor.26,27 
Such receptors activate programmed cell death pathways in ab-
sence of their specific ligand(s) or trophic factor(s), and promote 
cell survival in their presence.27 Limited proteolysis of APP, first by 
β-secretase and then by γ-secretase complex produces the hydro-
phobic Aβ peptide,28 which aggregates to form neurotoxic, stable Aβ 
oligomers.29 These aggregates are evident in the initial microscopic 
deposition of Aβ in the form of early (diffuse) plaques in AD brains.30 
Polymerization of the Aβ peptide into protease-resistant fibrils is a 
significant step in AD pathogenesis.31

Interaction of Aβ peptide with fibrinogen leads to its oligomer-
ization, and several authors have reported the crucial involvement 
of fibrinogen in the pathophysiology of AD—especially its associa-
tion with cerebral amyloid angiopathy.32 Fibrinogen is not normally 
found in the brain, nevertheless it accumulates in the extravascular 
space in brains of AD patients.20 In these patients, deposition of the 
Aβ oligomers is responsible for endothelial cell damage leading to 
blood-brain barrier leakage,33 attested by a diffuse pattern of stain-
ing for fibrinogen with considerable fibrinogen immunoreactivity ap-
pearing in association with Aβ deposits.34 This fibrinogen-associated 
Aβ accumulates around or inside blood vessels in the brain,34 and is 
thought to be responsible for vascular dysfunction through provok-
ing the degeneration of vessel wall components, affecting cerebral 
blood flow and worsening cognitive decline35 indeed, fibrinogen that 
strongly interacts with Aβ peptide was found to be deposited to-
gether with Aβ peptide at the sites of cerebral amyloid angiopathy. 
In addition, Aβ is a prothrombotic factor, triggering thrombin gener-
ation via FXII-dependent activation of FXI, and hence is responsible 
for the chronic formation of fibrin, suggesting a new mechanism for 
neuronal dysfunction.36 Thus, fibrinogen does not normally cross 
the blood—brain barrier but, due to the cerebrovascular pathology, it 
does accumulate in the damaged brain vasculature and parenchyma 
of AD mice.37 Fibrin(ogen) deposition is due to interaction of Aβ with 
fibrinogen; the binding sites of fibrinogen on Aβ are located in the C-
terminus of the β-chain (β396-β407)32 and in the αC domain.38 Fibrin 
clots formed in the presence of Aβ peptide are structurally abnormal 
and resist degradation.39 Binding of Aβ to fibrin(ogen) renders fibrin 
clots more resistant to degradation via two mechanisms: (a) specific 
binding of Aβ to the αC domain of fibrinogen followed, upon throm-
bin action, by fibrin polymerization into a tight network resistant to 

fibrinolysis;38 and (b) Aβ overlaid on preformed clots binds to fibrin 
and delays lysis.39

Mounting evidence thus implicates fibrin(ogen) in AD pathogen-
esis. Indeed, abnormal deposition and persistence of fibrin(ogen) in 
AD brains resulting from Aβ-fibrin(ogen) binding would be expected 
to enhance Aβ deposition and increase neuroinflammation and 
neurodegeneration.40 In patients, Narayan et al41 recently demon-
strated that there is a significant increase in fibrinogen in brain mi-
croarray sections from AD cases compared to controls. Moreover, a 
novel Aβ—fibrinogen interaction inhibitor rescues both thrombosis 
and cognitive decline in AD mice.42

As aptly summarized by Cortes-Canteli et al,43 AD is a multifac-
torial disorder with a vascular component, and increasing evidence 
suggests that fibrinogen and fibrin clot formation contribute to this 
disorder.44 Fibrin(ogen) was observed to be present in areas where 
neurons were degenerating, and decreasing the fibrinogen levels 
reduced neuronal death in AD mice. Furthermore, fibrin is also ab-
normally present intra- and extra-vascularly in different areas of the 
brains of patients with AD, as well as in the brains of AD mice where 
it increases over time and correlates with the level of Aβ deposi-
tion. Large vessels lined with fibrin or capillaries that are completely 
blocked by its deposition will alter the cerebral blood flow, espe-
cially if these vascular occlusions occur chronically over the course 
of many years. This may play a substantial role in the cerebral hy-
poperfusion seen in AD patients.43,44

1.3 | Fibrinogen αC domain anomalies in renal 
hereditary amyloidosis

The renal hereditary amyloidoses are a rare but clinically important 
group of disorders that are inherited in an autosomal-dominant fash-
ion. Variants of the αC domain of fibrinogen cause the most common 
type of hereditary renal amyloidosis in Europe and, possibly, in the 
United States as well.45 Absence of bleeding disorders and normal 
clot formation indicate that the mutations do not significantly affect 
clotting function. Mutation induces improper folding of the mutant 
αC fragment derived from fibrinogen degradation so that, as shown 
by X-ray fiber diffraction and electron microscopy, fibrinogen am-
yloid fibrils similar to other chemical types of amyloid accumulate 
as a β-sheet structure; the end result is amyloid deposition in the 
kidneys.46

Various renal amyloidogenic mutations in fibrinogen have been 
described in the literature.47-53 These deposits disrupt kidney struc-
ture and cause abnormal kidney function, which tends to become 
progressively more abnormal as amyloid deposits accumulate with 
time. In these patients, renal histology was characteristic: almost 
complete glomerular obliteration by amyloid deposition. The disease 
is characterized by variable penetrance and is associated with hy-
pertension, nephrotic syndrome, proteinuria, and renal failure. Age 
at onset of symptoms varies from 13 to 70 years. In all cases the 
clotting times of the variants responsible for renal amyloidosis was 
normal, except in that reported by Uemichi et al,51 where thrombin 
time was slightly prolonged and fibrinogen level was low.
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Known amyloidogenic fibrinogen point mutations implicated 
in the disease are all located in the αC domain: these include 
R554L47; E526V,48 the mutation that most commonly causes renal 
amyloidosis; E540V, P552H, and T538K, mutations described by 
Gillmore et al49; E524K, E526K, G555F, and R554H, described by 
Rowczenio et al.50 Reported amyloidogenic frameshift mutations 
associated with the disease include: a single-nucleotide deletion at 
the third base of codon 524 of the fibrinogen Aα-chain gene (4904 
del G) resulting in premature termination of the protein at codon 
54851; a point deletion at position 4897 of the fibrinogen Aα-chain 
gene producing a frameshift at codon 522 with truncation at codon 
54852; a frameshift mutation found in a young Korean girl that is 
responsible for an Aα (517-522) deletion-insertion of a 31 amino-
acid stop.53

Biochemical analysis of amyloid fibrils from kidneys of the pa-
tient with the R554L mutation detected amino acid residues 500-
580 of fibrinogen Aα chain.47 Amyloid fibrils from patients with 
the E526V mutation contain a similar length peptide fragment 
from the variant fibrinogen Aα chain only, despite the fact that 
patients’ plasmas contain approximately equal amounts of normal 
and variant Aα chains;49 and amyloid fibrils from the patient with a 
single-nucleotide deletion producing a frameshift at codon 522 are 
composed of a 49 amino acid fragment of the Aα chain (residues 
499-521) followed by a novel sequence created by the frameshift 
in the patient.51

1.4 | Fibrinogen αC domain anomalies in 
coagulation disorders

1.4.1 | Variant haplotypes located in the αC domain

Among the several haplotypes of the Aα chain associated with a sin-
gle nucleotide polymorphism (SNP), only one induces an amino acid 
modification in the αC domain, the α-fibrinogen T312A polymor-
phism. The frequency of this variant by self-reported race is 5.1% 
in white patients and 13.5% in black patients.54 The α-fibrinogen 
T312A variant has been shown to influence clot structure through 
increased factor XIII cross-linking, since this polymorphism occurs 
in a region important for FXIII-dependent cross-linking processes, 
leading to the formation of fibrin clots that could predispose to 
clot embolization.55,56 However, the effect of this common vari-
ant on risk of venous thromboembolism (VTE) is unclear for some 
authors.57

Another variant commonly encountered is Fib 420, character-
ized by extended α chains (αE) representing 1%-2% of the circulating 
fibrinogen content. Fib 420 (αE Bβ γ)2, is a normal human variant 
fibrinogen with αE subunits that are 50% longer than those of the 
common Aα subunit due in part to an extra 236 amino acids encoded 
by exon VI and a variant posttranslational processing, including N-
glycosylation. Additional amino acids are located between G635 and 
the terminal Q847. Several lines of evidence suggest that the αE 
chain is less susceptible to proteolytic degradation than the common 
Aα chain.58

1.4.2 | Dysfibrinogenemias associated with 
mutations in the αC domain

Fibrinogen anomalies in the αC domain often lead to coagulation 
disorders with highly variable clinical manifestations, from severe 
bleeding or thrombosis to asymptomatic (Tables 1-4). Some patients 
presenting an αC domain anomaly suffer from a bleeding diathesis 
because of the formation of fibrin clots that exhibit reduced func-
tional properties but, paradoxically, thromboembolic disorders are 
detected in many other patients. These latter may arise due to the 
formation of fibrin clots resistant to fibrinolysis by plasmin, second-
ary to defective t-PA or plasminogen binding to fibrin, or else to ab-
normal plasminogen activation on the fibrin surface. Spontaneous 
abortion is another common clinical complication. The study of such 
cases has improved our understanding of the fibrinogen—fibrin 
structure, and of the mechanisms of polymerization and fibrinolysis. 
Characteristics of published mutations are summarized in Tables 1-
4, respectively, corresponding to four types of mutations reported 
in the literature: single amino-acid substitution in the αC domain; 
39-amino-acid duplication in the connector region of the αC domain; 
truncations affecting both the αC connector and the αC compact 
domain; and truncations of the αC compact domain alone.

1.4.3 | Mutants characterized by an amino acid 
substitution

The first reported case of this type was Dusart syndrome (Table 1), 
discovered in one of our patients who presented a severe familial 
thromboembolic disease and for whom we focused on thrombosis 
caused by abnormal fibrin structure, since clots from this patient 
were very tight and could not be degraded by fibrinolytic en-
zymes.59 The thromboembolic disease was attributed to impaired 
fibrin-enhanced plasminogen activation responsible for a defect in 
fibrin degradability60 and to an unusual clot rigidity inducing the 
formation of a brittle clot, therefore resulting in a high incidence of 
embolism.61 Further investigation of this fibrinogen variant showed 
that the anomaly is due to an R554C mutation in the αC domain of 
fibrinogen that has not been associated with amyloid formation.62 
This contrasts with the observation of Benson et al,47 who detected 
a fibrinogen variant with a different mutation at the same residue 
(R554L), but which is associated with renal amyloidosis without 
thrombotic disorder. Plasma Dusart fibrinogen was found to be 
disulfide-linked to albumin, possibly at Aα C554; removal of the αC 
domain from fibrinogen Dusart by limited plasmin digestion nearly 
normalized fibrin polymerization.63 These observations support the 
conclusion that the fibrinogen αC domain plays an important role in 
lateral fibril association. Whether it is the presence of cysteine at Aα 
554 or the albumin molecules bound to the fibrinogen at this posi-
tion that causes the defective function, cannot be deduced. Since 
the initial discovery, five further cases of distinct families affected by 
Dusart syndrome have been reported; all had an impressive history 
of thrombosis, which was sometimes fatal.64-68 These six cases lend 
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support to the concept of thromboembolic diseases due to defective 
fibrin lysis arising from anomalies in the αC domain of fibrinogen.

Other anomalies (n = 15) in the αC domain of the fibrinogen 
molecule have been described and are presented in Table 1A.69-77 
Among these cases, four presented thrombotic disorders, another 
presented mild bleeding (fibrinogen Sumperk II),72 four of them 
were asymptomatic (Caracas II,73 Grand Lyon III,74 Sumida,76 and 
Christchurch IV77), and for the six others the clinical syndrome 
was unknown. Mutation of an αC domain amino acid to cysteine 

is associated with thrombotic disorders in the six fibrinogens 
Dusart (Aα R554C) of several origins,64-68 as well as in Caracas V 
(Aα K532C)70 and Bordeaux (Aα R439C)71; the unpaired cysteine, 
not being able to form a disulfide bridge, binds covalently to free 
-SH groups of albumin, resulting in formation of abnormally thin fi-
brin fibers that are resistant to plasmin degradation.63 Fibrinogen 
Sumperk II (double heterozygous mutation Aα G13E and S314C) 
presented only mild bleeding.72 Fibrinogen Seoul II (Aα G328P) had 
a myocardial infarction.75 In fibrinogen Sumida,76 the functionally 

TABLE  1 Dysfibrinogenemia due to an amino-acid substitution in the fibrinogen αC domain

Name of abnormal fibrinogen Genotype Anomaly in the αC domain Clinical syndrome Reference

Fibrinogen Dusart Heterozygous Mutation of Aα 554 R to C Thromboembolism 59-63

5 other cases of Fibrinogen 
Dusart:

Idem 64-68

Fibrinogen Dusart Chapel Hill 
1

Heterozygous Thromboembolism 64

Fibrinogen Dusart German 
family 2

Heterozygous Thromboembolism 65

Fibrinogen Dusart 3 Heterozygous Thromboembolism 66

Fibrinogen Dusart 4 Heterozygous Venous & arterial thrombosis 67

Fibrinogen Dusart 5 Heterozygous Thrombosis in portal vein 68

Fibrinogen San Diego Heterozygous Mutation of Aα 554 R to H Moderate thromboembolism 69

Fibrinogen Caracas V Heterozygous Mutation of Aα 532 S to C Thromboembolism 70

Fibrinogen Bordeaux Heterozygous Mutation of Aα 439 R to C Thrombosis 71

Fibrinogen Sumperk II Double Heterozygous Double Mutation Aα 13 G to E 
and Aα 314 S to C

Mild bleeding 72

Fibrinogen Caracas II Heterozygous Mutation of Aα 434 S to 
N-glycosylated N

Asymptomatic 73

Fibrinogen Grand Lyon III Heterozygous Mutation of Aα 496 D to N Asymptomatic 74

Fibrinogen Seoul II Heterozygous Mutation of Aα 328 Q to P Myocardial infarct 75

Fibrinogen Sumida Heterozygous Mutation of Aα 472 C to S Asymptomatic 76

Fibrinogens of several origins Homozygous 
Homozygous

Mutation of Aα 519 G to R Unknown 77

Homozygous 
Homozygous

Mutation of Aα 524 E to K Unknown 77

Unknown Mutation of Aα 526 E to K Unknown 77

Unknown Mutation of Aα 526 E to V 
(Christchurch IV)

Asymptomatic 77

Unknown Mutation of Aα 540 E to V Unknown 77

Unknown Mutation of Aα 552 P to H Unknown 77

Name of 
abnormal 
fibrinogen Genotype

Anomaly in the αC 
domain Clinical syndrome Reference

Fibrinogen 
Champagne 
Mont d’Or

Heterozygous 39 amino acid 
WXXGSSGPGSTGN 
duplication in the 
connector domain 
starting at position 
272

Thromboembolism 78

TABLE  2 Dysfibrinogenemia due to an 
elongation of the αC domain of fibrinogen
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important disulfide-bridged loop Aα C442-C472 is abolished by 
the Aα C472S mutation, and although the unpaired C442 binds 
covalently to albumin, markedly impairing lateral aggregation of 
protofibrils, there are no clinical manifestations—indeed, clot lysis 
by plasminogen and t-PA is normal.

1.4.4 | A mutant characterized by elongation of the 
αC domain

The patient with fibrinogen Champagne au Mont d'Or (Table 2) de-
veloped a spontaneous deep venous thrombosis complicated by pul-
monary embolism (PE). But further evidence is needed to determine 
whether the connector prolongation predisposes to venous throm-
bosis by impairing fibrin degradation.78

1.4.5 | Mutants characterized by a truncation in the 
αC connector domain

Most of the patients (Table 3) that presented a frameshift located 
in the αC connector (Aα 221-391) are homozygous, with a bleed-
ing tendency attributable to either defective factor XIIIa-induced 
α-chain crosslinks recently identified as Q223-K508, Q223-K539, 
Q237-K418, Q237-K508, Q237-K539, Q237-K556, Q366-K539, 
Q563-K539, and Q563-K601,77,79,80,93 or else to a decrease in fac-
tor XIIIa-mediated crosslinking of PAI-2 to several lysines, including 

Aα K413 and K457, which are associated with hyperfibrinolysis.94 
PAI-2 may be undetectable in normal plasma, but it is synthesized 
by activated monocytes in inflamed tissues,94 and aligns along fibrin 
strands, where it may cross-link with fibrin(ogen).95

Only the patient with France XII dysfibrinogenemia77 and the 
double heterozygous Keokuk patient (Aα Q328-stop and guanine-
to-thymine mutation in Intron 4 of the Aα chain, inducing afibrin-
ogenemia)79 presented both bleeding and thrombotic episodes 
secondary to surgery accompanied by infusion of normal fibrinogen. 
Heterozygosity for both mutations was required for the expression 
of severe hypodysfibrinogenemia and for clinical symptoms.79

Fibrinogen Otago is a homozygous dysfibrinogenemia with 
truncation of approximately 60% of the Aα chain (amino acids 
272-610), leading to a markedly decreased plasma fibrinogen level 
(0.1 g/L) that is responsible for bleeding episodes and multiple 
miscarriages.80

1.4.6 | Mutants characterized by a truncation 
within the compact domain of the αC domain

This group of 14 patients with frameshift mutations leading to trun-
cation of the αC compact domain presents a wide variety of clinical 
outcomes (Table 4). Severe thrombotic disorders occurred in two 
cases of homozygous dysfibrinogenemia, fibrinogen Marburg (lack-
ing Aα 461-610)81 and fibrinogen Milano III (lacking Aα 452-610),82 

TABLE  3 Dysfibrinogenemia due to a frameshift mutation in the fibrinogen αC-connector (Aα 221-391) resulting in a truncation affecting 
both the connector itself and the Aα compact domain

Name of abnormal 
fibrinogen Genotype Anomaly in the αC domain Clinical Syndrome Reference

Fibrinogen Egyptian Homozygous Aα (221)Q stop Bleeding tendency 77

Fibrinogen Bulgaria Homozygous Aα (229)W stop Bleeding tendency 77

Fibrinogen Algerian Homozygous Aα(276)W stop Bleeding tendency 77

Fibrinogen Chinese Homozygous Aα (293) frameshift-stop Unknown 77

Fibrinogen Iran III Unknown Aα (297) frameshift-stop Bleeding 77

Fibrinogen France 
VII

Homozygous Aα (297)G stop Unknown 77

Fibrinogen France 
XII

Unknown Aα (315)W stop Bleeding & Thrombosis 77

Fibrinogen Turkey Homozygous Idem Idem 77

Fibrinogen Tunisia Homozygous Aα (323)G frameshift stop Bleeding 77

Fibrinogen Germany Homozygous Aα (327)N frame shift stop Bleeding 77

Fibrinogen Keokuk Heterozygous Lack of Aα (328-610), Aα (328)Q 
stop

Asymptomatic 79

Double heterozygous: Keokuk 
mutation plus Aα intron 4 G-to-T 
mutation

Bleeding with severe hypofibrino-genemia, 
and thrombotic episodes secondary to 
surgery accompanied by infusion of normal 
fibrinogen

Fibrinogen Otago Homozygous Lack of Aα (272-610). Insertion of 
cytosine at position 4133 
producing a frameshift which 
translates as 3 new amino acids 
Q268-E-P before termination at 
position 271

Bleeding and miscarriages 80
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as well as in one case where zygosity status is not indicated that is 
characterized by an Aα M476 frameshift stop.77 Patients with other 
mutations showed a mild bleeding tendency that may be explained 
by defective factor XIIIa-induced α polymerization.77,84–86 A variable 
penetrance is observed for fibrinogen Guarenas,85 since the prop-
ositus presented severe bleeding, whereas his brother, who has 
the same anomaly, presented only mild bleeding, and their mother, 
likewise affected, was asymptomatic. Patients with still other muta-
tions were asymptomatic.87,88 Some patients with Perth fibrinogen 
presented with thrombosis, and others with bleeding disorders.89–91 
The patient with fibrinogen Mannheim V presented only with mis-
carriages.92 It is interesting to note that similar sequences with 
a cysteine in position 517 were found in three different abnormal 
dysfibrinogenemias, ie, San Giovanni Rotondo,87 Perth,89–91 and 
Mannheim V:92

•	 Perth mutation Aα P495-LMKLPSSTLPQLEKHSQVSSHL-C517
•	 Manheim V mutation Aα H494-PLMKLPSSTLPQLEKHSQ 
VSSHL-C517

•	 San Giovanni Rotondo mutation Aα A499-SSTLPQLEKHSQV 
SSHL-C517

Although they share an identical sequence, and the unpaired cys-
teine at Aα 517 generated fibrinogen-albumin complexes in all three 
dysfibrogenemias, the clinical syndromes are different: the propositus 
with fibrinogen San Giovanni Rotondo is asymptomatic, whereas the 
patient with fibrinogen Mannheim V had miscarriages—and those with 
fibrinogen Perth present either thrombotic disorders or a bleeding ten-
dency, as described above.

1.4.7 | Importance of the αC domain in fibrinogen 
assembly in and/or secretion by hepatocytes

The αC domain seems to be involved in fibrinogen assembly within 
and/or secretion from hepatocytes, as previously suggested by 
Ridgway et al80 and Jayo et al91 in the case of fibrinogen Otago 
(lacking amino acids 272-610), the mother (propositus) was ho-
mozygous for the mutation and expressed very low fibrinogen 

TABLE  4 Dysfibrinogenemia due to truncation caused by a frameshift mutation in the fibrinogen αC compact domain (Aα 392-610)

Name of abnormal 
fibrinogen Genotype Anomaly in the αC domain Clinical Syndrome Reference

Fibrinogen 
Marburg

Homozygous Lack of Aα (464-610) [codon Aα 461 AAA (K) to TAA 
(stop)]

Thromboembolism 81

Fibrinogen Milano 
III

Homozygous Lack of Aα (454-610) & 2 new C-terminal amino acids 
(W452-S453) [insertion of a thymine in exon V after 
the ATT triplet coding for Aα I451]

Thromboembolism 82

Fibrinogen India Homozygous Aα (447)T-frameshift-17 amino acids-stop Bleeding tendency 83

Fibrinogen 
Multinational

Heterozygous Aα (452)G-frameshift-stop Unknown 77

Fibrinogen 
Wilmington

Heterozygous Cytosine deletion at nucleotide 4727 producing a 
frameshift at T465 followed by the additonal 
sequence PKMVLTVPRQWI

Bleeding 84

Fibrinogen 
Guarenas

Heterozygous Nonsense mutation at G4731T that causes an Aα 
chain truncation at S466

Severe bleeding in the 
propositus, mild in a brother, 
asymptomatic in others

85

Fibrinogen Lincoln Heterozygous Lack of Aα (479-610) & 4 new C-terminal amino acids 
resulting in a frameshift at A475, followed by 
H476-C-L-A-stop

Mild bleeding tendency 86

Fibrinogen San 
Giovanni 
Rotondo

Heterozygous Single nucleotide deletion in codon A499. Appearance 
of a premature codon at position 518 coding for 18 
new amino acids with cysteine at last position 
(SSTLPQLEKHSQVSSHLC)

Asymptomatic 87

Fibrinogen 
Nieuwegein

Homozygous Lack of Aα 454-610 with deletion of TG cross linking 
site in the αC domain

Asymptomatic 88

Fibrinogen 
Multinational

Unknown Aα M476 frameshift stop Thrombosis 77

Fibrinogen Perth Heterozygous Lack of Aα 494-610 due to cytosine deletion at 
nucleotide 4841 & incorporation of 23 new residues 
(LMKLPSSTLPQLEKHSQVSSHLC)

Bleeding in some propositus, 
thrombosis in others

89–91

Fibrinogen 
Mannheim V

Heterozygous Nucleotide deletion (C1537delA) resulting in Aα 
H494P mutation followed by 23 amino acids 
(LMKLPSSTLPQLEKHSQVSSHLC) before premature 
truncation after C517

Miscarriages 92
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level (0.06 mg/mL), whereas no circulating AαOtago chain was 
found in her heterozygous son, and his fibrinogen level was nor-
mal. Likewise, in fibrinogen Marburg an homozygous case of dys-
fibrinogenemia lacking A alpha 461-610,81 the fibrinogen level 
in plasma was very low, while in her heterozygous siblings there 
is less than 10% of truncated Aα chain. In fibrinogens Lincoln,86 
Wilmington,84 and Perth,89–91 a low level of abnormal Aα chain 
was found in plasma fibrinogen (ratio of truncated Aα to normal 
Aα chain is 0.2:1, which is considerably less than the 1:1 normally 
expected for heterozygotes). From all these cases, it is suggested 
that the αC domain is involved in assembly of the fibrinogen mole-
cule in the hepatocyte, since the truncated chains do not compete 
with the normal ones during assembly of mature fibrinogen. In 
contrast, the Aα C442-C472 loop which is so important in fibrino-
gen function has little or no effect on chain assembly and secre-
tion, since disruption of this Aα intrachain loop (by site-directed 
mutagenesis C442-C472) did not impact fibrin(ogen) assembly nor 
secretion in transfected COS cells.96

1.4.8 | Importance of unpaired Aα cysteine in 
dysfibrinogenemias

In normal fibrinogen, the αC domains are folded on the N-terminal 
portion of the fibrinogen molecule and unfold upon fibrin formation, 
promoting lateral aggregation of protofibrils.2 As a result, anomalies 
in the αC domain (Tables 1 and 4) may be expected to induce anoma-
lies in aggregation of the protofibrils. Interestingly, the mutation of 
Aα R554 leads to different pathologies according to whether R is 
mutated to L (as in hereditary renal amyloidosis, vide supra) or to C 
(eg, in Dusart syndrome).

In fact it appears that mutation to C of an amino acid located in 
the αC domain is important for thrombotic disorders. For example, 
in certain dysfibrinogenemias (Table 4) the deletion of amino acids 
Aα 465-610 (Nieuwegein), 452-610 (Milano III), 461-610 (Marburg) 
or 467-610 (Guarenas) results in the presence of an unpaired cyste-
ine (C442), which in normal fibrinogen forms an intrachain disulfide 
bridge with Aα C472. The free -SH group of C442 covalently links 
to a free -SH group in albumin, which results in disturbed protofi-
bril assembly leading to formation of a tight fibrin network and the 
acquisition of plasmin resistance relevant to thrombophilia. Thus 
it would appear that the abnormal network formation observed in 
such cases is caused by the covalently linked albumin rather than 
by absence of the carboxyl-terminal part of the Aα chain. However, 
thromboembolisms were only observed in Marburg and Milano III. 
Other fibrinogens that bind albumin due to an anomaly in the αC 
domain (Mannheim, San Giovanni Rotondo, Nieuwegein) did not 
present any thrombotic tendency, and patients with fibrinogen 
Perth presented either thrombotic or hemorrhagic syndromes. 
With the exception of families with clear thrombotic genotype (eg, 
fibrinogen Dusart), in other cases the penetrance of the throm-
botic phenotype may vary (eg, fibrinogen Perth), perhaps depend-
ing on the amount of albumin that becomes disulphide-bonded to 
the variant.

In abnormal fibrinogens arising from a frameshift mutation in the 
αC connector that results in truncation of the Aα chain beginning at 
amino acid positions 272-328 (Table 3), there are no unpaired cyste-
ines available to bind albumin (Aα C442 and C472 are absent); this 
may explain why no thrombosis was reported in these patients.

Sauls et al97 have shown that cysteine-fibrinogen (Hcys-
fibrinogen) obtained by in vitro incubation of H-cyc thiolactone with 
purified fibrinogen shows increased resistance to fibrinolysis: H-Cys 
fibrinogen has additional cysteines (seven in the Aα chain, two in the 
Bβ chain, three in the γ chain). Of the seven cysteine residues located 
in the Aα chain, three are in the αC domain, which is involved in t-PA 
and plasminogen binding. Furthermore, these residues are found in 
the naturally occurring Aα mutations R554C in the Dusart fibrino-
gens62 and L532C in Caracas V70 where they are characterized by 
impaired fibrin-stimulated plasminogen activation by t-PA. It there-
fore seems likely that plasminogen binding in the αC domain may 
regulate fibrinolysis by making bound plasminogen readily available 
for ternary complex formation in fibrin.

2  | PERSPECTIVES

From these results it appears that the αC domain of fibrin(ogen) 
is involved in various pathologies such as AD, renal familial (he-
reditary) amyloidosis, and coagulation disorders (thromboembo-
lism or bleeding). Normal fibrin(ogen) can be found in AD plaques, 
whereas mutated αC domain or its fragments have been implicated 
in the physiopathology of renal amyloidosis and certain coagulation 
disorders.

Cerebral amyloid angiopathy, responsible for the vascular dys-
function seen in AD, is induced by Aβ-fibrinogen complex; and de-
pletion of fibrinogen lessens cerebral amyloid angiopathy.20 The 
blood—brain barrier (BBB) normally prevents uncontrolled entry 
of blood-borne and blood-derived products into the brain. Indeed, 
brain capillary endothelial cells are connected by both tight and 
adherens junctions, forming a continuous endothelial monolayer. 
This anatomical barrier only permits the passage of small circulat-
ing lipid-soluble molecules. In AD, the BBB breakdown associated 
with vascular dysfunction allows influx into the brain of neuro-
toxic blood-derived debris, cells, and microbial pathogens, and is 
associated with inflammatory and immune responses that can trig-
ger multiple pathways of neurodegeneration.98 With the failure 
of several large-scale trials of treatments designed to lower the 
amyloid load in the brains of AD patients, and since fibrinogen is 
increased in inflammatory processes, trials with nonsteroidal anti-
inflammatory drugs (NSAIDs) have begun. These studies indicate 
that, by decreasing fibrinogen levels, NSAIDs can attenuate the 
destructive process if they are started well before clinical signs 
develop (at least 6 months, and preferably as long as 5 years be-
fore the clinical diagnosis of AD).99

Because of the life-threatening potential of renal insufficiency in 
cases of hereditary amyloidosis, double transplantation (kidney and 
liver) may still offer the best treatment option for eligible patients: by 
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replacing the source of circulating amyloidogenic fibrin(ogen) with 
normal (non-amyloidogenic) protein, liver transplantation prevents 
the formation of amyloid deposits in the transplanted kidney. It has 
been suggested that preemptive solitary liver transplantation early 
in the course of the disease might be a viable alternative, avoiding 
the need for hemodialysis and kidney transplantation.45 In contrast, 
dysfibrinogenemia associated with thrombotic or hemorrhagic dis-
orders can be adequately managed with anticoagulant therapy or 
blood transfusion, respectively.
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