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Diverse styles of cytopathology images have a negative effect on the generalization ability of automated
image analysis algorithms. This article proposes an unsupervised method to normalize cytopathology
image styles. We design a two-stage style normalization framework with a style removal module to con-
vert the colorful cytopathology image into a gray-scale image with a color-encoding mask and a domain
adversarial style reconstruction module to map them back to a colorful image with user-selected style.
Our method enforces both hue and structure consistency before and after normalization by using the
color-encoding mask and per-pixel regression. Intra-domain and inter-domain adversarial learning are
applied to ensure the style of normalized images consistent with the user-selected for input images of
different domains. Our method shows superior results against current unsupervised color normalization
methods on six cervical cell datasets from different hospitals and scanners. We further demonstrate that
our normalization method greatly improves the recognition accuracy of lesion cells on unseen
cytopathology images, which is meaningful for model generalization.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The discipline of medicine relies on inductive logic, empirical
learning and evidence-based usage. In recent years, artificial intel-
ligence has played an increasingly important role in medical appli-
cations. In the field of cytopathology, the accumulation of digital
slide images provides a huge database for cytopathology image
analysis where artificial intelligence is increasingly used [1–4].
Assisted screening systems based on big data and artificial intelli-
gence decrease workload and reduce subjective errors in manual
interpretation. This is of great significance in popularizing
cytopathology screening and reducing the incidence of cervical
cancer.

However, the actual deployment of algorithm-based screening
systems faces great challenges in model generalization on diverse
cytopathology images [5–7]. Due to variations in scanning instru-
ments and each hospital’s specific procedure of staining, there is
inherent difference in cytopathology image styles [8], as shown
in Fig. 1. Such image style inconsistency indicates there is a
numerical distribution change between images of different styles
including brightness, saturation and hue. For most of screening
systems, their core automated analysis models based on machine
learning are usually trained on a finite dataset [9,10]. Nevertheless,
machine learning methods generally work well under a common
assumption: training and testing data are drawn from the same
distribution [11]. This assumption is violated as the training data
and testing data have different image styles and thus the perfor-
mance of analysis models degrades in actual deployment process
[12]. Mixing training and transfer learning are effective for improv-
ing the model performance on data with new image styles [11], but
it requires the manual labeling of new style data, which is
resource-intensive. An ideal way to solve this problem without
extra manual annotations is to normalize the input images.

A lot of traditional color normalization methods are proposed
for eliminate pathology image style difference caused by staining
procedure, mainly including color deconvolution [13–18] or stain
spectral matching [19,20], color transfer [21,22], histogram match-
ing [23], and some other methods [24,25]. Color deconvolution
methods were widely studied in past years. The principle of color
deconvolution is below: firstly deconvolve an image into stain
components, then match the components between target images
and template images, finally convolve the matched individual
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Fig. 1. Cytopathology image style diversity. Image style and visual appearance can differ greatly depending on slide staining procedures and scanning devices. Different rows
of patches stand for different hospitals while different columns represent different scanning devices.
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components to obtain normalized target images [25,26]. Some
methods further improve the color normalization performance by
detecting cell nucleus, cell cytoplasm and background to better
identify stain components [14,27]. Color transfer methods gener-
ally match color distributions between target images and template
images by equalizing the mean and standard deviation for each
color channel in the perceptual color space ‘‘L*a*b*” [21]. His-
togram matching is a classic image processing technique to trans-
form the intensity distribution in all color channels of target
images to match that of template images by histogram specifica-
tion [23]. These traditional color normalization methods generally
are manually defined models with empirical parameters and don’t
depend on paired images of different staining protocols. Thus, they
can be directly applied to various images of different color distri-
butions. However, there are two shortcomings in these methods,
which affect their practical application performance. The first one
is that the predefined models and parameters limit color normal-
ization performance for images with huge differences in staining
and imaging characteristics. The second is that the identified sev-
eral template images with optimal staining and visual appearance
may not represent the color distribution of the entire reference
dataset. In particular, the content of a cytopathology image with
limited pixels is usually much sparser than that of a histopathology
image. It’s quite difficult to find several template images represen-
tative of all cell categories to maintain the color normalization
performance.

To tackle the issues of traditional methods, color normalization
methods based on deep learning [26,28–35] especially generative
adversarial networks (GANs) [36] are proposed. In contrast to tra-
ditional color normalization methods, GAN-based methods con-
sider the overall dataset of target style as the template and
approach the problem of color normalization as image-to-image
translation [28–30]. GAN-based color normalization methods can
be divided into supervised and unsupervised. Supervised methods
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require paired images of different staining protocols, then use
mean absolute error (L1 loss) and adversarial losses to optimize
generative networks like pix2pix GAN [37]. Supervised methods
usually have good performance, but obtaining paired images of dif-
ferent styles requires extra multiple staining and imaging, increas-
ing the difficulty of data acquisition. Unsupervised methods do not
require paired images, and most of them are based on CycleGAN
[38]. Shaban et al. [28] proposed StainGAN based on standard
CycleGAN for pathology images. Zhou et al. [34] proposed an
enhanced CycleGAN color normalization method by computing a
stain color matrix for stabilizing the cycle consistency loss. De
Bel et al. [30] further developed residual CycleGAN to learn resid-
ual mapping for color domain transformation instead of regular
image-to-image mapping. Generally, the cycle consistency loss is
designed to keep the structure of generated images not be dis-
torted, but this purpose cannot be strictly guaranteed since the
cycle consistency loss is indirect. For cytopathology images, gener-
ated images by CycleGAN-based methods may face problems such
as cell cross-color (i.e., hue inconsistency). As shown in Fig. 2, the
red cell cytoplasm in the input image was transformed into blue
in the normalized image, and meanwhile the blue cells also had
cross-color phenomenon. The hue inconsistency will affect manual
interpretation or automatic analysis, since the cell color represents
types of superficial, middle and basal cells according cytopathology
staining protocol [39]. Besides, Tellez et al. [26] and Cho et al. [32]
proposed unsupervised color normalization methods by applying
heavy color augmentation or gray-scale transformation to input
images and using a convolutional neural network to reconstruct
the original appearance of the input images. Li et al. [31] also uti-
lized the color normalization strategy in pathology image super
resolution. Compared with CycleGAN-based method, the color nor-
malization strategy does not require training for each target
domain. But it is difficult for color augmentation or gray-scale
transformation to fully imitate or eliminate the style diversity of



Fig. 2. Cell cross-color phenomenon of CycleGAN-based normalization methods. Results of CycleGAN for style normalization: the target image to be normalized (left), the
normalized target image with user-selected style (middle) and the image reconstructed back to the input style (right).

2 Hosipital1 and Hosipital2 were separately Women and Children Hospital of Hubei
rovince and Tongji Hospital of Tongji Medical College, Huazhong University of
cience and Technology.
3 Device1 and Device2 were two different products from 3DHISTECH Ltd. Device3
nd Device4 were separately developed by Wuhan National Laboratory for Optoelec-
onics and Wuhan Huaiguang Intelligent Technology Co., Ltd.
4 Each slide represented a unique patient’s cervical cancer thin prep testing.
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practical staining and imaging, limiting the effectiveness of the
color normalization strategy. In fact, the style diversity of staining
and imaging is reflected in both color distribution and intensity
distribution, and simple gray-scale transformation cannot normal-
ize images of diverse styles.

To address the above demand and challenges, we propose a
novel unsupervised style normalization method for cytopathol-
ogy images without using CycleGAN. As shown in Fig. 3 below,
our method begins with a style removal module in which we
convert each colorful image from both source and target domain
into a grayscale image with a color-encoding mask. Then, we
build a reconstruction module to map them back to a colorful
image with the source domain style. Our method normalizes
cytopathology images at both pixel-level and style-level through
direct per-pixel regression and two types of domain adversarial
learning. We enforce both hue and structure consistency before
and after normalization by using the color-encoding mask and
L1 loss of per-pixel regression. An intra-domain adversarial
learning is applied to ensure the style of normalized images
consistent with the source domain style. An inter-domain adver-
sarial learning is proposed to make the reconstruction network
robust for input images of different domains. To evaluate our
method, we formed cervical cell datasets with different image
styles from multiple hospitals and scanners. Experimental
results demonstrate that our method outperforms current tradi-
tional and deep learning-based unsupervised color normalization
methods. Besides, we further demonstrate that our normaliza-
tion method greatly improves the recognition accuracy of lesion
cells on unseen cytopathology images, which is critical for
model generalization. The main contributions are summarized
as follows:

� We propose an unsupervised generative method to normalize
cytopathology image styles without using regular the cycle con-
sistency strategy.

� Our method enforces both hue and structure consistency by the
color-encoding mask and L1 loss, and ensures the style of nor-
malized images from different domains consistent with the
user-selected style by domain adversarial style reconstruction.

� Our method yields superior color normalization results quanti-
tatively and qualitatively against current traditional and deep
learning-based color normalization methods on multiple cervi-
cal cell datasets, and greatly improves the recognition accuracy
of lesion cells on unseen cytopathology images.
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2. Materials

2.1. Cervical image style normalization datasets

We used six cervical cytopathology slides datasets which were
gathered from 2 hospitals (denoted as Hospital1 and Hospital22

separately) and scanned with 4 types of scanners (denoted as
Device1, Device2, Device3 and Device43 separately). As these data-
sets were produced by different hospitals or scanned with different
scanners, they had variant image styles and were suitable to evalu-
ate our method for image style normalization across domains.The
slide preparation protocols of Hospital1 and Hospital2 are both
liquid-based cytology preparation, but Hospital1 is membrane-
based and Hospital2 is sedimentation. The dyeing schemes include
fixing, clearing and dehydrating. The imaging magnification and
imaging resolution of Devices1-4 are 20� – 0.243 lm/pixel, 20� –
0.243 lm/pixel, 20� – 0.293lm/pixel and 40� – 0.180 lm/pixel
separately. The dataset produced by Hospital1 and scanned with
Device1 was considered as the source domain and denoted as S.
The other datasets were considered as the target domain and
denoted as T1�T5 4. We randomly split the slides of each dataset
into training and test sets and then extracted 512�512 patches with
pixel size of 0.586 lm from slides. The details of datasets are shown
in Table 1.
2.2. Cervical lesion cell recognition datasets

To evaluate our method’s improvement to the generalization
ability of analysis models, we organized cervical lesion cell recog-
nition datasets. For both the source domain fxsg and target domain
fxtg (T is one of T1, T2 and T3), we invited cytopathologists to label
the lesion cells in positive slides. For S, T1, T2 and T3, they are the
same as the datasets used in the previous datasets but with lesion
cell annotations. All cells in negative slides were considered as nor-
mal cells. We used the annotations of the source domain to train a
analysis model T whose task is to classify the lesion and normal
P
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Fig. 3. Image style normalization process with two-stage domain adversarial style normalization framework. The proposed framework consists of a style reconstruction
network G(.), an intra-domain discriminator D1(.) and an inter-domain discriminator D2(.). It normalizes the target image with style removal and style reconstruction. In the
process of style reconstruction, we take multiple losses (including GAN1 Loss ( ), GAN2 Loss ( ) and L1 Loss ( )) to ensure the reconstructed style
consistent with the source style and the reconstructed structure identical with its origin.al input images.

Table 1
Cervical image style normalization datasets.

Name Hospital Scanner Training slides Training patches Test slides Test patches

S Hospital1 Device1 170 100,000 40 6,000
T1 Hospital1 Device2 343 50,000 119 5,000
T2 Hospital1 Device3 169 50,000 26 5,000
T3 Hospital1 Device4 60 50,000 20 5,000
T4 Hospital2 Device2 48 50,000 16 5,000
T5 Hospital2 Device4 39 50,000 10 5,000
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cells. To train T for cell classification in source domain, we gener-
ated 200,000 positive patches by sampling from 29,360 annota-
tions of lesion cells and 200,000 negative patches by randomly
sampling from the negative slides. The test patches of different tar-
get domains were generated by the same way. The details of data-
sets are shown in Table 2.
3. Methods

The proposed method performs the domain adversarial style
normalization via the two-stage strategy including style removal
and style reconstruction. To better explain our method, we assume
that the source domain fxsg is the user-selected style dataset with
annotations fysg and the target domain fxtg is the dataset to be
normalized without annotations. Variations in the process of stain-
ing and imaging result in that fxsg and fxtg present different image
styles and a domain shift. Our goals are to normalize the target
domain image style to the source domain image style both visually
and numerically and thus mitigate the degradation of analysis
models. Our method consists of three sub-networks, separately
named style reconstruction network G(.), intra-domain discrimina-
tor D1(.) and inter-domain discriminator D2(.). The parameters of
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each sub-network are defined as hG, hD1 and hD2. We refer to the
style reconstructed image of a cytopathology image x as x̂.

In the following, we give detailed descriptions of style removal
(Section 3.1) and style reconstruction (Section 3.2), followed by the
definition of loss functions (Section 3.3) and the description of net-
work architectures (Section 3.4).
3.1. Style removal

The most intuitive discrepancy between the source and target
domain is their different image styles. For the style reconstruction
network G(.), our requirement is that: (i) G(.) has the same perfor-
mance for fxsg and fxtg, i.e. it can reconstruct almost identical style
for cytopathology images from different domains; (ii) G(.) ensures
the pathological information of images is consistent before and
after reconstruction. In essence, G(.) is similar to other convolu-
tional neural networks and has a strong sensitivity to the different
numerical distributions. If there is no additional operation or
supervision to help G(.) overcome this distribution change, G(.)will
struggle to exhibit ideal normalization performance. Therefore, we
design a style removal module to bind the input images of G(.)
from different domains to a roughly consistent distribution while
preserving the cell morphology information and rough color infor-



Table 2
Cervical lesion cell recognition datasets.

Name Positive Slides Annotations Positive Patches Negative Slides Negative Patches

S-train 84 29,360 200,000 86 200,000
S-test 20 2,734 4,000 20 4,000
T1-test 19 1,292 2,500 100 2,500
T2-test 15 728 1,300 11 1,300
T3-test 11 602 1,100 9 1,100
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mation of cytopathology images. This module converts the natural
RGB image into a two-channel image, which is formed by concate-
nating a grayscale image and a color-encoding mask (called gray-
scale image with mask, GM), as the input of G(.).

The gray-scale image is obtained by the weighted addition of
the R, G, B channels of the colorful image as follows [23]:

Gray ¼ 0:299� Rþ 0:587� Gþ 0:114� B: ð1Þ
Eq. (1) is the standard formula to calculate the gray value of a

pixel in RGB color space. This translation coarsely erases the style
of RGB image to roughly normalize the input distribution of G(.)
while preserving the morphology information (e.g. texture and
structure). For cytopathology images, the color information repre-
senting some pathological information should be retained. In the
process of producing a cytopathology slide, the staining agents
dye the cell cytoplasm to red or blue according to the difference
in acidity and alkalinity, which means most of cells in cytopathol-
ogy images are red or blue [39]. It is necessary to use this color
information for manual interpretation or automatic interpretation
with the analysis models. However, if G(.) only obtains gray-scale
image, the style reconstructed by G(.) will ignore such information
and may result in hue inconsistency (shown in Fig. 2). To solve the
above problem, we convert the original cytopathology image into a
color-encoding mask as part of the input of G(.), thus remaining the
rough color information of the cytoplasm. The specific color-
encoding mask generation process is as follows: we turn the natu-
ral RGB image to ‘‘L*a*b*” color space which expresses color as
three values: ‘‘L*” for the lightness from black (0) to white (100),
‘‘a*” from green (�127) to red (+128) and ‘‘b*” from blue (�127)
to yellow (+128) [23]. Then we set a hyper-parameter r and
encode the pixels with values of ‘‘a*” channel more than r as 1
(red) and encode the others as 0 (not red). With such color-
encoding mask, our method would greatly overcome the problem
of hue inconsistency. .

3.2. Style reconstruction

In order to reconstruct the source domain image style according
to the input {GM} across domains and ensure the consistency
before and after image translation, we impose an intra-domain
adversarial loss, an L1 penalty and an inter-domain adversarial loss
on the reconstruction objective.

3.2.1. Intra-domain adversarial and per-pixel regressive learning
The distribution of fGMsg and fGMtg is similar as the style

removal module can roughly erase two domains’ different image
styles while preserving the fine morphology information and
coarse color information of the cytopathology image. It means that
when we learn a mapping function G(.) from fGMsg to fxsg, it can
also map fGMtg to fxsg to some extent.

In the intra-domain adversarial training, G(.) attempts to gener-
ate a x̂s as similar to xs as possible to fool the intra-domain discrim-
inator D1(.), whereas D1(.) wants to distinguish the reconstructed
image x̂s from the real image xs, thus forming a process of adversar-
ial training between G(.) and D1(.). Naturally, this intra-domain
adversarial loss should be defined as follow [36]:
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LGAN1ðG;D1Þ ¼ Ex�fxsg½logD1ðxÞ�
þ EGM�fGMsg½logð1� D1ðGðGMÞÞÞ�: ð2Þ

In addition, as GMs is obtained by removing the image style
component of xs, G(.) should be encouraged to generate an image
as the same as xs. Therefore, we impose a per-pixel penalty on
reconstruction objective to achieve per-pixel regression, which is
a much stronger supervision to enforce the content (including
hue, texture and structure) consistency before and after recon-
struction. Following [37], we adopt the L1 penalty, which offers
strong supervision and encourages less blur rather than higher-
order penalty. The specific loss function is defined as follows:

LL1ðGÞ ¼ Eðx;GMÞ�fxs ;GMsg½ x� GðGMÞk k1�: ð3Þ
3.2.2. Inter-domain adversarial learning
In addition to color information such as hue, the images contain

some other details including brightness, contrast and intensity.
Although the style removal module can roughly normalize the
input image of G(.) by erasing the detailed hue information, differ-
ences in other types of information still persist in the gray-scale
image, causing certain discrepancy between the distributions of
fGMsg and fGMtg. Due to such distribution change, G(.), which is
only trained with two aforementioned intra-domain losses, may
struggle to reconstruct a image style fx̂tg completely match the
source image style fxsg.

Recent advances in adversarial domain adaptation [40–43]
proved that the domain adversarial learning could leverage deep
networks to learn invariant representations across domains. Such
benefit can be observed in the adversarial learning of GANs. The
discriminator perceives the difference between the generated
images and real images and encourage the generator to generate
images more realistic and indistinguishable to the discriminator.
Motivated by domain adversarial insight, we present a novel form
of adversarial training between two domains, called inter-domain
adversarial learning, to supervise G(.) to learn a domain-invariant
reconstruction. In this loss, G(.) attempts to reconstruct a more
realistic x̂t to fool the inter-domain discriminator D2(.), while D2(.)
hopes to distinguish the reconstructed image x̂t from the real
image xs, creating a new dynamic equilibrium and forming a new
adversarial learning. The loss function of the inter-domain adver-
sarial learning is defined as follows:

LGAN2ðG;D2Þ ¼ Ex�fxsg½logD2ðxÞ� þ EGM�fGMtg½logð1
� D2ðGðGMÞÞÞ�: ð4Þ
3.3. Loss functions

The goal of domain adversarial style normalization is to recon-
struct a image style highly consistent with the source domain
image style. Taking all above loss functions together, our complete
objective of the method can be defined as follows:

LTotalðG;D1;D2Þ ¼ kGAN1LGAN1ðG;D1Þ þ kGAN2LGAN2ðG;D2Þ
þ kL1LL1ðGÞ; ð5Þ
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where kGAN1, kGAN2, kL1 are hyper-parameters indicating the relative
importance of the different loss functions in the objective. kGAN1,
kGAN2, kL1, r were empirically set to 1, 1, 100, 21 in our work. This
ultimately corresponds to solving for a style reconstruction network
G(.) according to the optimization problem.

G� ¼ argmin
G

max
D1;D2

LTotal: ð6Þ
5 In the process of producing a cytopathology slide, the staining agent dyes cel
cytoplasm to red or blue according to the difference in acidity and alkalinity, which
means most of cells in cytopathology images are red or blue.
3.4. Network architecture

Similar to other image-to-image translation problems, there is a
good deal of low-level information (such as structure, texture, etc)
shared between the input and output of the style reconstruction
network G(.), and it would be desirable to shuttle this information
directly across the network. Therefore, we used the U-net with full
convolution and skip connection [44] as our style reconstruction
network. For considerations of calculation speed and GPU memory,
G(.) does not downsample the input image to a vector before
upsampling, like the common U-net architecture. Instead, we
adjust the convolution stride size and downsample the feature
maps to 1/64 of the original image size with six convolution layers,
and then gradually upsample with six deconvolution layers [45] to
the original image size. Note that the convolution (or deconvolu-
tion) layers refer to sequential operation modules: convolution
(or deconvolution) – batch normalization – ReLU activation. For
the intra-domain discriminator D1(.) and inter-domain discrimina-
tor D2(.), we use the PatchGAN proposed by [37], which only
penalizes structure at the scale of patches and restricts attention
to the content in local image patches.

4. Experimental results

We performed two types of experiments. First, we quantita-
tively and qualitatively evaluated the quality of normalized
cytopathology images by our method and compared with other
unsupervised normalization methods (Section 4.1). Then, we con-
ducted a serious of ablation studies to verify the individual contri-
butions of the color-encoding mask and the inter-adversarial
learning (Section 4.2). Finally, we explored our method’s improve-
ment to the generalization ability of analysis models (Section 4.3).

4.1. Style normalization

We evaluated our method together with other nine unsuper-
vised normalization methods (SPCN [13], Macenko’s [15], Rein-
hard’s [21], Khan’s [14], Gupta’s [18], Zheng’s [17], CycleGAN
[38], StainGAN [28] and Tellez’s [26]) on the cervical image style
normalization datasets in Table 1.

4.1.1. Implementation details and evaluation metrics
The Adam optimizer [46] with a learning rate of 0.0001 and

adaptive momentum with the parameters (b1=0.3, b2=0.999) was
used to solve the objective. The networks including G(.), D1(.)
and D2(.) were trained from scratch where their weights were ini-
tialized from a truncated Gaussian distribution of mean 0 and stan-
dard deviation 0.02. We separately trained these networks for each
dataset. The hyper-parameters kGAN1, kGAN2, kL1, r were separately
equal to 1, 1, 100, 21. Notably, the codes of Macenko’s, Khan’s
and Reinhard’s were provided by Khan et al. (Stain Normalisation
Toolbox for Matlab, BIALab, Department of Computer Science,
University of Warwick) [14]. The codes of Tellez’s were rewritten
according their principles. The codes of other methods were pro-
vided by their authors. We followed the recommended setting
and hyper-parameters. Macenko’s method with default hyper-
parameters had unreasonable results in the T2 target domain, thus
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we did our best to tune the hyper-parameters. The default stain
classifier in Khan’s method [14] was used, which may be not suit-
able for cytology images.

We used the histogram distribution in ‘‘L*a*b*” color space to
represent the image style and then used the similarity of distribu-
tions to evaluate and compare the normalization performance of
different methods. The amount and kind of cells in cytopathology
images are unbalanced and the similarity of two domains’ image
styles could not be precisely measured with unbalanced propor-
tions of compositions. We split each image into three compositions
including background, red cells and blue cells 5. The threshold seg-
mentation method was applied to separate the background and fore-
ground while the color-encoding mask presented in 3.1 was applied
to split the foreground region into red cells and blue cells. To balance
the proportion, we randomly sampled 500 pixels from each compo-
sition on one domain’s each testing patch, and then counted this
domain’s histogram distribution in ‘‘Lab” color space. We computed
Bhattacharyya distance (lower scores indicate more similar distribu-
tions) and histogram intersection score [47] (higher scores indicate
more similar distributions) between the distributions of source
domain fxsg and each normalized target domain fx̂tg to measure
the similarity of their image styles and evaluate the performance
of different methods. Meanwhile, we compared different methods
in the structure consistency before and after normalization of target
images by computing structural similarity SSIM and peak signal
noise ratio PSNR [48]. Because images before and after normalization
had different color styles and influenced the metrics of SSIM and
PSNR. We first conducted gray-scale transformation and foreground
segmentation, then computed the metrics of SSIM and PSNR. The
foreground segmentation is to avoid the interference of background
pixels.
4.1.2. Results
Fig. 4 shows some typical normalized results of our method and

other methods for image style normalization in the target domain
T1. Generally, normalized images generated by methods based on
deep learning match the image style of source domain better than
traditional methods. Among traditional methods, SPCN, Macenko’s,
Gupta’s and Zheng’s methods show better color similarity than
Reinhard’s and Khan’s. For example, background pixels were incor-
rectly normalized in the normalized images by Khan’s. In terms of
structure consistency before and after normalization, the tradi-
tional methods performed well except Reinhard’s. All deep learn-
ing based methods shows good structure consistency visually
and color similarity. But we observe that CycleGAN probably gen-
erated images with cell hue inconsistency, in which red cells were
translated into blue while blue cells were translated into red. And
this can be attributed to that CycleGAN imposes no supervision to
discover the hue mismatch of normalized and original images,
which is one of the main drawbacks of unpaired image-to-image
translation based on cycle consistency. With the color-encoding
mask and strong hue and structure consistency supervision force
(L1 penalty for per-pixel regression), our method avoids such
inconsistency.

To better evaluate the color normalization performance of dif-
ferent methods, we provided the quantitative metrics of color dis-
tribution similarity and structure consistency in the five target
domains T1-T5 in Table 3. The results indicate that deep learning
based methods generally perform better than traditional methods,
which confirms the superiority of learning based methods to cap-
ture the image style represented by whole domain rather than a
single template. Our method outperforms all compared methods
l



Fig. 4. Examples of style normalized images of different normalization methods in the target domain T1. The first row refers to the typical examples of source domain. In
general, normalized images generated by methods based on deep learning match the image style of source domain better than traditional methods. Phenomenon of hue
inconsistency may be found in CycleGAN-based methods.
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at all different source-target domain settings in color similarity
metrics. The overall method (LL1 þLGAN1 þLGAN2) yields large
boosts against the method without inter-domain adversarial loss
(LL1 þLGAN1), which highlights the power of inter-adversarial
learning to overcome the inherent inconsistency of gray-scale
images across domains. All methods obtains high structure consis-
tency metrics before and after normalization, except Reinhard’s
and Khan’s. It can be seen that the inter-adversarial learning harms
the structure consistency. This is because that adversarial learning
helps style transfer and fine texture generation but introduces sub-
tle artifacts. Thus, Tellez’s method with only L1 loss achieves
almost best structure consistency metrics. Although the structure
consistencymetrics of our method are not the highest, they are still
at a very high level, demonstrating the high structure consistency
in color normalization. Besides, we visualized the distribution
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matching property in ‘‘L*a*b*” color space of different methods in
Fig. 5. We can see that the color distributions of the source and tar-
get domains have large difference. After applying color normaliza-
tion to the target domain, the result of our method shows the
closest color distribution with the source domain.

4.2. Ablation studies

We conducted a serious of ablation studies to verify the individ-
ual contributions of the color-encoding mask, the inter-adversarial
learning and the strategy of individual target domain learning.

4.2.1. The color-encoding mask
The color-encoding mask was proposed for eliminating the cell

hue inconsistency problem in normalized images. To validate the



Table 3
Color distribution similarity and structure consistency metrics of style normalization methods at different source-target domain settings. ‘‘Our*” refers to LL1 þLGAN1, ‘‘Our”
refers to LL1 þLGAN1 þLGAN2.

Method T1!S T2!S T3!S T4!S T5!S

Bhattacharyya distance#/ Histogram intersection"
SPCN 0.270/0.803 0.329/0.702 0.351/0.674 0.311/0.748 0.381/0.638
Macenko’s 0.127/0.867 0.312/0.657 0.234/0.764 0.191/0.833 0.368/0.615
Reinhard’s 0.320/0.674 0.336/0.654 0.392/0.572 0.358/0.643 0.381/0.603
Khan’s 0.374/0.654 0.447/0.576 0.403/0.616 0.384/0.639 0.404/0.612
Gupta’s 0.197/0.825 0.258/0.756 0.200/0.790 0.217/0.789 0.241/0.743
Zheng’s 0.155/0.864 0.298/0.675 0.311/0.706 0.206/0.799 0.356/0.660
CycleGAN 0.088/0.929 0.081/0.927 0.110/0.909 0.087/0.920 0.104/0.897
StainGAN 0.123/0.900 0.141/0.885 0.110/0.908 0.142/0.847 0.123/0.881
Tellez’s 0.121/0.896 0.367/0.625 0.234/0.748 0.173/0.847 0.225/0.766
Our* 0.092/0.905 0.107/0.891 0.161/0.844 0.112/0.882 0.120/0.881
Our 0.059/0.940 0.060/0.943 0.087/0.927 0.069/0.928 0.076/0.933

SSIM"/ PSNR"
SPCN 0.890/21.06 0.874/16.18 0.895/21.91 0.878/20.96 0.870/18.11
Macenko’s 0.916/21.82 0.544/16.68 0.916/22.17 0.895/21.27 0.887/17.88
Reinhard’s 0.703/14.64 0.772/13.20 0.681/14.82 0.672/13.97 0.724/16.28
Khan’s 0.579/12.08 0.643/12.95 0.577/8.81 0.528/12.02 0.550/8.98
Gupta’s 0.947/23.92 0.966/22.47 0.970/23.90 0.931/22.11 0.954/19.84
Zheng’s 0.990/24.76 0.996/30.49 0.963/19.14 0.990/25.01 0.972/20.85
CycleGAN 0.831/21.14 0.943/22.97 0.884/17.09 0.858/19.92 0.734/14.45
StainGAN 0.956/27.60 0.958/24.44 0.891/16.95 0.854/20.05 0.777/15.23
Tellez’s 0.988/29.92 0.964/19.32 0.977/28.05 0.990/31.09 0.980/29.24
Our* 0.970/26.75 0.963/25.56 0.947/21.16 0.965/25.71 0.937/20.44
Our 0.962/26.87 0.929/22.93 0.880/17.03 0.892/22.42 0.842/16.29

Fig. 5. Distribution matching property in ‘‘L*a*b*” color space of different normalization methods at T1!S. Each curve in the plots represents the source domain S or the
target domain T1 or its normalized target domain by different normalization methods. The closer two curves are, the better their color distribution similarity is.

Table 4
Ablation experiment results of the color-encoding mask in the target domain T1.

Metrics With mask With mask Without mask
using ‘‘a*” using ‘‘b*”

Bhattacharyya distance# 0.059 0.092 0.078
Histogram intersection" 0.940 0.905 0.932
SSIM" 0.962 0.920 0.948
PSNR" 26.87 23.64 25.25
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role of the color-encoding mask, we did a comparison experiment:
with the color mask generated by thresholding the channel ‘‘a*” in
‘‘L*a*b*” space, with the color mask generated by thresholding the
channel ‘‘b*” and without the color mask. Table 4 shows the met-
rics of color distribution similarity and structure consistency.
Fig. 6 shows the normalized images under the three conditions.
The results indicate that a) the color mask is key for preventing
the cell hue inconsistency and improving color distribution simi-
larity of normalized images; b) generating the color mask by the
channel ‘‘b*” is unsuitable and the incorrect mask harms the effect
of color normalization. The goal of designing the color-encoding
mask is to distinguish red cells and non-red cells. But the channel
‘‘b*” has values from blue (�127) to yellow (+128) and is not suit-
able to distinguish red cells.

4.2.2. The strategy of individual target domain learning
The principle of our method supports simultaneous normaliza-

tion of multiple target domains. We added a comparison experi-
ment: training the individual target domains T1-T5 and training
the union of all target domains T1-T5. Table 5 the results of color
normalization and structure consistency metrics under the two
conditions. The results indicate that the color normalization effect
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of training the individual target domains is obviously better than
that of training the united target domains. The united domains of
various color distributions may interfere the inter-domain adver-
sarial learning and then harm the color reconstruction across mul-
tiple domains.

4.2.3. The inter-domain adversarial learning
The inter-domain adversarial learning is proposed to make the

reconstruction network robust for input images of different
domains. To validate its role in our method, we conducted a com-
parison experiment by setting different loss weight ratios of kL1,
kGAN1 and kGAN2. Table 6 shows the results of color normalization



Fig. 6. Ablation experiment results of the color-encoding mask in the target domain T1. The normalized images without using the color mask or with using unsuitable color
mask have the cell hue inconsistency problem.

Table 5
Ablation experiment results of training individual and united target domains T1-T5.

Individual target domains

Metrics T1!S T2!S T3!S T4!S T5!S

Bhattacharyya distance# 0.059 0.060 0.087 0.076 0.070
Histogram intersection" 0.940 0.943 0.927 0.928 0.933
SSIM" 0.962 0.929 0.880 0.892 0.842
PSNR" 26.87 22.93 17.03 22.42 16.29

United target domains

Metrics T1!S T2!S T3!S T4!S T5!S

Bhattacharyya distance# 0.081 0.179 0.148 0.093 0.153
Histogram intersection" 0.932 0.823 0.868 0.918 0.851
SSIM" 0.915 0.774 0.895 0.912 0.889
PSNR" 22.95 17.90 19.43 22.78 18.74

Table 6
Ablation experiment results of different loss weights (kGAN1, kGAN2, kL1) in the the target domain T1.

Metrics 100:0.5:1 100:1:1 100:1:0.5 100:1:0

Bhattacharyya distance# 0.073 0.059 0.075 0.092
Histogram intersection" 0.936 0.940 0.930 0.905
SSIM" 0.936 0.962 0.946 0.970
PSNR" 24.46 26.87 25.26 26.75

Table 7
Improved accuracies (%) of unseen target domain images.

Method T1!S T2!S T3!S Avg

Wild 64.6 61.4 71.9 62.1
SPCN 66.7 49.8 71.6 62.7
Macenko’s 71.1 45.7 60.2 59.0
Reinhard’s 62.3 63.4 61.9 62.5
Khan’s 50.0 51.5 50.5 50.7
Gupta’s 77.5 62.1 57.9 65.8
Zheng’s 74.5 50.0 70.3 64.9
Cycle-GAN 75.3 67.6 60.4 67.8
StainGAN 66.4 66.2 72.9 68.5
Tellez’s 51.8 50.0 53.3 51.7
Our 81.2 81.5 83.2 82.0
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and structure consistency metrics under different ratios. The
results indicate that a) the inter-domain adversarial learning is
important for improving color normalization effect of target
domains; b) approximately equalizing the loss weights of the
inter-domain and intra-domain adversarial learning is better for
color normalization. Besides, the structure consistency metrics
are all high under the four ratios, which illustrates the L1 loss is
key for structure consistency.

4.3. Improving recognition accuracy of unseen target domain images

Because of the image style inconsistency across domains, there
would be performance degradation of automated analysis models
trained in source domain when they are directly employed in tar-
get domain. We evaluated our method’s improvement to the gen-
eralization ability of analysis models on the cervical lesion cell
recognition datasets in Table 2 while comparing with other nor-
malization methods.

4.3.1. Implementation details and evaluation metrics
We used ResNet-50 [49] as the task network T to classify

the lesion and normal cells. At the top of T, we used two fully
connected layers (2048-256, 256-1) to produce the prediction
output and adopted the sigmoid as the final activation function.
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On source domain training set, we fine-tuned T from ImageNet
pre-trained models [50] and used an Adam optimizer [46] with
a learning rate of 0.001 and adaptive momentum with the
parameters: b1 = 0.9, b2 = 0.999. We adopted data augmenta-
tion including image flipping and rotation. Finally, the average
classification accuracy of T in testing data of source domain
arrived at 99.8%.

We used average classification accuracy to evaluate the perfor-
mance of T in different domains including source domain, each
target domain fxtg and their normalized variant fx̂tg. To evaluate



Fig. 7. T-SNE of the task network T’s feature representations from wild images (a) and corresponding normalized images by our method (b). Green and blue dots refer to
positive and negative patches of S; purple and red dots refer to positive and negative patches of T2.
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the performance of our method and other methods, we compared
the performance of T in target domain before and after applying
these normalization methods and thus computed how much they
mitigated the performance degradation of T when applied across
domains.
4.3.2. Results
Results in Table 7 confirm that the domain shift and distribution

change caused by discrepant image styles can degrade the perfor-
mance of task network T in target domain (average precision
drops from 99.8% on fxSg to 64.6% on wild fxT1g). However, the
degradation could be effectively mitigated with our method
(LL1 þLGAN1 þLGAN2). For instance, average precision increases
to 81.2% on T1!S with our method. Besides, due to the superior
color normalization performance, our method outperforms other
normalization methods in improving the recognition task accuracy
on unseen target domains. Another benefit of style normalization
is that T remained the original classification performance on
source domain, since there is no refinement or retraining of T.

We visualized the feature representations in the setting of
T2!S by t-SNE [51] in Fig.7. Before applying our method, the cat-
egories in source domain can be separated well, but the categories
in target domain are not discriminated well. Besides, the feature
representations from source and target domain are not aligned
well, which means T extracted different feature representations
for the source and target domains. After using our method, the fea-
ture representations from the source and corresponding normal-
ized target domains are aligned better and different categories in
normalized target domain are discriminated better. It indicates
that our color normalization method greatly mitigate the perfor-
mance degradation.
5. Conclusions

In this paper, we proposed a thorough domain adversarial style
normalization method for cytopathology images. Our method is
built from a style removal module followed by a style reconstruc-
tion module. The former binds the source and target images to a
roughly consistent distribution while the latter reconstructs the
distribution to source domain. We highlighted the superiority of
such two-stage strategy to enforce the consistency of hue and
structure. Extensive experiments shown that our method exhibited
better style normalization performance than other unsupervised
normalization methods and greatly improved lesion classification
accuracy of unseen target domain images on multiple cervical cell
datasets. These results illustrated the strong potential of our
method by employing the two-stage strategy with thorough super-
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vised learning including per-pixel regressive learning, inter-
domain and intra-domain adversarial learning.

On the premise of maintaining the color normalization effect
and structure consistency, generalization without retraining for
different domains and real-time speed matching slide scanning
are the key points for applying color normalization methods in
practice. Traditional methods, Tellez’s method and our method
without inter-domain adversarial learning (LL1 þLGAN1) can be
directly applied for different domains but have reduced color nor-
malization effect. Meanwhile, CycleGAN-based methods and our
method with inter-domain adversarial learning
(LL1 þLGAN1 þLGAN2 depend on retaining for different domains
with better color normalization effect. Our method achieved supe-
rior results in both cases. In a computer with Intel Xeon Gold 6134
CPU (3.2 GHz), 256 GB memory and one Nvidia Titan V GPU (12 GB
memory), the speed of our method is about 88 FPS (batch size = 10,
without image I/O time), faster than other methods. Thus, process-
ing a whole slide image of about 30 K�30 K pixels needs about 90 s
using common split-merge strategy with redundancy. Therefore,
our method has the potential to be used in real time along with
slide scanning.

In future work, we will apply the proposed method to more
datasets, including histopathology images, and more specific
tasks including cell segmentation and lesion detection to verify
its general applicability and potential. About the binary color-
encoding mask, adopting one hyper-parameter to approximately
separate the red and blue compositions may be not the most
ideal method. We will explore a more reasonable approach to
replace the current style removal module such as a convolu-
tional neural network.
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