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GCH1 (rs841) polymorphism in the 
nitric oxide-forming pathway has 
protective effects on obstructive 
sleep apnea
Samaneh Sheikhi Kouhsar1, Mohammadreza Bigdeli1,2*, Yadollah Shakiba3 & 
Khosro Sadeghniiat4

Several studies have recently investigated the contribution of genetic factors in obstructive sleep 
apnea (OSA). Patients with OSA suffer from a reduction in nitric oxide (NO) serum level. This study 
investigated rs841, A930G p22phox, and rs1799983 polymorphisms in three critical genes involved in 
NO formation. A total of 94 patients with OSA and 100 healthy controls were enrolled into the study. 
Results showed there was no association between rs841, A930G p22phox and rs1799983 polymorphism 
and the risk of OSA (P = 0.51, P = 0.4 and P = 0.33, respectively). Moreover, rs841 GA genotype had 
a reverse relationship with the severity of OSA (P = 0.005). On the other hand, rs841 GA and A930G 
p22phox AA genotypes had a protective effect on daytime sleepiness in OSA patients (P = 0.01and 
P = 0.02, respectively). Additionally, the combination of rs841 and A930G p22phox (AG/AG and AG/AA) 
genotypes was significantly associated with a reduction in daytime sleepiness in OSA patients (P = 0.03 
and P = 0.03, respectively). According to the results of our study, GA genotype of rs841 and GA/AA 
genotypes of A930G p22phox polymorphisms significantly reduced the severity of the problem and 
daytime sleepiness in OSA patients.

Obstructive sleep apnea (OSA) is a common sleep disorder1,2, which is characterized by repetitive pharyngeal 
obstruction, leading to apnea and hypopnea during sleep3. Headache, Fatigue, excessive daytime sleepiness, 
non-refreshing sleep, irritability, and decreased cognitive functions are the common symptoms of OSA4,5. The 
prevalence of undiagnosed OSA among the general population is estimated to be 5%. In addition, the prevalence 
of undiagnosed moderate to severe OSA among a sample of general population in Western Australia was 9%. 
Nonetheless, it is estimated that only 40% of people with OSA are diagnosed6,7. Untreated OSA is associated with 
different health complications, including metabolic disorder8, cognitive impairment9, depression10, and cardio-
vascular diseases11; this disorder also has an economic burden on community12. OSA is a multifactorial disor-
der and several genetic studies have provided evidence for the possible association between OSA and genetic 
factors13,14.

Nitric Oxide (NO) is synthesized from L-Arginine substrate by a family of nitric oxide synthase (NOS) 
enzymes. In this process, NADPH and O2 serve as co-substrates and 6-tetrahydrobiopterin (BH4) acts as a 
co-factor15. NO is a signaling molecule in the human body that is involved in many physiological and pathological 
processes16,17. NO plays an important role in neural signaling, immune response, vasodilation, and modulating 
insulin sensitivity18. NO deficiency is involved in the pathogenesis of multiple diseases such as hypertension19, 
diabetes mellitus20, stroke21, and OSA22. Nitric Oxide derivatives (serum nitrites and nitrates) and L-Arginine 
plasma levels decrease in patients with OSA, however, they increase after continuous positive airway pressure 
(CPAP) therapy23,24. Chronic sleep deprivation and repetitive hypoxia / reoxygenation in patients with OSA 
impairs endothelial function through reducing NO bioavailability and increasing oxidative stress and inflam-
mation11. Therefore, changes in substrate, enzymes, and co-factors that are involved in NO formation may 
decrease NO levels in patients with OSA. Several functional polymorphisms have been identified in NO-forming 
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pathway25,26. eNOS is encoded by NO3 gene, and some polymorphisms have been reported for NOS3 gene, 
including rs1799983, intron 4a/b, rs2070744, etc. They play a role in different diseases such as OSA27,28. According 
to previous studies, G894 T (rs1799983) variant is responsible for NO reduction29.

GTP cyclohydrolase 1 (GCH1) catalyzes the biosynthesis of BH4 that is an essential cofactor in the synthe-
sis of NO. Moreover, rs841 polymorphism of GCH1 is involved in neuropathic pain, attention, and stroke30–32. So 
far, no study has investigated the association between this polymorphism and OSA. NADPH oxidase is another 
factor which is involved in NO formation and is identified as the major source of reactive oxygen species (ROS). 
It is a multicomponent enzyme consisting of catalytic subunits and cytosolic proteins. Among catalytic subunits, 
p22phox is a physical conduct for transferring electrons across the membrane and is critical for the enzymatic activ-
ity. On the other hand, p22phox subunit polymorphism is identified as a factor involved in OSA and cardiovascular 
diseases33,34.

This study investigated the association between OSA and rs841(G > A) in GTP cyclohydrolase I (GCH1), 
A930G p22phox (G > A) in NADPH Oxidase, and rs1799983 (G > T) in eNOS polymorphisms.

To the best of our knowledge, this study is the first research investigating the association between GCH1 pol-
ymorphism and OSA, as well as the relationship between rs841, A930G p22phox, and 1799983 in Iranian people.

Results
Genotypes, allele frequencies, and risk of OSA.  Table 1 presents the data collected on patients’ and 
controls’ age, gender, BMI, and the data collected via STOP-BANG and Epworth Sleep Scale questionnaires. The 
collected data were used to assess the association between three polymorphisms in three different genes and the 
risk of OSA. All genotypes observed in cases and controls were consistent with Hardy–Weinberg equilibrium 
(HWE) (P > 0.05). Table 2 presents the genotype distributions and allele frequencies of rs841(GCH1), A930G 
p22phox (NADPH Oxidase), and rs1799983 (eNOS) polymorphisms. Based on the results, genotypes and allele 
frequencies of rs841 (G > A), A930G p22phox (G > A) and rs1799983 (G > T) polymorphisms had no signifi-
cant association with the risk of OSA (A vs. G: OR = 0.74, 95% CI = 0.3–1.81; P = 0.51, A vs. G: OR = 0.82, 95% 
CI = 0.53–1.28; P = 0.4 and T vs. G: OR = 2.12, 95% CI = 0.46–9.74; P = 0.33, respectively).

Genotypes and severity of OSA.  In order to conduct further assessment, we divided OSA patients 
into two groups. There were 43 patients in severe group and 51 patients in mild-to-moderate group. Table 1 in 
appendix presents the polysomnographic parameters in patients. Statistical analysis did not show a significant 
difference between the severe and non-severe OSA patients in terms of the genotypes distribution of A930G 
p22phox (NADPH Oxidase) and rs1799983 (eNOS) polymorphism (P > 0.05, Table 3). Interestingly, as shown 
in Table 3, for the first time we found a significant difference between the severe and mild-to-moderate OSA 
patients in terms of the genotype of rs841 (GCH1), where GA genotype was more frequently observed in the 
mild-to-moderate OSA patients (Crude OR = 0.3, 95% CI = 0.12–0.78; P = 0.01, after adjusting for age, gen-
der, BMI, OR = 0.21, 95% CI = 0.07–0.62; P = 0.005). The results showed that GA genotype of rs841 (GCH1) 
reduced the severity of OSA in patients; moreover, this genotype of rs841 had a protective effect in patients 
with OSA.

Genotypes and daytime sleepiness in OSA.  We investigated the association between the three genetic 
polymorphisms involved in NO formation and daytime sleepiness in OSA patients. We divided patients into 
two groups, patients with daytime sleepiness (n = 72) and patients without daytime sleepiness (n = 22) (Table 4). 
Assessing rs841 (GCH1), the frequency of GA genotype was significantly higher in patients without daytime 
sleepiness, as compared with patients with daytime sleepiness (Crude OR = 0.27, 95% CI = 0.1–0. 8; P = 0.01, 
after adjustment for age, gender, BMI OR = 0.23, 95% CI = 0.07–0.7; P = 0.01). Furthermore, assessing A930G 
p22phox, there was a significant difference between the patients without daytime sleepiness and the patients with 
daytime sleepiness in terms of genotype distribution; according to the results, AA genotype decreased daytime 
sleepiness in patients and had a protective effect (Crude OR = 0.23, 95% CI = 0.06–0.95; P = 0.04, after adjust-
ment for age, gender, BMI OR = 0.14, 95% CI = 0.02–0.8; P = 0.02). There was no association between rs179983 
(eNOS) genotypes and daytime sleepiness in the two groups of patients (P > 0.05).

Association between genotype combinations and daytime sleepiness in OSA patients.  Interactions 
between polymorphisms within genes involved in the reduction of daytime sleepiness in OSA patients were investi-
gated using the logistic regression analysis and the results showed a significant relationship between rs841 and A930G 
p22phox in two genotypes combination (Crude OR = 0.16, 95% CI = 0.02–0.98; P = 0.04 and Crude OR = 0.09, 95% 
CI = 0.009–0.97; P = 0.04, after adjustment for age, gender, BMI OR = 0.11, 95% CI = 0.01–0. 8; P = 0.03 and OR = 0.05, 
95% CI = 0.003–0.83; P = 0.03, respectively). The combinations of rs841 GA genotype and A930G p22phox GA/AA 

Characteristics Control N = 100 Patient N = 94 Pvalue

Men n (%) 79 (79%) 75 (80%) 0.89

Age 42.74 ± 7.76 44.3 ± 11.45 0.26

BMI 26.77 ± 3.9 29.14 ± 4.5 0.000

STOP-BANG 1.2 ± 0.55 3.85 ± 1.45 0.000

ESS 1.3 ± 1.56 9.42 ± 6.00 0.000

Table 1.  Characteristics of patient and control groups. BMI: Body Mass Index, ESS: Epworth Sleep Scale. 
Characteristics are defined by Mean ± Standard Deviation.
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genotype were significantly associated with a reduction in daytime sleepiness in patients with OSA, as compared with 
the reference combination of rs841 GG and A930G p22phox GG genotype (Table 5). The combinations of other geno-
types did not result in a significant difference (P > 0.05).

Discussion
Over the past two decades, public awareness about the importance of sleep and its related disorders has increased 
significantly35. In this work, we investigated the association between the susceptibility to OSA and GCH1 (rs841), 
NADPH oxidase (A930G p22phox (CYBA)) and endothelial NOS (rs1799983) polymorphisms. These genes play 
a role in nitric oxide formation36. To our knowledge, this was the first study that assessed the association between 
rs841 (GCH1) polymorphism and the risk of OSA. Some studies have shown that rs841 polymorphism is associ-
ated with the risk of ischemic stroke, endothelial dysfunction, and oxidative stress in patients with type 2 diabetes 
mellitus32,37. Interestingly, our results indicated no association between rs841 and the susceptibility to OSA; on 
the contrary, GA genotype of this polymorphism reduced the severity of the disease and daytime sleepiness in 
patients with OSA. Moreover, we did not find any relationship between A930G p22phox polymorphism and the 
risk of OSA; however, according to the results of a study by Pierola et al., this polymorphism plays an impor-
tant role in genetic susceptibility to OSA33. In contrast, AA genotype of A930G p22phox polymorphism pre-
vented daytime sleepiness in patients with OSA. The analysis of data collected in our study showed that T allele of 
rs1799983 polymorphism was not associated with increased risk of OSA. Bayazit et. al.’s study showed that eNOS4 
polymorphism was not associated with OSA, while eNOS296 polymorphism was associated with OSA suscepti-
bility. In this study, there was no relationship between eNOS4, eNOS296 polymorphisms and polysomnography 

SNP
Genotype/
Allele

Control OSA Crude OR

P value

Adjusted OR

P valueN = 100 N = 94 (95% CI) (95% CI)

Rs841 GG 63 (63%) 59 (62.8%) 1.00 (Reference)

GA 33 (33%) 32 (34%) 1.03 (0.55–1.92) 0.9 1.64 (0.3–8.79) 0.56

AA 4 (4%) 3 (3.2%) 0.8 (0.19–3.09) 0.77 1.59 (0.28–8.83) 0.59

Dominant

GG 63 (63%) 59 (62.8%) 1.00 (Reference)

GA + AA 37 (37%) 35 (37.2%) 1.01 (0.56–1.79) 0.97 0.93 (0.5–1.71) 0.82

Recessive

GG + GA 96 (96%) 91 (96.8%) 1.00 (Reference)

AA 4 (4%) 3 (3.2%) 0.79 (0.19–3.01) 0.76 0.61 (0.11–3.25) 0.56

G 159 (79.5%) 150 (79.8%) 1.00 (Reference)

A 41 (20.5%) 38 (20.2%) 0.98 (0.6–1.58) 0.94 0.74 (0.3–1.81) 0.51

A930G p22phox

GG 29 (29%) 27 (28.7%) 1.00 (Reference)

GA 48 (48%) 53 (56.4%) 1.18 (0.6–2.33) 0.6 1.18 (0.6–2.32) 0.63

AA 23 (23%) 14 (14.9%) 0.65 (0.26–1.43) 0.32 0.68 (0.28–1.68) 0.41

Dominant

GG 29 (29%) 27 (28.7%) 1.00 (Reference)

GA + AA 71 (71%) 67 (81.3%) 1.01 (0.55–1.86) 0.96 1.03 (0.54–1.97) 0.92

Recessive

GG + GA 77 (77%) 80 (85.1%) 1.00 (Reference)

AA 23 (23%) 14 (14.9%) 0.58 (0.28–1.23) 0.15 0.61 (0.28–1.34) 0.22

G 106 (53%) 107 (57%) 1.00 (Reference)

A 94 (47%) 81 (43%) 0.85 (0.57–1.26) 0.43 0.82 (0.53–1.28) 0.4

Rs1799983

GG 69 (69%) 51 (54.2%) 1.00 (Reference)

GT 28 (28%) 37 (39.4%) 1.78 (0.96–3.24) 0.06 1.55 (0.82–2.93) 0.17

TT 3 (3%) 6 (6.4%) 2.7 (0.71–10.17) 0.15 3.57 (0.82–
15.48) 0.08

Dominant

GG 69 (69%) 51 (54.2%) 1.00 (Reference)

GT+TT 31 (31%) 45 (45.8%) 1.96 (1.11–3.55) 0.02 3.17 (0.07–1.14) 0.93

Recessive

GG + GT 97 (97%) 88 (83.6%) 1.00 (Reference)

TT 3 (3%) 6 (6.4%) 2.2 (0.57–8.2) 0.26 0.32 (0.07–1.37) 0.12

G 166 (83%) 139 (74%) 1.00 (Reference)

T 34 (17%) 49 (26%) 1.72 (1.04–2.81) 0.02 2.12 (0.46–9.74) 0.33

Table 2.  Genotype distribution and allele frequency in OSA and controls. SNP: Single Nucleotide 
Polymorphism, OSA: Obstructive Sleep Apnea, OR: Odd Ratio, CI: Confidence Interval. Adjusted odds ratio 
were adjusted for body mass index.
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parameters, diabetes mellitus, coronary artery disease, arrhythmia, hypertension, hypercholesterolemia, and 
smoking28. NO reduces in OSA patients, treatment with CPAP ameliorate endothelial nitric oxide release and 
vasodilation38.

Several studies have indicated a reduction in nitric oxide bioavailability in OSA patients3,39,40. BH4 is an essen-
tial co-factor required for the activation of all the three nitric oxide synthases; changes in this co-factor can 
affect NO formation41. GTP Cyclohydrolas 1 (GCH1) is a rate-limiting enzyme in the BH4 synthesis42. Therefore, 
changes in GCH1 gene could decrease or increase BH4 availability for NOS. Some studies have demonstrated 
that GCH1 rs841 polymorphism has a similar effect on BH4 levels in plasma and vascular tissues, and acts as a 
pain-protective haplotype of GCH143. This polymorphism reduces BH4 levels in people with cardiovascular dis-
eases, results in a reduction in NO, and increase superoxide production42. Given the protective effect of this poly-
morphism and other haplotypes of GCH1, it could be concluded that rs841 moderately reduces GCH1 expression 
and BH4 production44. Cycles of intermittent hypoxia, as a sign of OSA, promote oxidative stress and enhance the 
production of reactive oxygen species39. NADPH oxidase is a membrane-bound complex enzyme with cytosolic 
subunits (Rac, p47phox, p67phox) that are linked to catalytic membrane subunits (Nox, p22phox) to facilitate the 
superoxide production45. P22phox subunit plays an important role in the normal function of enzymes46. Recent 
studies have demonstrated that several polymorphisms of p22phox gene (CYBA) are associated with increased 
oxidative stress and cardiovascular diseases32,47,48. According to Pierola et al., patients with GA and GG genotypes 
of A930G p22phox polymorphism are more at risk of OSA. A930G p22phox polymorphism changes the expres-
sion of p22phox, in addition G allele increases p22phox expression and oxidative stress. A-930G polymorphism 
is associated with sleep apnea independently of sympathetic activation, obesity, hypertension, hyperlipidemia and 

SNP Genotype

Non-severe Severe

Crude OR P value

Adjusted OR P 
valueN = 51 N = 43 (95% CI)

Rs841

GG 26 33 1.00 (Reference)

GA 23 9 0.3 (0.12–0.78) 0.01 0.21 (0.07–0.62) 0.005

AA 2 1 0.3 (0.02–3.58) 0.44 0.05 (0.002–1.32) 0.07

A930G p22phox

GG 14 13 1.00 (Reference)

GA 31 22 0.76 (0.3–1.92) 0.57 0.61 (0.22–1.7) 0.35

AA 6 8 1.43 (0.38–4.7) 0.58 1.14 (0.27–4.84) 0.85

Rs1799983

GG 28 23 1.00 (Reference)

GT 18 19 1.28 (0.55–3.03) 0.56 0.92 (0.36–2.31) 0.86

TT 5 1 0.24 (0.01–2.11) 0.18 0.33 (0.33–3.36) 0.35

Table 3.  Association between rs841, A930G p22phox, rs1799983 genotypes and the severity of OSA. SNP: 
Single Nucleotide Polymorphism, OSA: Obstructive Sleep Apnea, OR: Odd Ratio, CI: Confidence Interval. 
Adjusted odds ratio were adjusted for age, gender and body mass index.

SNP Genotype

Non-sleepy Sleepy Crude OR

P value

Adjusted OR

P valueN = 22 N = 72 (95% CI) (95% CI)

Rs841 GG 9 (40.9%) 51 (70.8%) 1.00 (Reference)

GA 12 (54.5%) 19 (26.4%) 0.27 (0.1–0.8) 0.01 0.23 (0.07–0.7) 0.01

AA 1 (4.5%) 2 (2.8%) 0.35 (0.03–5.64) 0.39 0.3 (0.01–5.08) 0.4

A930G p22phox GG 4 (18.2%) 23 (31.9%) 1.00 (Reference)

GA 12 (54.5%) 41 (56.9%) 0.59 (0.19–1.99) 0.4 0.56 (0.15–2.07) 0.38

AA 6 (27.3%) 8 (11.2%) 0.23 (0.06–0.95) 0.04 0.14 (0.02–0.8) 0.02

Rs1799983 GG 14 (63.63%) 37 (51.4%) 1.00 (Reference)

GT 6 (27.27%) 31 (43%) 1.95 (0.66–5.81) 0.21 1.79 (0.58–5.52) 0.3

TT 2 (9%) 4 (5.6%) 0.75 (0.16–4.34) 0.76 1.61 (0.23–
11.03) 0.62

Table 4.  Association between rs841, A930G p22phox, rs1799983 genotype and daytime sleepiness in OSA. 
SNP: Single Nucleotide Polymorphism, OSA: Obstructive Sleep Apnea, OR: Odd Ratio, CI: Confidence Interval. 
Adjusted odds ratio were adjusted for age, gender and body mass index.

Genotype

Non-sleepy Sleepy Crude OR (95% CI) P value Adjusted OR (95% CI) P valuers841 A930G

GA GA 7 8 0.16 (0.02–0.98) 0.04 0.11 (0.01–0.8) 0.03

GA AA 3 2 0.09 (0.009–0.97) 0.04 0.05 (0.003–0.83) 0.03

Table 5.  Distribution of combined genotypes in sleep and non-sleep OSA. OR: Odd Ratio, CI: Confidence 
Interval. Adjusted odds ratio were adjusted for age, gender and body mass index.
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diabetes mellitus33. A meta-analysis study indicated that A930G polymorphism might be a protective factor for 
hypertension49. Based on another study, NO production is lower in hypertensive patients with GG genotype of 
A930G polymorphism46, that could indicate that patients with GA/AA genotype produce more NO than patients 
with GG genotype; this phenomenon may justify the protective effect of GA/AA genotype in OSA patients. eNOS 
is one of the three isoforms of NOS enzyme that produces nitric oxide in the presence of BH4 and NADPH15. 
eNOS and NO play an important role in the regulation of endothelial vasodilation, and their functional impair-
ment plays an important role in the development of various diseases50, such as cardiovascular diseases51, cerebral 
ischemia52, and OSA53. Therefore, the expression of eNOS and subsequent endothelial NO release may be affected 
by gene polymorphism54. A study investigated 50 single nucleotide polymorphisms of eNOS in children with 
OSA and the results suggested that these polymorphisms could contribute to the risk of OSA-induced cardiovas-
cular morbidity55. G894T (rs1799983) polymorphism of eNOS is a functional polymorphism which could lead 
to the sequence change in Glu 298 Asp56. Moreover, rs1799983 polymorphism of eNOS gene is associated with 
reduced activity of NOS and bioavailability of NO. Concurrent presence of CETP B1, NOS3 T, and ANGPTL8 T 
alleles increases the risk of cardiovascular diseases and type 2 diabetes mellitus57.

This study had some limitations. Firstly, the genes selected for investigation had overlap with other diseases 
such as cardiovascular diseases, diabetes, stroke, and brain ischemia; thus, we only selected patients with no 
comorbidity. Therefore, it had an advantage and a disadvantage for our study. As an advantage, the genetic assess-
ments were just performed for people who only had OSA; however, as a disadvantage, it was difficult to find 
patients with no comorbidity, and it resulted in a small sample size. Hence, it is suggested to conduct further stud-
ies with larger sample sizes. On the other hand, in order to perform a comparative analysis, it is better to select 
another group of OSA patients with a concurrent comorbidity. Secondly, we assessed just one polymorphism in 
each gene, hence the association between other polymorphisms and OSA could be investigated further.

Overall, our study showed that gene polymorphisms in nitric oxide-forming pathway had a reverse associa-
tion with OSA. rs841 and A930G p22phox polymorphisms had a protective effect in patients with OSA.

Materials and Methods
Subjects.  This study, as a case-control study, was performed in Baharloo Hospital and Imam Khomeini 
Hospital, Tehran, Iran. The study protocol was approved by Ethics Committee of Tehran University of Medical 
Sciences (ethical code: IR.TUMS.VCR.REC.1395.1107). A written informed consent was obtained from all the 
participants. The experiments were performed in accordance with the American Academy of Sleep Medicine 
Guidelines58.

A total of 94 patients (F19: M75) with OSA and 100 healthy controls (F21: M79) were matched in terms of age 
and gender. The data on personal characteristics, medical history, and sleep information were obtained through 
using a questionnaire. All the patients underwent a polysomnography test. Polysomnography was performed 
overnight, and it monitored many body functions, including skeletal muscle activation (EMG), eye movement 
(EOG), brain activity (EEG), blood pressure, heart beating, and oxygen saturation. After test analysis, people with 
5 ≤ AHI < 15, 15 ≤ AHI < 30 and AHI ≥ 30 were classified into the three groups of patients with mild, moderate, 
and severe OSA, respectively.

In order to control the costs and consider practical issues, polysomnography was not performed for the con-
trols, and the controls were considered healthy on the basis of data on history that were obtained via answering 
STOP-BANG and Epworth Sleepiness Scale questionnaires. The cutoff point for STOP-BANG questionnaire was 
259, and the cutoff point for Epworth Sleepiness Scale questionnaire was 1060.

Exclusion criteria for both case and control groups were the presence of trauma, inflammatory diseases, car-
diovascular diseases, brain ischemia, diabetes, chronic pulmonary disorders, asthma, chronic kidney disease, 
thyroid diseases, smoking history, and drug addiction. Blood samples were collected from the members in the 
two groups and stored in −20 °C to be used for further examinations.

DNA extraction and genotyping.  DNA was extracted from the whole peripheral blood samples using 
Geneall DNA extraction kit (Geneall, Seoul, South Korea), in accordance with the manufacturer’s protocol. 
NADPH Oxidase A930G p22phox was genotyped via Restricted Fragment Length Polymorphism (RFLP) 
method. The polymerase chain reaction (PCR) forward primer was 5′ GGAAACCACCAAGTGCCTCGGATGG 
3′ and Revers primer was 5′ TCTGCACCCTGATGCTACCAAGGAC 3′. PCR was carried out using a volume 
of 30 ml, under the following condition: an initial denaturation step at 94 °C for 1 min, followed by 31 cycles of 
1 min at 94 °C, 1 min at 67 °C, and 1 min at 72 °C; finally, the last elongation step was performed at 72 °C for 2 min. 
Amplified products were digested using h 3 U of BbvI restriction enzyme for 1 h at 37 °C (New England Biolabs, 
Beverly, MA, USA). The results of digestion were separated on 3% agarose (Sigma-Aldrich, USA). TaqMan SNP 
genotyping assays were used for GCH1 rs841 and eNOS rs1799983 genotyping. Following the manufacturer’s 
protocol, the probes were designed by Applied Biosystems and genotyping were performed on Step-One Plus 
Real-Time PCR system (Applied Biosystems, Foster City, California, United States).

Statistical analysis.  Statistical analyses were performed in SPSS 25.0 software package for Windows (SPSS 
Inc, Chicago, IL, USA) and GraphPad Prism 8 (GraphPad Software, San Diego, CA). Chi-square test was pre-
formed to assess deviation from Hardy-Weinberg equilibrium to assess genotypes distribution. The effect of 
each single-nucleotide polymorphism (SNP) on OSA was investigated using multiple logistic regression analysis 
adjusted for body mass index in the patients and controls, however, in order to analyze the data obtained from the 
patient group, multiple logistic regression was preformed after adjusting for age, gender, and body mass index. 
The strength of the association between the three polymorphisms and OSA was measured via computing ORs at 
a confidence interval of 95%. Statistical significance was defined as a two-tailed P < 0.05.
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