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Dual attention network 
for unsupervised medical image 
registration based on VoxelMorph
Yong‑xin Li1, Hui Tang2, Wei Wang3, Xiu‑feng Zhang1 & Hang Qu3*

An accurate medical image registration is crucial in a variety of neuroscience and clinical studies. 
In this paper, we proposed a new unsupervised learning network, DAVoxelMorph to improve the 
accuracy of 3D deformable medical image registration. Based on the VoxelMorph model, our network 
presented two modifications, one is adding a dual attention architecture, specifically, we model 
semantic correlation on spatial and coordinate dimensions respectively, and the location attention 
module selectively aggregates the features of each location by weighting the features of all locations. 
The coordinate attention module further puts the location information into the channel attention. 
The other is introducing the bending penalty as regularization in the loss function to penalize the 
bending in the deformation field. Experimental results show that DAVoxelMorph achieved better 
registration performance including average Dice scores (0.714) and percentage of locations with 
non-positive Jacobian (0.345) compare with VoxelMorph (0.703, 0.355), CycleMorph (0.705, 0.133), 
ANTs SyN (0.707, 0.137) and NiftyReg (0.694, 0.549). Our model increases both model sensitivity and 
registration accuracy.

Deformable image registration is crucial in a variety of clinical studies and applications since it aligns the image 
space into a common anatomical space. As the key technology of Image-aided diagnosis and treatment, reg-
istration technology can improve the efficiency of detecting the treatment effect. Meanwhile, this technology 
can maximize the fusion of medical images of different modes or times, and improve the utilization of informa-
tion and the accuracy of diagnosis. Traditional registration methods attempt to estimate smooth deformation 
fields by optimizing cost functions associated with similarity metrics. However, these methods usually involve 
numerical optimization in high dimensions and are usually computationally expensive1. The emergence of deep 
learning-based methods has shown successfully addressed the limitations of conventional methods. A previous 
study pointed out that an unsupervised end-to-end learning strategy achieved a 100 × speed-up for 2D tissue 
registration compared to traditional image registration methods2. Fan et al. evaluated their BIRNet model in the 
3D brain images. Compared to other deformable registration methods, their dual-guided fully convolutional 
neural network, BIRNet requires no iterative optimization and takes the least computational time3. In addition, 
registration accuracy has shown improved greatly in deep learning-based methods. For example, Cao et al. pro-
posed a CNN-based regression model to directly learn the complex mapping from the input image pair to their 
corresponding deformation field. The evaluation of this model showed a maximal 2.6% improved dice similarity 
coefficient (DSC) in the white matter, gray Matter and cerebrospinal fluid registration4.

Recently the unsupervised registration framework became prominent due to the high challenging to obtain 
the real transformation and segmentation labels required by the supervised methods. de Vos et al. proposed the 
first unsupervised registration network DIRNet based on image similarity, taking the similarity between image 
pairs to be registered as a loss function, making end-to-end network training possible5. Yoo et al. and Sheikhjafari 
et al. used convolution self-encoder to encode the input image pairs to be registered into feature vectors and 
calculate the feature-based similarity loss6,7. The results showed that the feature-based similarity measurement 
method is better than the gray-scale similarity measurement method. Meanwhile, transformer has become very 
popular in a wide range of computer vision tasks. Vit and its derived instances have achieved the most advanced 
performance on multiple benchmark datasets8, showing the great potential in medical image analysis tasks. 
However, compared with convolutional network, transformer local information modeling lacks spatial induced 
bias, and the size of medical image data set is usually small, which makes it more difficult to learn the position 
coding of images9–11. Among all recent proposed unsupervised learning models, VoxelMorph model combines 
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CNN and spatial transformation (ST) exceeded others12. It showed higher computational efficiency since it does 
not require a large amount of labeling data. It is a probabilistic generative model that defines registration as a 
parametric function and models functions using CNN and reconstruct images using ST layer. It is an inference 
algorithm based on unsupervised learning to provide diffeomorphic guarantees and uncertainty estimates, which 
learned the parameters by optimizing the variational lower bound13–15. However, we note that VoxelMorph fail 
to effectively suppress useless information on the spatial field during modeling the registration parameter func-
tion. Hence, in order to improve sensitivity issue of VoxelMorph, we propose a modified unsupervised learning 
model by employing the attention mechanism in the registration field to focus on important features and sup-
press unnecessary ones.

Our novel unsupervised learning model DAVoxelMorph for deformable medical image registration have two 
contributions. First, our CNN architecture module that combines the dual attention mechanism of coordinate 
attention and spatial attention. The module is superior in automatically learning different shapes and sizes of 
the target structure, implicitly learning to suppress irrelevant regions in the image during model training, and 
highlighting significant useful features for the registration task. Secondly, we introduce a modified loss function, 
which consists of cross-correlation and bending penalty regularization method. Our loss function has superior 
robustness and less susceptible to the effects of image grayscale distribution and contrast.

Related work
Deep learning‑based registration.  Depending on the type of annotation available in the training data, 
deep learning registration approaches can be broadly categorized as supervised, weakly supervised, and unsu-
pervised transformation estimation16. The supervised learning requires the training datasets to include ground-
truth deformation field, which is obtained either by simulating deformations and deformed images, or by run-
ning classical registration methods on pairs of scans. Based on a patch-based training system, Yang et al. design 
a deep encoder–decoder network to initialize the momentum of the large deformation diffeomorphic metric 
mapping registration model17. Sokooti et al. trained a 3D CNN to register chest CT data using artificially gen-
erated displacement vector field18. On the other hand, image-to-image prediction can be performed by a fully 
convolutional neural network (FCN), in which pixel-level features are predicted. For example, Fischer et  al. 
proposed a novel CNN model for optical flow prediction, which trained end-to-end on a synthetic dataset and 
performed image-to-image optical flow prediction19.

Alternatively, some works have focused on the weakly supervised learning. For example, Hu et al.20, Xu and 
Niethammer21 showed networks trained to maximize the alignment between tissue labels. Besides, Blendowski 
et al. used a shape encoder–decoder network to extract cardiac shape representations as a basis for registration22. 
Drawbacks included the time-consuming nature of tissue labeling and the dependence on the performance of 
the resulting network on the accuracy of tissue labeling are well recognized23.

Although supervised methods have presented a promising direction, ground truth warp fields derived by 
traditional registration tools as ground truth can be laborious to acquire and can restrict the learned deformation 
types. In contrast, unsupervised learning mainly uses spatial transformer networks (STN) to warp moving image 
with estimated registration field, and training of the estimators relies on the design of data similarity function 
and smoothness of estimated registration field24. First unsupervised learning methods include Deep Learning 
Image Registration (DLIR) proposed by de Vos et al.5 and non-rigid image registration using FCN introduced by 
Li and Fan25. In addition, the starting point of the present work is the VoxelMorph framework. It is considered as 
the state-of-the-art, as is fully unsupervised and allows for a clinically feasible real-time solution by registering 
full 3D volumes in a single shot12. Given the large dataset the VoxelMorph model has been evaluated, it exceeded 
other medical registration methods. With an appropriate loss function such as mutual information, the model 
can perform multimodal registration.

Attention mechanism.  Attention mechanisms tells a model “what” and “where” to attend and have been 
proven helpful in a variety of computer vision tasks26, such as image classification27,28, and image segmentation29,30. 
Wang et al. introduced an encoder–decoder style attention module31. This high-capacity unit is inserted into 
deep residual networks between intermediate stages. In contrast, Hu et al. proposed the SE block, which is a 
lightweight gating mechanism. It specialized to model channel-wise relationships in a computationally efficient 
manner and designed to enhance the representational power of basic modules throughout the network28. How-
ever, the SE attention neglects the importance of positional information, which is critical to capturing object 
structures in vision tasks32. To exploit positional information, later works included BAM and CBAM attempt 
to reduce the channel dimension of the input tensor and then compute spatial attention using convolutions33,34. 
Given that convolutions can only capture local relations but fail to model long-range dependencies that are 
essential for vision tasks, Hou et al. proposed an efficient attention mechanism coordinate attention by embed-
ding positional information into channel attention to enable mobile networks to attend overlarge regions while 
avoiding incurring significant computation overhead35. The coordinate attention block is another starting point 
for the present work. In our AttentionVoxelMoprh network, we introduce Dual Attention CNN Architecture by 
combining coordinate attention block and spatial attention block to further strengthen salient features and sup-
press useless information in the registration field.

Loss function of image registration model.  The loss function of a non-rigid image registration model 
based on unsupervised learning is usually composed of two parts. One part is the similarity measure between 
the reference image and the deformed floating image. The other is the spatial regularization of the deformation 
field predicted by the network to constrain the spatial smoothness of the deformation field. There are three com-
monly used image similarity measures: mean squared voxel difference, cross-correlation and mutual informa-
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tion. Mean Squared Voxel Difference and cross-correlation are usually used for unimodal images. The mutual 
information is usually used for multimodal images, which has better robustness in unimodal images. In the 
processing of network training, discontinuous deformation fields are often generated in the network in order 
to measure the similarity of images to the maximum extent. Therefore, it is usually necessary to apply spatial 
smoothing constraints on the predicted deformation field, that is, to penalize the spatial gradient of the defor-
mation field, such as spatial regularization in VoxelMorph to calculate the square of the L2 norm of the gradient 
of the deformation field. Recent work has proposed a regularization method called bending penalty36, which 
computes the second-order gradient of the deformation field to penalize folding in the deformation field, and we 
will incorporate this into our loss function.

Methods
On the basis of VoxelMorph framework, we propose an VoxelMorph Dual Attention CNN Architecture, an atten-
tion enhanced approach that further inhibit the useless information in the spatial field and improve the model 
accuracy. We learn the network parameters in an unsupervised fashion. We combine the attention modules that 
generate inter-spatial relationship, consider both positional information and channel-wise relationships. We 
confirm that all methods were carried out in accordance with relevant guidelines and this study was approved 
by the Ethics Committee of the Affiliated Hospital of Yangzhou University (2017-YKL11-021).

VoxelMorph CNN architecture.  VoxelMorph is an unsupervised registration framework based on con-
volutional neural network (CNN). It estimates the dense deformation field in one step by cascading U-Net and 
STN structures to realize deformable registration of 3D brain MRI images. Under unsupervised conditions, the 
registration accuracy can be significantly better than SyN37, which confirmed the superiority of unsupervised 
registration method over supervised and traditional registration methods. We use the same VoxelMorph CNN 
architecture proposed by Balakrishnan et al.12,38. The parameterization of gθ (·,·) is based on a CNN convolu-
tional neural network architecture that consists of encoder and decoder sections with skip connections. The 
VoxelMorph CNN architecture concatenates the moving image M and fixed image F into a 2-channel 3D image 
as the input and generate the corresponding ϕ (Fig. 1). In the encoder stage, 3 × 3 × 3 convolutions with stride 2 
followed by Leaky ReLU activations are used to reduce the spatial dimensions until the bottleneck layer. In the 
decoder stage, we alternate between upsampling, convolutions and concatenating skip connections that propa-
gate features learned during the encoding stages directly to layers generating the registration.

Dual attention CNN architecture.  In the medical images, attention needs to be focused on salient fea-
tures (relevant tissues or organs) that are useful for a specific task, suppressing irrelevant regions in the input 
image. In cascaded neural networks, an explicit external tissue/organ localization module is required, and the 
use of spatial attention to learn individual elements with respect to the target can replace this operation. In order 
to make the most use of the spatial information extracted from the encoding and corresponding decoding stages, 
we propose a CNN architecture module that integrates the dual attention mechanism of coordinate attention 
and spatial attention.

Coordinate attention.  Note that the standard convolution itself is difficult to model the channel relationships. 
However, to aggregate global information, global average pooling has been commonly adopted. In order to get 
channel-wise statistics, we first apply Squeeze- and- Excitation (SE) blocks proposed by28. Given the input X, the 
squeeze step for the c-th channel is calculated as follows:

where zc is the output related to the c-th channel. The input comes directly from a convolutional layer with a 
fixed kernel size and then be considered as a collection of local descriptors. Noticeably, the global pooling opera-
tion squeezes global spatial information into channel descriptors, causing the difficulty in preserving positional 

(1)zc =
1

H ×W

H
∑

i=1

W
∑

j=1

xc(i, j)

Figure 1.   CNN architecture implemented gθ (f, m). Each rectangle represents a 3D volume, generated from the 
preceding volume using a 3D convolutional network layer. The spatial resolution of each volume with respect to 
the input volume is printed underneath.
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information. Therefore, we propose to introduce the coordinate attention blocks, demonstrating in Fig. 2. It 
is demonstrated by Hou et al.35, which considers both inter-channel relationships and positional information.

Two 1D global pooling operations are used to aggregate the input features into two separate directional 
perceptual feature maps along the vertical and horizontal directions respectively. Each attention map captures 
the long-distance dependence of the input feature map along one spatial direction. As shown in Fig. 2, the given 
input consists of two spatial extents of pooling kernels (H, 1) or (1, W) to encode each channel along the hori-
zontal coordinate (X) and the vertical coordinate (Y), respectively. The output of c-th channel at height h can be 
formulated as Eq. (2), and the output of the vertical coordinate can be formulated as Eq. (3):

(2)zhc (h) =
1

W

∑

0≤i<W

xc(h, i).

(3)zwc (w) =
1

H

∑

0≤j<H

xc(j, w)

Figure 2.   The coordinate attention block, where X Avg Pool and Y Avg Pool represent 1D horizontal global 
pooling and vertical global pooling, respectively.
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The two transformations described above aggregate characteristics along the two spatial directions, resulting 
in a pair of direction-aware feature maps. Demonstrated in the Fig. 2, X Aveg Pooling and Y Avg Pooling repre-
sents that the two transformations that enabling our attention block to capture long-range dependencies along 
one spatial dimension while preserving exact positional information along the other, which allow networks to 
detect objects of interest accurately.

After the coordinate information embedding stage mentioned above, we perform the coordinate attention 
generation by concatenating the aforementioned two transformations first and then use 1× 1 convolutional 
transformation function F1:

where [·, ·] is the operation of concatenating along the spatial dimension, δ is the non-linear activation function, 
and f ∈ R

C/r×(H+W) is the intermediate feature map that encodes spatial information in both the horizontal 
and the vertical directions. r is the reduction ratio for controlling SE block. Then, splitting f along the spatial 
dimension into two separate tensors: fh ∈ R

C/r×H and fw ∈ R
C/r×W . Apply another two 1 × 1 convolutional 

transformations Fh and Fw to transform fh and fw into tensors with same channel numbers to the input X. Equa-
tions (5) and (6) show as below:

where σ is the sigmoid activation function. To reduce overhead model complexity, here, we usually reduce num-
ber of f channel with appropriate reduction ratio r. Then we expand the outputs gh and gw as attention weights. 
Finally, the output of Coordinate Attention Block as the following Eq. (7):

Spatial attention.  The pooling layer in the ordinary convolutional neural network directly uses max pooling or 
average pooling to compress the image information and reduce the amounts of operations to improve the accu-
racy rate. We need to further suppress the irrelevant regions in the input image and highlight the significant fea-
tures of specific local areas, so we introduce the spatial attention module to further extract the key information.

To compute spatial attention, as in CBAM34, we apply the following Attention module schematic (shown as 
Fig. 3). We first apply average-pooling and max-pooling operations along the channel axis and concatenate them 
to generate two-feature maps g and xl as inputs. The input g comes from decoder and xl comes from the encoder.

First, two 1 × 1 × 1 kernel convolution layers are to generate two new feature  maps gi
(

Fg ×Hg ×Wg × Dg

)

 
and xli(Fl ×Hx ×Wx × Dx) , respectively, to capture edge information of tree-like structures in horizontal and 
vertical orientations. 1 × 1 × 1 convolutional operation on the  feature map gi

(

Fg ×Hg ×Wg × Dg

)

 in the down-
sampling layer from the N layer to get WT

g gi . Similarly, we get WT
x x

l
i , we perform 1 × 1 × 1 convolution on the 

feature map xli(Fl ×Hx ×Wx × Dx) in the upsampling layer from N-1 layer. After that, we add feature maps 
WT

g gi and WT
x x

l
i together and apply ReLU function to obtain σ1

(

WT
x x

l
i +WT

g gi + bg

)

 , which refers to 
Fint ×HgWgDg in the Fig. 3. Then, we apply another 1 × 1 × 1 convolutional computation to get qlatt , the formula-
tion is shown below:

where Wx ∈ R
Fl×Fint ,Wg ∈ R

Fg×Fint ,ψ ∈ R
Fint×1 and bias terms bψ ∈ R, bg ∈ R

Fint are computed using channel-
wise 1 × 1 × 1 convolutions for the input tensors. Finally, using sigmoid activation function on qlatt to get attention 
weight αl

i , the formula is shown below:

(4)f = δ

(

F1

([

zh, zw
]))

(5)gh = σ

(

Fh

(

fh
))

(6)gw = σ
(

Fw
(

fw
))

(7)yc(i, j) = xc (i, j)× ghc (i)× gwc (j)

(8)qlatt = ψT
(

σ1

(

WT
x x

l
i +WT

g gi + bg

))

+ bψ

Figure 3.   The attention module schematic. Input features ( xl ) are scaled with attention coefficients (α) 
computed in spatial attention. Spatial regions are selected by analyzing both activations and contextual 
information provided by the gating signal (g). ⊕ denotes add, and ⨂ denotes the elementwise multiplication.
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This part is derivable and the value of attention coefficients can be adjusted by training. The formulation is 
shown below:

When attention coefficients, range 0–1, are multiplied with the feature map, values of irrelevant regions will 
become smaller (suppression), and the target regions will be larger (attention).

Our attention module infers attention mappings in two independents dimensional, channel and spatial orders, 
and then multiplies the attention mappings into input feature mappings for adaptive feature refinement. We then 
put attention module into CNN Architecture and gain the Dual Attention CNN Architecture.

Dual Attention CNN Architecture is shown in Fig. 4, which splices the image pairs to be registered into 
2-channel 3D image input. In the coding stage, 3 × 3 × 3 convolution with step stride 2 is used, and then the spatial 
dimension is reduced by Leaky ReLU activation. In the decoding phase, we alternate upsampling, 3 × 3 × 3 con-
volution (followed by Leaky ReLU activation), and join skip-connection. Fusion coordinate attention and spatial 
attention are added to the skip-connection between each encoding stage and the corresponding decoding stage. 
The feature maps of coordinate attention and spatial attention output are concatenated with the corresponding 
feature maps after up-sampling in the decoding stage. The high and low order features of spatial information are 
also collected. The spatial information from the encoding and corresponding decoding stages are fully extracted.

DAVoxelMorph.  By adding the Dual Attention CNN Architecture into the standard VoxelMorph frame-
work, the overview of DAVoxelMorph is demonstrated in the Fig. 5. To be specific, we propose to apply Dual 
Attention CNN Architecture to build registration field φ from the mapping of f to m, where f, m are two inputs 
of image volumes from n-dimensional space, u denotes the displacement field. We model a function gθ (f,m) = u 
using a convolutional neural network (CNN), where θ are network parameters. The registration field φ is stored 
in a n + 1-dimensional image. In other words, for each p ∈ � , u

(

p
)

 is a displacement such that f (p) and [m ◦ φ]
(p) correspond to similar anatomical locations,

The network of p in the registration field so that voxel in m and f can correspond to similar anatomical loca-
tions. Similarly, f

(

p
)

 and [m ◦ φ]
(

p
)

 denote the anatomic segmentation. Then, the network takes f and m as 
input, and computes φ using a set of parameters θ. We warp m to m ◦ φ using a spatial transformation function, 
enabling evaluation of the similarity of m ◦ φ and f.

Loss functions.  Our overall loss function Lus(·, ·, ·) uses input volumes and generated registration filed to 
evaluate the model. It consists of two components, including: (1) Lsim to penalize differences of appearances; (2) 
Lsmooth to penalize local spatial variations in φ:

(9)αl
i = σ2

(

qlatt

(

xli , gi; �att

))

(10)∂
(

x̂li
)

∂
(

�l−1
) =

∂

(

αl
i f
(

xl−1
i ;�l−1

))

∂
(

�l−1
) = αl

i

∂

(

f
(

xl−1
i ;�l−1

))

∂
(

�l−1
) +

∂
(

αl
i

)

∂
(

�l−1
)xli

(11)Lus(f ,m,φ) = Lsim(f ,m ◦ φ)+ Lsmooth

Figure 4.   The dual attention CNN architecture. Each rectangle represented a 3D volume, generated from the 
previous volume by a 3D convolutional network layer. The spatial resolution of each volume was printed below. 
Fusion coordinate attention block and spatial attention block were added to the hop connection between each 
encoding stage and the corresponding decoding stage.
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Let f̂ (p) and [m̂ ◦ φ](p) denote local mean intensity images: f̂ (p) = 1
n3

∑

pi

f
(

pi
)

 , The local cross-correlation 

of f  and m ◦ φ is written as:

A higher CC indicates a better alignment, yielding the loss function

During the training of networks, previous studies used smoothness constraint of its spatial gradient38,39. 
However, we introduced a bending penalty term which regularizes the transformation, Lsmooth = αP , where P 
is the affine alignment, α = 0, and α is empirically determined to be 0.05 for all deformable image registration. 
Based on the general form of such a penalty term has been described by Wahba40, our bending penalty takes 
the following form:

Experiments
Datasets and preprocessing.  We chose to experiment on publicly available data to demonstrate the per-
formance of our approach. We evaluated our method and other registration methods on the brain MRI dataset 
LPBA40.LPBA40 datasets included a total of 56 structures labeled in MRI of 40 healthy, normal volunteers. 
Standard pre-processing steps were performed, including resampling all scans to a 256 × 256 × 256 grid with 
1 mm isotropic voxels, affine special normalization, brain extraction using Freesurfer41, and crop the resulting 
images to 160 × 192 × 224.

Evaluation metrics.  We will evaluate our method and other registration methods from two perspectives. 
Registration mass and deformation field. For registration quality, we used an assessment based on volume over-
lap between organ segments and quantified it using the Dice score14. Comparing the mean and standard devia-
tion of scores across the various registration methods, formulated as follows:

where A is the reference image and B is the target image. A Dice score of 1 indicates that the structures are identi-
cal, and a score of 0 indicates that there is no overlap.

(12)CC(f ,m ◦ φ) =
∑

p∈�

(

∑

pi

(

f
(

pi
)

− f̂ (p)
)

(

[m ◦ φ]
(

pi
)

− [m̂ ◦ φ](p)
)

)2

(

∑

pi

(

f
(

pi
)

− f̂ (p)
)2

)(

∑

pi

(

[m ◦ φ]
(

pi
)

− [m̂ ◦ φ](p)
)2

)

(13)Lsim (f ,m,φ) = −CC(f ,m ◦ φ).

(14)
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1
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(
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]
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(15)Dice(A,B) = 2 ·
|A ∩ B|
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Figure 5.   The overview of DAVoxelMorph model. We extract features and generate registration field through 
dual attention CNN architecture, and then register moving 3D image (M) to fixed 3D image (F) through spatial 
transform.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16250  | https://doi.org/10.1038/s41598-022-20589-7

www.nature.com/scientificreports/

To evaluate the regularity of the registration field φ, the Jacobian matrix captures the local properties of 
φ around voxel p. We count all non-background voxels for which |Jφ(p)| ≤ 0, where the deformation is not 
diffeomorphic42. Formula is shown below:

Implementation.  We compare DAVoxelMorph with various registration methods that represent the most 
advanced registration performance at present. Two non-deep learning based methods include symmetric stand-
ardized SyN37 and NiftyReg43 in the publicly available advanced standardization tools (ANTs)44 software pack-
age. Two deep learning based methods, including VoxelMorph12,38 and CycleMorph45. There are four methods. 
Syn and NiftyReg are both non learning based methods. They achieve registration by optimizing the energy 
function of image pairs and have achieved remarkable success in various computational anatomy studies. Voxel-
Morph uses unsupervised learning, the loss performance reaches a high level in Dice coefficient, and the train-
ing time is greatly reduced. It can use auxiliary information and coarse label information to improve network 
performance. It is a very classic baseline network in the registration field. CycleMorph uses cyclic consistency 
to provide an implicit regularization to preserve the topology structure, which overcomes the problem that the 
registration method of deep learning usually cannot guarantee the preservation of topology.

For VoxelMorph implementation, we implemented our approach using PyTorch on a computer equipped 
with an Nvidia RTX A2000 GPU and an Intel Xeon Silver 4208 CPU. The Adam optimizer with a learning rate 
of 10–4, and a default of 50,000 iterations.

In our experiment, we split LPBA40 dataset into 30 training images and 10 testing images. We randomly 
choose one image from testing images as fixed image, and input 30 training images to the DAVoxelMorph model. 
We use Adam Optimizer with a learning rate of 4e−4 , four scales with a default of 50,000 iterations, NCC as the 
image similarity loss function, and batch size as 1.

Results and discussion
Ablation study.  To demonstrate the performance of each key module in the DAVoxelMorph model, we per-
form a series of ablation experiments on the open dataset LPBA4046. The corresponding results of each module 
in DAVoxelMorph are demonstrated in the Table 1, and Fig. 6.

Compared to DAVoxelMorph without bending penalty, DAVoxelMorph with bending penalty showed higher 
results of Dice score on LPBA 40 dataset, indicating the better performance.

Secondly, we compare the effectiveness of combination of Dual Attention CNN Architecture and bending 
penalty. Results of Dice score demonstrate that the combination model is superior to other models.

Taken together, bending penalty and Dual Attention CNN Architecture are two essential components in our 
DAVoxelMorph model, which makes the performance superior to other models.

Comparison with other methods.  The registration results on LPBA40 dataset with different quantitative 
evaluation measures are shown in Table 1. We compare our method with various methods.

Through experiments, on the open data set LBPA40 of brain MRI, the dice score and Jacobian matrix of the 
proposed method are higher than other methods. It is indicated that DAVoxelMorph proposed in this paper is 
best among all five methods in registration quality and three methods in deformation field (NiftyReg method 
does not generate deformation field). The configuration results and intermediate processes of the five methods 
in the experiment are shown in Fig. 6. DAVoxelMorph shows the best registration effect. The dice score and 
Jacobian matrix obtained by the five methods in the experiment are shown in Table 1. The Dice coefficient of this 
method is 0.714 (0.127), and the percentage of positions with non-positive Jacobian is 0.345, which is improved 
compared to the other methods.

Conclusions
In our proposed method, the spatial attention mechanism calculates the attention map in the spatial dimension 
and focuses on the parts of the input image that need to be emphasized or suppressed. The coordinate attention 
mechanism embeds location information into channel attention to enable mobile networks to pay attention 

(16)N := �δ
(

det
(

Dφ−1
)

< 0
)

Table 1.   Presents result on LPBA 40 dataset, including average Dice scores and percentage of locations with 
non-positive Jacobian. Standard deviations are presented in parentheses.

Method Dice % of N

NiftyReg 0.694 (0.122) 0.549

VoxelMorph 0.703 (0.125) 0.355

ANTs SyN 0.707 (0.123) 0.137

CycleMorph 0.705 (0.133) 0.157

DAVoxelMorph (Bending Penalty only) 0.709 (0.122) 0.255

DAVoxelMorph (Dual Attention CNN Architecture only) 0.712 (0.126) 0.365

DAVoxelMorph (Dual Attention CNN Architecture and Bending Penalty) 0.714 (0.127) 0.345
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in a wider range. The dual attention CNN architecture enables our model to focus on the identification and 
positioning of tissues and organs that are more critical to the registration task. It also reduces or even filters the 
attention to other information, so to improve the efficiency and accuracy of registration. The bending penalty 
calculates the two-step degree of the deformation field. It further improves the registration quality by punishing 
the folding in the deformation field, promoting the affine transformation of the network locally, and enhancing 
the continuity and the global smoothness of the deformation field.

In conclusion, we propose a spatial attention enhanced, unsupervised learning method DAVoxelMorph for 
3D deformable medical image registration. The results showed our model surpasses the basic VoxelMorph model, 
CycleMorph, as well as the ANTs SyN and NityReg in model sensitivity and registration accuracy with minimal 
computational overhead. The Dual Attention CNN Architecture in our model can continuously improve the 
registration performance under different datasets and training sizes while maintaining computational efficiency. 
Therefore, our proposed DAVoxelMorphmodel is a general learning model, but not limited to a particular image 
type or anatomy. It successfully speeds up the medical image analysis and processing pipelines, which can con-
tribute to the clinical settings.

Data availability
The datasets generated during and/or analyzed during the current study are available in the https://​www.​loni.​
usc.​edu/​resea​rch/​atlas​es.

Received: 9 April 2022; Accepted: 15 September 2022

Figure 6.   Registration results of different methods on LPBA40 dataset. The first column is the fixed image and 
the second column is the moving image. The third column shows the moved image after registration and in the 
area shown in the green box, DAVoxelMorph shows a better registration effect in detail. The fourth and the fifth 
column show the deformation field during the registration and label.

https://www.loni.usc.edu/research/atlases
https://www.loni.usc.edu/research/atlases
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