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Abstract 
Food allergens are innocuous proteins that promote tolerogenic 
adaptive immune responses in healthy individuals yet in other 
individuals induce an allergic adaptive immune response 
characterized by the presence of antigen-specific immunoglobulin E 
and type-2 immune cells. The cellular and molecular processes that 
determine a tolerogenic versus non-tolerogenic immune response to 
dietary antigens are not fully elucidated. Recently, there have been 
advances in the identification of roles for microbial communities and 
anatomical sites of dietary antigen exposure and presentation that 
have provided new insights into the key regulatory steps in the 
tolerogenic versus non-tolerogenic decision-making processes. 
Herein, we will review and discuss recent findings in cellular and 
molecular processes underlying food sensitization and tolerance, 
immunological processes underlying severity of food-induced 
anaphylaxis, and insights obtained from immunotherapy trials.
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Anaphylaxis
Anaphylaxis is a serious and life-threatening generalized or  
systemic allergic or hypersensitivity reaction which is rapid in  
onset (minutes to a few hours)1,2. Anaphylaxis diagnosis is based 
upon the involvement of at least two organs system including  
skin/cutaneous, gastrointestinal (GI), respiratory, cardiovascular, 
and neurologic systems2–5. While foods remain the most common 
cause of anaphylaxis, other causative agents include medicines  
and insect stings2.

Recently, the European Academy of Allergy and Clinical  
Immunology (EAACI) and the American Academy of Allergy, 
Asthma, and Immunology (AAAAI) published a consensus  
document to propose a new approach to personalized treatment  
for patients of food allergy, drug allergy, and anaphylaxis2,6. The 
personalized medicine approach, termed precision medicine,  
would be guided by underlying cellular or molecular mecha-
nisms, termed endotypes, and associated diagnostic biomark-
ers rather than the clinical presentation of clinical symptoms of  
anaphylaxis, termed phenotype2,6. It is anticipated that better  
clinical outcomes would be achievable if treatments were  
tailored according to the specific cellular/molecular char-
acteristics (endotype) rather than clinical characteristics of 
a patient (phenotype)6. Two recent reviews have described 
the phenotypes, endotypes, and biomarkers to aid the diag-
nosis of anaphylaxis in great detail2,6. Proposed anaphy-
laxis endotypes include immunoglobulin (Ig) E-mediated and  
non-IgE-mediated type I reactions, cytokine release reac-
tions, mixed reactions, and complement or bradykinin-mediated 
direct activation of mast cells (MCs) and basophils2,6,7. The  
development of precision medicine for anaphylaxis is going 
to be reliant on future research in the underlying cellular and 
molecular processes that drive food sensitization and ana-
phylactic reactions and the identification of specific biomark-
ers to predict anaphylaxis endotypes, severity of reaction, and  
clinical outcome with treatments6. Herein, we will describe  
recent advancements in our understanding of the underlying  
immunological processes that regulate oral tolerance versus food 
sensitization, mechanisms of dietary antigen sampling, severity  
of anaphylactic reactions, and oral immunotherapy outcomes.

Oral tolerance versus sensitization
To prevent the development of systemic immune responsive-
ness to innocuous dietary protein antigens, the immune system  
has developed mechanisms of local and systemic immune  
unresponsiveness termed “oral tolerance”8–10. Luminal soluble  
dietary protein antigens are acquired by small intestine (SI)  
lamina propria (LP) CX

3
CR1+ macrophages and CD103+  

migratory dendritic cells (DCs) that migrate via the afferent  
lymphatic vessels to selective duodenal gut-draining lymph  
nodes, where they present dietary antigens via cognate interac-
tion to naive CD4+ T cells11–13. CD103+ DC-derived retinoic acid  
(RA), indoleamine 2,3-dioxygenase (IDO), and transforming 
growth factor (TGF)-β promote de novo Foxp3 expression 
and generation of peripheral regulatory T cells (Tregs) and  
expression of gut-specific homing receptors including CCR9 
and α4β7-integrin12–15. The newly derived CD4+ Treg cells traffic  
back to the SI LP, where they undergo proliferation and  

maintain a tolerant homeostatic environment through secre-
tion of the cytokines TGF-β and interleukin (IL)-1016. Tregs, 
specifically peripheral Tregs, and not thymus-derived Tregs, 
are critical for establishing oral tolerance16–19. Increased  
frequencies of Tregs are associated with outgrowing early  
on cow’s milk allergy, while lower Treg frequencies have been  
noted in atopic young children with food allergy20,21. The Foxp3+ 
CD4+ Treg cells are maintained and supported by additional 
regulatory cells positioned within the SI mucosa, including  
MHCII+ CX

3
CR1Hi IL-10-producing macrophages, gut-resident 

type 3 innate lymphoid cells (ILC3s), and regulatory B cells 
(Bregs)16. Microbial-sensing intestinal macrophages secrete  
IL-1β to stimulate ILC3-derived GM-CSF, which supports 
DC secretions of RA and IL-1022. Furthermore, gut-resident  
ILC3s through IL-22 secretion promote enhanced barrier  
function and reduce permeability to dietary antigens23. Bregs  
contribute to tolerance through the production of IL-10, TGF-β, 
and IL-3524. Extrathymically derived peripheral RA receptor  
(RAR)-related orphan receptor gamma t (RORγt)+ Tregs support 
a protective mucosal T regulatory response and enhancement  
of intestinal epithelial barrier integrity25–28. Furthermore, this  
tolerogenic state is reinforced by protective commensal microbes 
and their metabolites such as short-chain fatty acids (SCFAs)  
(e.g. acetate, propionate, and butyrate) that bind to G-protein-
coupled receptors (GPR43 [free fatty acid receptor (FFAR)-2],  
GPR41 [FFAR3], and GPR109A)29.

In disease states such as food allergy, these tolerogenic 
mechanisms are thought to be dysregulated, triggering the  
development of a food-specific “sensitizing” IgE response that 
can predispose to food allergy and anaphylaxis upon subsequent  
food exposures. In these individuals, food allergen exposure  
leads to the production of the pro-type-2 epithelial-derived  
cytokines IL-25, IL-33, and thymic stromal lymphopoi-
etin (TSLP)30. The array of stimuli that can elicit an initial  
prototypic type-2 cytokine response is not yet fully elucidated. 
Experimental evidence suggests that dietary saturated fats 
such as medium-chain triglycerides (MCTs) are sufficient to  
promote SI epithelial-derived IL-25, IL-33, and TSLP produc-
tion, driving a CD4+ T helper type 2 (Th2) response and food 
sensitization31. MCTs are thought to induce an endoplasmic  
reticulum stress and unfolded protein response within the 
GI epithelia, leading to induction of IL-25, IL-33, and  
TSLP32,33. The pro-type-2 cytokines are thought to act on  
CD103+ DC cells to promote OX40L expression, which drives 
the IL-4-dependent CD4+ Th2 cells and CD4+ Th9 cells34–36, and  
stimulate ILC2-derived cytokines (IL-5 and IL-13), which  
supports the expansion of basophils and MCs and suppresses  
Treg function37. Induction of the CD4+ IL-4+ Th2 response leads 
to class switching of B cells and production of allergen-specific  
IgE. Bone marrow and lymph node germinal centers are  
thought to be the dominant sites of induction of IgE+ plasma 
cells, with the bone marrow providing the major long-term source  
of IgE+ plasma cells in both mice and humans38,39. However, 
a recent study revealed that a number of gastrointestinal  
compartments including the stomach and duodenum are  
enriched for food allergen-specific IgE+ plasma cells in allergic 
patients40. Furthermore, the investigators observed clonally related 

Page 3 of 11

F1000Research 2020, 9(Faculty Rev):863 Last updated: 05 AUG 2020



IgE+ and non-IgE-expressing cells in these GI tissues, suggesting 
isotype switching and induction of IgE+ plasma cells in the GI 
compartment. CD4+ IL-4+ Th2 response has also been shown to  
promote the development of IL-9-producing mucosal MCs 
(MMC9s) and mature MCs41. MMC9 cells are hypo-granular 
immature MC-like cells that perpetuate MC progenitor 
(MCp) maturation to mature MCs in SI via an IL-9/IL9Rα  
pathway41–43. Post-sensitization, upon subsequent food allergen 
exposure, dietary antigens cross-link the IgE bound to FcεRI 
on MCs and basophils, leading to the release of mediators,  
including histamine, platelet-activating factor, serotonin,  
proteases (tryptase and chymase), and lipid-derived mediators 
(prostaglandins [PGD2] and leukotrienes [LTC4, LTD4, and 
LTE4]), which promote the clinical manifestations associated  
with food-triggered anaphylaxis44,45.

Role of microbiota in regulating sensitization versus 
tolerance
Recently, a number of studies have established a strong  
association between changes in microbial populations within 
the gut microbiota and allergic/tolerogenic states and identify a  
role for the microbiota in barrier function and permissiveness to 
the development of CD4+ Th2 cells and food sensitization46–50. 
Clinical studies have identified that microbial enrichment for 
Firmicutes, including Clostridium species in children, is asso-
ciated with outgrowing cow’s milk allergy, while decreased  
Clostridiales and increased Bacteroidales and lower gut  
overall microbial diversity have been associated with nut and 
pollen allergy in adults51,52. Increased Enterobacteriaceae to  
Bacteroidaceae ratio and decreased Ruminococcaceae abun-
dance together with low microbial diversity were associated with 
decreased food sensitization in infants53. Consistent with the  
concept that microbial communities can regulate food sensitiza-
tion, transfer of microbiota from sensitized mice with increased 
susceptibility to food allergy (IL-4Rα gain-of-function mutation  
Il4RaY709F) confers food allergic susceptibility when transferred 
into WT mice47. Similarly, colonization of mice with intestinal  
microbiota from cow’s milk-allergic infants, but not healthy  
infants, transferred food allergic susceptibility54. Conversely, 
the presence of the Clostridia species Anaerostipes caccae has  
been shown to confer protection to mice from food sensitization 
and anaphylaxis23,54. While the molecular basis of microbiota- 
mediated tolerance and sensitization is not fully understood, 
Clostridia species are thought to promote oral tolerance  
mechanisms via increased IgA production, expansion of Foxp3+ 
Tregs, RORγt+ ILC3-mediated reinforcement of epithelial  
barrier through production of IL-22, and increased expression 
of antimicrobial peptides such as REG3β by intestinal epithelia 
cells23,55–58. Clostridial families including Lachnospiraceae 
and Ruminococcaceae produce SCFAs, including acetate,  
propionate, and butyrate, which can mediate tolerogenic/ 
homeostatic effects through different mechanisms14,55,56. SCFAs 
can bind GPR43 and GPR109A to activate the inflammasome,  
increasing IL-18 production, which in turn promotes barrier  
function59,60. Butyrate promotes the expansion of colonic 
Foxp3+ Treg cells by supporting peripheral Treg generation 
through inhibition of histone deacetylase activity at the Foxp3  
promoter61,62. Propionate signaling through GPR43 also promotes 

intestinal Treg expansion63. The loss of microbial populations 
and regulatory metabolites is thought to diminish the tolerogenic 
immune environment, leading to impaired barrier function and 
increased systemic food allergens and sensitization50.

Several questions remain unanswered regarding the role of  
microbial communities in mediating tolerance/food sensitization. 
How do microbial populations that predominantly reside in the  
large intestine influence food allergic sensitization/tolerance  
mechanisms which are thought to occur primarily in the SI? Is 
the development and sustainment of microbiota-driven tolerance  
dependent on individual species or larger microbial com-
munities? Given the dynamic and complex nature of cross  
talk among host, microbiota, and environmental cues, long-
term longitudinal studies are likely required to obtain better  
insight into the role of the microbiota in tolerance/allergenic  
sensitization.

Food antigen sampling
The anatomical sites of dietary protein antigen uptake and  
mechanisms that underlie the development of the tolerogenic 
response and establishment of oral tolerance are not fully  
illuminated8,9. Given the obvious link between orally consumed 
dietary antigens and induction of food allergy, there has been  
significant focus on how dietary antigen exposure of the GI tract 
promotes a tolerogenic or sensitization immune response64,65.  
However, the demonstration of a positive correlation between 
environmental non-oral peanut protein exposure levels and  
development of peanut allergy suggests non-oral environmen-
tal exposure as a potential route of sensitization66. The observed  
natural history of the “allergic march”, whereby individu-
als presenting with atopic dermatitis (AD) in infancy or early  
childhood proceed to develop concomitant sensitization to food 
and aeroallergens in later childhood and adult life, has led to the  
evolving concept of contribution from the skin as a route  
of food sensitization67–71. An archetypal example is AD, a  
common inflammatory skin disease in childhood affecting  
nearly 20–30% of the population and is associated with skin  
barrier disruption linked with mutations in human skin barrier 
genes filaggrin (FLG), serine peptidase inhibitor Kazal type 5  
(SPINK5), corneodesmosin (CDSN), and mattrin (TMEM79)72–74. 
Early onset of AD is associated with increased risk of aller-
gic sensitization to food allergens by 2 years of age75,76, and  
AD-associated risk mutations are risk factors for allergy  
development including peanut allergy77,78. Indeed, IgE-mediated 
food allergy is observed in up to 35% of children affected 
with AD79. Importantly, neonatal skin barrier dysfunction in  
individuals without AD also predicts food allergy at 2 years of 
age75. Consistent with this concept, genetic (Flgft, Tmem79ma),  
pharmacological, or mechanical disruption of the skin barrier  
and allergen exposure in mice is associated with food  
sensitization and food allergy80,81.

An elegant study by Levya-Castillo et al. recently identified 
a link between mechanical skin injury and intestinal MC  
expansion and induction of food-induced anaphylaxis in mice.  
The authors showed that skin injury triggered systemic  
production of keratinocyte-derived IL-33, driving intestinal  
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tuft-cell-derived IL-25 production and ILC2 expansion81.  
ILC2s, through their capacity to produce IL-4, drove the  
expansion of SI MCs, potentiating the effector phase response81. 
Consistent with the concept of disruption to the cutaneous 
layer and expansion of intestinal MC populations, the authors  
demonstrated that duodenal MCs were expanded in AD  
patients81. Collectively, these studies identify a direct mecha-
nism whereby epicutaneous allergen exposure and skin injury  
can alter the GI environment (increase intestinal MC frequency) 
and food allergic outcome. Consistent with this, corrobora-
tive studies in animal model systems have revealed that food  
exposure via the skin can promote CD4+ Th2 responses and  
food allergic reactions81–84.

Experimental analyses also suggest that inhalation of food 
allergens can promote food sensitization and reactions85,86.  
Dolence et al. demonstrated that inhalation of peanut flour  
allergen in mice leads to the development of food-specific 
IgE levels and predisposed to food-induced anaphylaxis.  
Interestingly, draining lymph node-resident T follicular helper 
(Tfh) cells that produced type-2 cytokines (IL-4 and IL-21) 
were shown to be the primary drivers of food-specific IgE and  
food-induced anaphylaxis86. Interestingly, a recent study revealed 
that indoor dust may act as an adjuvant and play a role in the  
exacerbation of inhaled food allergen sensitization. Inhaled  
indoor dust was shown to stimulate airway epithelial innate  
cytokine production and maturation, and lung type-1 cDCs and 
co-exposure of indoor dust and food allergens such as peanut  
led to the development of peanut-specific Th2 cell differentiation 
and the accumulation of Tfh cell peanut-specific IgE production85.

Intestinal epithelial antigen passages
While food exposure to the skin, particularly in infants, is 
common, dietary food components (carbohydrates, proteins,  
lipids, solutes, water) and the resulting digested soluble protein 
allergens are predominantly absorbed in the SI (duodenum,  
jejunum, and ileum) and large intestine (colon and rectum)87. 
The tolerogenic inductive sites including organized lymphoid  
tissues such as the SI draining mesenteric lymph nodes 
(MLNs) and the specialized immune cell populations including  
mucosal DCs and Tregs are dominant within this GI compart-
ment, supporting the concept that the SI is key in the establish-
ment of the tolerogenic response and immune homeostasis88,89.  
The mechanism by which the specialized immune cells of the 
GI tract acquire dietary food antigens is not as well understood.  
Experimental evidence supports the involvement of several  
mechanisms in the translocation of food antigens across the 
SI lumen, including microfold cell-mediated transcytosis,  
sampling by transepithelial dendrites of mucosal DCs, and  
paracellular leak90,91.

Recently, a role for goblet cells (GCs) was identified in the  
uptake and translocation of GI luminal antigens across the  
epithelium and presentation to the immune compartment by 
a process known as GC antigen passages (GAPs)92. GAPs are  
spatially and temporally regulated and are present in both the SI 
and the distal colon at steady state92,93. In the SI, GAP formation  
and antigen uptake is initiated around day 18 of life, is activated 

by acetylcholine (ACh) through a muscarinic type 4 receptor 
(M4AchR)-dependent process, and is maintained through-
out adulthood94. SI GAPs are not sensitive to commensal  
microbiota93,95; however, they are sensitive to pathogenic  
infections such as Salmonella90. It is currently postulated that 
the inhibition of SI GAPs by pathogenic infections is likely a  
host-dependent response to limit systemic dissemination of 
pathogenic organisms. Similar to SI GAPs, colonic GAPs are  
activated by M4AchR-dependent processes; however, colonic 
GAPs are sensitive to the microbial environment94. The tightly 
regulated anatomical compartmentalization of GAPs in the SI 
and colon is likely a mechanism whereby the GI epithelium  
directs luminal antigen sampling to tune immune development 
and limit pathogenic antigen exposure and development of  
inappropriate inflammatory responses94,96. GAPs appear to deliver 
GI luminal antigens to LP-antigen-presenting cells such as  
CD103+ DCs92 and CX

3
CR1+ DCs92 and induce T-cell responses95. 

In the SI, both CD103+ DCs and CX
3
CR1+ DCs are capable 

of acquiring luminal antigen and inducing T-cell responses;  
however, the frequency of SI GAPs and CD103+ DC interac-
tions is more dominant. In contrast, colonic CX

3
CR1+ DCs 

appear to be the dominant antigen-presenting cell that interact 
with colonic GAPs and acquire luminal antigens, including  
commensal bacteria95. These studies lend nicely to the concept 
that SI GAPs transfer SI soluble protein antigens predominantly 
to CD103+ DCs, which contribute to the development of oral  
tolerance, whereas LI colonic GAPs predominantly interact 
with CX

3
CR1+ DCs and transfer microbial antigens and  

macromolecules for the induction of antigen-specific tolerance  
to gut bacteria94.

We recently showed that SI GAPs participate in dietary pro-
tein antigen uptake97. We showed that in naïve mice, clinically 
relevant food allergens are acquired by SI GC (MUC2+) cells. 
Surprisingly, under food allergic conditions, the SI antigen  
passage repertoire and frequency were dysregulated. Moreover, 
the frequency of SI GAPs was significantly greater in the  
food-allergic mice than in the naïve WT BALB/c mice at  
steady state. Furthermore, we identified MUC2- Rh-Dex+ cells 
in the SI villus, which were identified as antigen passaging  
enteroendocrine and Paneth cells, in the SI of food-allergic  
mice91. These data suggest that under food-allergic conditions, 
multiple intestinal secretory cell lineages within the SI can  
acquire and channel food antigens from the apical to basolateral 
side, which we defined as SI secretory epithelial cell antigen  
passages (SAPs)91. Mechanistic analyses revealed that SI SAPs 
were predominantly regulated by the Th2 cytokine IL-13 and  
not IL-4, via a direct IL-4Rα-STAT6-independent PI3K-
CD38-cADPR-dependent process and rapidly channel food  
antigens directly to FcεR1+ c-Kit+ ST2high mucosal MCs in  
food-allergic mice. Notably, pharmacological or genetic  
blockade of IL-13-driven SAP formation protected mice against 
a food-induced anaphylactic reaction91. Importantly, using a  
human intestinal organoids (HIOs) model system, we were  
able to show that both GAPs and SAPs were conserved in  
human tissue. Collectively, these studies reveal that the food-
sensitized state and heightened levels of type-2 cytokines can  
lead to the reprogramming of the cellular patterning of intestinal 
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epithelial antigen passages and presentation of dietary antigens 
to different immune compartments. The precise mechanism by  
which food allergens stimulate SAP formation and passage of  
antigens to mucosal MCs is currently unknown and under  
further investigation.

Molecular mechanisms of food-induced anaphylaxis 
severity
Food-induced anaphylaxis leads to a number of symptoms 
that can affect one or more target organs5,98,99. Involvement of  
either the cardiovascular or the respiratory system constitutes 
a severe food allergic reaction5,98, and this may be a result of 
basophil- and MC-derived mediators inducing pulmonary  
venous vasodilatation and fluid extravasation, leading to the  
respiratory and cardiovascular collapse associated with the  
severe, life-threatening anaphylactic phenotype100. It is uncertain 
which cellular and molecular pathways directly contrib-
ute to this anaphylaxis phenotype. Higher levels of IL-4 and  
histamine have been reported in the serum of human patients 
with severe anaphylaxis101, indicating that these molecules may 
be involved in the expression of the severe disease phenotype.  
Recently, our group identified an important role for IL-4 
in amplifying histamine-induced anaphylaxis responses102. 
Employing both active and passive models of IgE-mediated  
anaphylaxis, we showed that IL-4 exacerbated histamine- 
induced hypovolemic shock in mice and that this was  
dependent on vascular endothelial (VE) expression of IL-4Rα. 
Mechanistic analyses revealed that IL-4 and histamine induced 
ABL1 activation in human VE cells and that VE barrier  
dysfunction was ABL1 dependent. The development of severe  
IgE-mediated hypovolemia and shock required VE-restricted  
ABL1 expression. Treatment of mice with a history of food-
induced anaphylaxis with the ABL kinase inhibitor imatinib  
protected the mice from severe IgE-mediated anaphylaxis.  
Collectively, IL-4 amplifies IgE- and histamine-induced VE  
dysfunction, fluid extravasation, and the severity of anaphylaxis 
through a VE-IL-4Rα/ABL1-dependent mechanism. These  
findings suggest that ABL1 kinase could be a potential  
therapeutic target for preventing IgE-mediated anaphylaxis. 
Considering that tyrosine kinase inhibitors (TKIs), such as  
imatinib, can target both endothelial cells and c-Kit-mediated 
MC development and survival, targeting ABL1 could provide a  
“double hit” to potently attenuate IgE-mediated responses.  
Interestingly, a recent study showed imatinib to be efficacious in 
severe refractory asthma patients, with decreased MC numbers  
and asthma symptoms103.

Advances in food allergy treatment
Epinephrine remains the first line of acute treatment for  
food-induced anaphylactic reactions, acting through the  
α1/β1/β2-adrenergic receptors to temper the pathophysiologic 
response2–4,7. Along with epinephrine, H1- and H2-antihistamines 
are also used to treat anaphylactic reactions104, and omalizumab, 
an anti-IgE monoclonal antibody, has been shown to be 
effective in patients with idiopathic anaphylaxis with IgE  
involvement2,105. Recently, there has been increasing attention  
in the usage of oral immunotherapy (OIT) as a new approach 
to treating IgE-mediated food allergies. OIT involves oral 

exposure of gradual increasing doses of the eliciting allergen  
under close medical supervision, with the starting dose lower 
than what typically may trigger an allergic reaction and  
performing dose escalations (approximately every 2 weeks) until 
one achieves a maintenance dose (typically about 4–6 months), 
and this maintenance dose is continued indefinitely. Several 
clinical trials have demonstrated good safety profiles, decreased  
allergen-specific IgE, and effectiveness in raising the threshold  
of allergen needed to trigger an allergic reaction106–110.

In an exciting development for peanut-allergic individuals,  
AR101 (Palforzia), an investigational peanut protein biologic, 
has recently been approved for peanut OIT treatment to reduce  
allergic reaction incidence and severity in peanut-allergic  
patients aged 4–17 years old. In the Peanut Allergy Oral  
Immunotherapy Study of AR101 for Desensitization (PALI-
SADE NCT02635776), a randomized, double-blind, placebo- 
controlled, phase III trial, OIT using AR101 significantly  
lowered reactivity and decreased severity of symptoms in  
patients 4–17 years of age107. A total of 67% of patients 
who received AR101 were able to tolerate the 600 mg exit  
challenge dose without any dose-limiting symptoms, as  
compared to 4% of the placebo group. At the exit food  
challenge, 25% and 5% of patients treated with AR101 showed 
moderate and severe symptoms, respectively, while 59% and 
11% of those receiving placebo showed moderate and severe  
symptoms, respectively107. While these findings are very  
encouraging, there are several limitations in this study, prevent-
ing broader applicability. Firstly, patients 18–55 years of age  
upon treatment with AR101 did not show significant protec-
tion at exit food challenge. Furthermore, the study selected only  
patients who showed dose-limiting symptoms to up to 100 mg 
of peanut, thus excluding approximately 50% of peanut- 
allergic patients107,111. Finally, AR101 efficacy or safety could 
not be established in patients with severe co-morbidities, since  
patients with severe or poorly managed asthma were excluded 
because of safety considerations. Some of these limitations are 
being addressed in ongoing peanut OIT trials: NCT03201003, 
NCT02993107, and NCT03292484. Other questions concern-
ing optimization of OIT, such as optimal dose and duration of  
maintenance and the sustainability of this state of desensitization  
or unresponsiveness, are also currently under investigation.

Supplementation with probiotics for the prevention or treat-
ment of food allergy has also been an area of active research. 
Previous studies have reported that supplementation of exten-
sively hydrolyzed casein with Lactobacillus rhamnosus112,113, 
but not Lactobacillus casei and Bifidobacterium lactis114, has  
been shown to accelerate tolerance induction in cow’s milk-
allergic individuals. Lactobacillus rhamnosus supplemen-
tation is known to promote the expansion of tolerogenic 
butyrate-producing bacterial strains (e.g. Lachnospiraceae and 
Ruminococcaceae)115, leading to speculation that probiotics can 
expand tolerance-promoting microbes and drive immunological  
tolerance to foods. A randomized placebo-controlled trial  
designed to evaluate the effect of coadministration of a probiotic 
and peanut OIT (PPOIT) demonstrated that PPOIT was effective  
in inducing possible sustained unresponsiveness and immune 
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changes in peanut-allergic children116. A 4-year follow up study 
to assess long-term outcomes revealed that PPOIT provided 
long-lasting clinical benefit and persistent suppression of the  
allergic immune response to peanut117.

Despite the clinical success of OIT achieving average desensi-
tization rates of 80–85%, the underlying cellular and molecu-
lar processes that mediate OIT desensitization are not yet fully 
elucidated14,118. Rush desensitization (DS), a clinical protocol  
often used to manage drug allergies, has been shown to  
rapidly render allergic individuals temporarily hyporespon-
sive to the antigen and permits the individuals to tolerate  
eliciting drug exposure. Similar to OIT, DS involves exposure 
of an individual to increasing doses of the eliciting antigen;  
however, DS is over a short interval of time, typically with  
minutes or hours between doses. Oral DS has been success-
fully used to allow patients to tolerate the first dose of immuno-
therapy regimens for certain food allergies119,120. The temporary  
hyporesponsiveness to the eliciting antigen is thought to be  
mediated by MC desensitization, where repeated low-dose 
antigen exposure causes gradual and limiting release of  
MC-derived mediators until achieving cell exhaustion and  
mediator depletion, leading to a diminished IgE-FcεRI- 
dependent MC response. Anecdotal clinical evidence demon-
strating that short-term discontinuation of OIT treatment can 
lead to responsiveness in some tolerant OIT individuals and the  
observed reduced allergen-specific MC and basophil degranula-
tion in individuals during OIT in principal support the concept  
of MC sensitization involvement121,122.

An alternative hypothesis is that OIT desensitization is mediated 
by the development of allergen-specific IL-10+ and TGF-β+  
Tregs or exhaustion/deletion of memory allergen-specific CD4+ 
Th2 cells, leading to immunological and clinical tolerance123–125. 
A recent study revealed that patients who underwent OIT had 

increased frequency of peanut-specific Tregs. Interestingly, 
the patients with sustained unresponsiveness had significant  
hypomethylation at FoxP3 CpG sites in antigen-induced Foxp3+  
Tregs, while patients unable to maintain sustained unresponsive-
ness had hypermethylation, suggesting that epigenetic changes 
made during or after OIT could contribute to OIT-induced  
sustained unresponsiveness126. In mice, milk OIT increased 
SI levels of tolerogenic cytokines IL-10 and TGF-β125.  
Furthermore, GATA3 hypermethylation in CD4+ Th2 cells and  
FOXP3 hypomethylation in Tregs have been observed in  
epicutaneous immunotherapy-treated mice127. Recently, Wambre 
et al. identified a terminally differentiated allergen-specific 
memory Th2 cell population, termed TH2A cells128. TH2A  
cells co-express CRTH2, CD49d, and CD161 and are potent 
producers of the cytokines IL-5 and IL-9128. Interestingly, 
OIT in peanut-allergic individuals significantly decreased the  
frequency of TH2A cells, suggesting that OIT may induce 
exhaustion/deletion of memory allergen-specific Th2 cells128. 
Understanding the immunological processes that drive  
OIT desensitization and clinical tolerance will be critical 
for the development and optimization of OIT biologics and  
protocols.

Summary
It is becoming increasingly clear that a dynamic and complex  
interplay among dietary components, environmental stimuli, 
microbiota, and host immunity is required to develop and 
sustain the unresponsiveness to dietary food antigens.  
Dysregulation of these key processes leads to a breakdown of 
oral tolerance and allergic sensitization. A deeper understand-
ing of the molecular and cellular mechanisms that underlie the  
breakdown of tolerance will be critical in guiding precision  
medicine approaches and directing better diagnosis, manage-
ment, and safer and more efficacious treatment options for  
patients of food allergy and anaphylaxis.
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