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Abstract

Background: By modulating the expression levels of specific signal transduction molecules, the
26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival
or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function
by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell
lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity
if proteasome inhibition occurs only transiently before radiation. Further, since proteasome
inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can
cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that
caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome
inhibition.

Methods: Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor
MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-
PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay.

Results: Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not
involve early activation of caspase-3. Short-time inhibition of proteasome function also caused
radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK
activity.

Conclusion: We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does
not contribute to the radiosensitizing effects of MG-132.

Background normal tissue complications. The malignant phenotype is
One of the most challenging ongoing efforts in radiother-  normally associated with acquisition of mutations in
apy is the search for agents that target tumor-specific char-  genes encoding signal transduction molecules that con-
acteristics to cause radiosensitization without increasing  trol cell proliferation and/or cell death. Numerous
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experimental studies have shown, that the expression of
mutated oncogenes and tumor suppressor genes in nor-
mal cells alters their intrinsic cellular radiosensitivity and
clinical studies have, in some cases, indicated that such
mutations influence disease free survival after chemother-
apy and radiation therapy [1-4]. These observations sug-
gest that the pathways leading to cell cycle arrest and cell
death following exposure to ionizing irradiation are
linked to DNA damage and repair. Our knowledge of the
molecular circuitry that is involved is still however far
from complete.

One of the processes that controls expression of short-
lived cell cycle and cell death regulators and transcription
factors, such as cyclin A, Band E, p21 and p27, p53, cJun,
cFos, and nuclear factor KB (NF-kB), is the proteolytic deg-
radation through the 26S proteasome [5-7]. Indeed, the
initial response to many stress signals such as radiation-
induced DNA damage [8], hypoxia/reperfusion [9], and
exposure to heat [10,11] or cytokines [12] appears to
involve rapid alterations in 26S proteasome activity result-
ing in cell cycle arrest and/or apoptosis.

The 26S proteasome is a 2 MDa proteolytic complex that
has 3 different cleavage activities [13]. Its function is
highly regulated [14-18]. Highly specific and potent
inhibitors of the 26S proteasome like the reversible inhib-
itor MG-132 or lactacystein, which acts irreversibly, have
been shown to induce apoptosis in many tumor cell lines
[19-27] and in SV-40-transformed but not normal human
fibroblasts [27]. Apoptosis is regulated by the ubiquitin/
proteasome system at various levels and inhibition of pro-
teasome function may induce [21] or prevent apoptosis
[28]. A possible association between apoptosis and radio-
sensitization exist through caspase activation and subse-
quent proteolytic destruction of DNA repair enzymes.
Caspase activation has been reported to follow proteas-
ome inhibition [24,29,30] and is known to degrade the
catalytic subunit of DNA-dependent protein kinase
(DNA-PKcs), a key DNA repair enzyme of non-homolo-
gous end-joining (NHE]) of DNA double strand breaks
[31,32].

Still, the exact mechanisms of how proteasome inhibition
causes apoptosis are not fully understood but the fact, that
malignant cells are much more sensitive to the death-pro-
moting aspects of proteasome inhibition than normal
cells [33] makes the ubiquitin/26S proteasome system a
target for cancer therapy. With Velcade (formerly known
as bortezomib, PS-341) a first proteasome inhibitor has
become available for clinical use [34]. The excellent
results achieved in patients with multiple myeloma sug-
gest the use of Velcade in solid cancers, especially in com-
bination with classical chemotherapies or radiation
therapy. So far, several Phase I/II studies have used Vel-

http://www.biomedcentral.com/1471-2407/5/76

cade as mono-therapy in advanced chemotherapy refrac-
tory solid cancers [35-40] but knowledge of in-vivo effects
of combined modality approaches using Velcade is lim-
ited. It is known that proteasome inhibition can sensitize
cells to chemotherapy [41] and ionizing radiation [26,42]
and therefore combination studies will be launched in the
near future.

However, a recent in-vitro report demonstrated that Vel-
cade treatment of A549 lung cancer might enhance or
attenuate cisplatin toxicity, depending on the sequence of
application of both drugs [28]. These findings underline
the need for a better understanding of the mechanisms of
action of these new compounds as they may interfere with
standard therapies.

In this study, we investigated a possible link between
induction of the apoptotic death program and radiosensi-
tization following proteasome inhibition.

Methods

Cell culture

Cultures of PC-3 prostate carcinoma cells American Type
Culture Collection (ATCC, Manassas) cells were grown in
75 c¢m? flasks (Falcon) at 37°C in a humidified atmos-
phere at 5 % CO,. PC-3 cells were cultured in DMEM
medium (Cell Concepts, Umkirch Germany) supple-
mented with 10 % heat-inactivated fetal calf serum (FCS,
Sigma, St. Louis, MO) and 1 % penicillin/streptomycin
(Sigma).

MG-132 treatment

MG-132 (Calbiochem, San Diego, CA) was dissolved in
DMSO (10 mM) and small aliquots (30 pl) were stored at
-20°C. Velcade (Janssen-Cilag, Neuss, Germany) was sol-
ubilized in water at a concentration of 1 mg/ml and stored
in aliquots of 50 pl at -80°C. Three hours before irradia-
tion growth medium was replaced by medium containing
MG-132 (50 pM, 0.5% DMSO) or Velcade (100 nM in
water). Control cells were subjected to DMSO treatment
alone (0.5 %). In clonogenic assays, cells were incubated
at 37°C for 3 hours, washed with DMEM, trypsinized,
counted, diluted and irradiated at room temperature.

Irradiation

Exponentially growing PC-3 cells were trypsinized,
counted, and diluted. The cell suspensions were immedi-
ately irradiated at room temperature using a 137Cs-labora-
tory irradiator (JLShephard, Mark I) at a dose rate of 5.80
Gy/min and a Gammacell 40 137Cs-laboratory irradiator
at a dose rate of 0.83 Gy/min respectively.

Clonogenic survival
Colony-forming assays with PC-3 cells were performed
immediately after irradiation by plating an appropriate
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number of cells into culture dishes, in triplicate. Before
plating, the viability of the cells was assessed during
counting by a dye exclusion test with tryphan blue. After
14 days, colonies were fixed with methanol, stained with
crystal violet, and were counted if they consisted of more
than 50 cells. The fraction of cells surviving irradiation
was normalized to the surviving fraction of the corre-
sponding control and survival values and curves were fit-
ted to the data using a linear-quadratic model.

Flow cytometry

For analysis of cell cycle distribution, 1 x 105 cells were
trypsinized, washed in PBS and fixed with ice-cold etha-
nol (70 %). After RNAse treatment (1 mg/ml), cells were
permeabilized with Triton X-100 and stained with propid-
ium iodide (0.1 mg/ml). To determine the cell cycle dis-
tribution, DNA content was measured using a flow
cytometer (FACScan, Becton Dickinson). TUNEL-Assay
was carried out as described previously [43].

DNA-PK activity assay

In order to assess DNA-PK activity, DNA-PK-dependent
phosphorylation of a biotinylated p53-derived peptide
(Glu-Pro-Pro-Leu-Ser-GIn-Glu-Ala-Phe-Ala-Asp-Leu-Trp-
Lys-Lys. Promega, Madison, WI; [44]) was measured in
the presence of [32P-y]-ATP. Drug-treated or control cells
were washed in low salt buffer (10 mM HEPES, 25 mM
KCl, 10 mM NaCl, 1.1 mM MgCl,, 0.1 mM ethylenedi-
aminetetraacetic acid [EDTA], 0.5 mM phenylmeth-
anesulfonyl fluoride [PMSF], pH 7.2), pelleted and lysed
by one freezing/thawing cycle as described in [45]. After
centrifugation at 10,000 x g for 5 minutes at 4°C, the
supernatant was collected and used as cell extract. Protein
content was determined using the Micro-BCA protocol
(Pierce) with bovine serum albumin (Sigma) as standard.
10 pg protein were incubated for 30 minutes at 30°C in
DNA-PK reaction buffer (50 mM HEPES (KOH, pH 7.5),
100 mM KCl, 10 mM MgCl,, 0.2 mM Ethylene glycol-
bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid
[EGTA], 0.1 mM EDTA, 1 mM DTT), 0.025 mM ATP, 0.5
MCi [32P-y]-ATP, bovine serum albumin [BSA] 0.1 mg/ml,
and with human p53 oligopeptide as substrate in the pres-
ence or absence of activated calf thymus DNA to measure
DNA-DSB-dependent phosphorylation of p53. The final
volume was 25 pl. The reaction was stopped by addition
of 25 pl 30 % acetic acid. 10 pl was spotted on Whatman
P81 membranes in duplicates and washed four times with
15 % acetic acid.

Membranes were placed on a phosphor imager screen for
2 hours. The screen was read on a phosphor imager
(Storm 860, Molecular Dynamics) and the activity meas-
ured using the ImageQuant software package (Molecular
Dynamics). Activity in the absence of activated DNA was
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assumed to be unspecific and thus subtracted from corre-
sponding measurements in presence of activated DNA.

Caspase-3 activity assay

For assessment of caspase-3 activity, cells were plated into
culture dishes 24 hours before drug treatment. After drug
treatment, cells were dislodged mechanically and washed
twice in PBS. Caspase-3 activity was assessed as described
by Enari et al. [46] with minor modifications: After five
cycles of freezing and thawing in extraction buffer (50 mM
PIPES-NaOH, pH 7.0, 50 mM KCl, 5 mM EGTA, 2 mM
MgCl,, 1 mM dithiothreitol [DTT], 20 pM cytochalasin B,
1 mM phenylmethylsulfonyl fluoride [PMSF], 1 pg/ml
leupeptin, 1 pg/ml pepstatin A, 50 pg/ml antipain, 10 pg/
ml chymopain) lysates were centrifuged at 10,000 x g for
12 minutes (4 °C). The supernatant was immediately fro-
zen in liquid nitrogen and stored at -80°C. Protein con-
centrations were determined using the Micro-BCA
protocol (Pierce) with bovine serum albumin (Sigma) as
standard. 36 pg protein were diluted in ICE standard
buffer (100 mM HEPES-KOH, pH 7.5, 10 % sucrose, 0.1
% CHAPS, 10 mM DTT, 0.1 mg/ml ovalbumin) contain-
ing the fluorogenic caspase-3 substrate DEVD-7-amido-4-
methylcoumarin (DEVD-AMC, 1 uM) and incubated for
30 minutes at 30°C. Fluorescence was measured using a
fluorescence plate reader (Tecon, excitation 380 nm, emis-
sion 460 nm).

Immunoblotting

Cells were washed with PBS and lysed in TOTEX buffer
(20 mM HEPES [pH 7.9], 0.35 mM NaCl, 20 % glycerol,
1 % Nonidet P-40, 0.5 mM EDTA, 0.1 mM EGTA, 0.5 mM
DTT, 50 UM PMSF and 90 trypsin inhibitor units [TIU's]/
ml aprotinin) for 30 minutes on ice. The lysate was centri-
fuged at 12,000 x g for 5 minutes and the supernatant
transferred to fresh tubes. Protein concentrations were
determined using the Micro-BCA protocol (Pierce, Rock-
ford, IL) with bovine serum albumin as standard. 100 pg
or 50 pg of protein were subjected to SDS gel electro-
phoresis (0.1 % Sodium dodecyl sulfate [SDS]/6 % poly-
acrylamide) and blotted to PVDF membranes. Equity of
protein loading was confirmed by Ponceau staining of the
PVDF membranes. After blocking with 5 % skim milk in
PBS, membranes were incubated with a mouse polyclonal
antibody against human DNA-PKcs (Santa Cruz Biotech-
nologies). A secondary horseradish-peroxidase-conju-
gated antibody and the ECL Plus System (Amersham)
were used for visualization. Fluorescence was measured
using a Typhoon 9410 Phosphorimager (Blue fluores-
cence, 600 V, Amersham).
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Figure |
MG-132 induces apoptosis in PC-3 cells. Representative (n = 3) FACS analysis of PC-3 prostate cancer cells incubated with 0, 25
and 50 UM concentrations of MG-132 for 24 h. TUNEL-staining indicated an increase of apoptotic cells from 7.6 % in control

cells to 66.5 % and 72.8 % in MG-132 treated cells.

Results

MG-132 induces apoptosis and sensitizes PC-3 cells to
ionizing radiation

To investigate if transient proteasome inhibition by pro-
teasome inhibition affects PC-3 cells induction of apopto-
sis and long-term clonogenic survival was examined
following MG-132 treatment. Cells were exposed to 50
MM of MG-132 for 3 hours, washed twice, trypsinized and
plated into tissue culture dishes in triplicates. Clonogenic-
ity, as assessed by colony counts after 2 weeks incubation,
was decreased by MG-132 treatment of PC-3 cells from 65
+ 5.1 % in dimethyl sulfoxide (DMSQ)-treated versus 35
+ 2.1 in MG-132-treated cells. Decreased clonogenicity
was due to apoptosis, as assessed morphologically. 3
hours exposure of PC-3 cells to MG-132 at 25 UM and 50
MM concentrations increased the TUNEL-positive (termi-
nal deoxynucleotidyl transferase-mediated nick end labe-
ling) population after 24 hours of incubation from
initially 8 % to 67 % and 73 % respectively (Fig. 1). Short-
term proteasome inhibition for 3 hours was therefore
effective in causing apoptosis in a proportion of cells, but
a considerable number remained clonogenically viable.

Clinical treatment with proteasome inhibitors might also
be expected to spare a proportion of clonogenic tumor
cells and it would be an advantage if these were sensitized
to some other form of therapy. To test whether they were
sensitized to radiation, PC-3 cells were exposed to short-
term treatment with MG-132. After 3 hours, cells were

washed, irradiated and plated in a clonogenic assay, as
described previously [43]. Inhibition of proteasome func-
tion by MG-132 sensitized the surviving clonogenic PC-3
cells to the effects of ionizing radiation as shown by the
left-shift of the survival curve (Fig. 2).

Effect of 26S proteasome inhibition on radiation-induced
cell cycle arrest and apoptosis

Having validated PC-3 cells as a model for radiosensitiza-
tion by proteasome inhibitors, we first excluded that the
observed radiosensitizing effect was a result of changes in
cell cycle distribution. Inhibition of 26S proteasome func-
tion is known to block cellular transition from G1- to S-
phase and from late S- to G2/M-phase, as well as S phase
transition [47]. This is considered to be due to alterations
in expression of molecules such as p53, p2 1WAF/CIP1 pRB,
p27, and cyclins A, B, and E. Similar effects can be seen
following exposure of cells to ionizing radiation, which
can cause arrest at the G1 and G2/M checkpoints, as well
as S-phase delay, and apoptosis in certain cancer cell lines
[48]. In cells with mutated p53, like PC-3 prostate cancer
cells, the radiation-induced G1 checkpoint delay and the
pro-apoptotic response are often abrogated, but the cells
will arrest in G2/M (reviewed in [49]).

The effect of the combined treatment of proteasome
inhibitors and ionizing irradiation on cell cycle arrest was
tested using PC-3 cells treated continuously with MG-132
(50 uM) from 3 hours prior up to 24 hours after
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Figure 2

MG-132 sensitizes human cancer cell lines to ionizing radiation. PC-3 prostate cancer cells were incubated with MG-132 (50 pM)
for 3 hours, washed twice, irradiated and plated into culture dishes. After 14 days the colonies were fixed with ethanol, stained
with crystal violet, and counted. MG-132 treatment sensitized PC-3 cells to ionizing radiation. Radiobiological parameters
obtained from a linear-quadratic fit (LQ-fit): PC-3 control a = 0.3, 3 = 0.043, a/f = 7.6; PC-3 MG-132 a = 0.3, 3 = 0.07, a/3 =
4.3. Data shows means (£ standard deviation) from 3 experiments (each plated in triplicates).

irradiation. This treatment blocks proteasome activity =~ 132 treatment caused p53-independent cell cycle arrest in
almost completely [50]. Flow cytometric analyses indi-  all phases and, as a result, the combination of both treat-
cated that radiation induced G2/M but not G1 arrest, as  ments did not lead to a radiation-induced G2/M arrest
would be expected in the p53-null PC-3 cells (Fig. 3). MG-  (Fig. 3).
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Figure 3

The effect of proteasome inhibition by MG-132 on cell cycle progression and radiation-induced cell cycle arrest and apoptosis. Cell cycle
distribution of PC-3 prostate cancer cells assessed by flow cytometry after staining with propidium iodide. Cells were pre-incu-
bated with MG-132 (50 uM) for 3 hours, irradiated, and incubated for additional 24 hours in the presence of MG-132. MG-132
prevented cell cycle progression and, consequently, dose-dependent radiation-induced G2/M-arrest. Additionally, MG-132
treatment increased the number of cells in late S-phase.
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The effect of MG-132 treatment on caspase-3 and DNA-
PK activities

Since short-term proteasome inhibition caused both
apoptosis and radiosensitization in PC-3 cells, this model
can be used to investigate the relationship between these
phenomena and to explore the pathways that might inter-
connect them. We considered the hypothesis that both
involve caspase-3 activation. Proteasome inhibition has
been reported to induce apoptosis that is mediated by cas-
pase activation [20]. Also, the catalytic subunit of the
DNA-PK complex, DNA-PKcs, which is required for NHE]
repair pathway of DNA double strand breaks, is a known
substrate of caspase-3 [51]. Its destruction could result in
radiosensitization.

MG132 24h

< <
on ©
o o
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o o
= =

250 kDa
150 kDa ——
100 kDa

lane 1 i 3
Figure 4

Velcade 3h
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MG-132 (50 pM) was maintained in the growth medium
of PC-3 cells for various time periods. DNA-PKcs protein
levels were monitored by western blotting (Fig. 4).
Expression of the intact 460 kDa (upper arrow) protein
did not change after 3 (lane 1) and 6 hours (lane 2) but
slightly decreased after 24 hours of incubation (lane 3)
compared to DMSO-treated control cells (lane 7). At this
time-point the specific 160 kDa caspase-3-dependent deg-
radation product of DNA-PKcs appeared (lane 3, lower
arrow) which coincided with occurrence of morphologi-
cal signs of apoptosis. Comparable results were obtained
using Velcade (100 nM) another specific proteasome
inhibitor (lane 4,5 and 6, Fig. 4).

Velcade 6h
Velcade 24h
DMSO 24h

4 5 6 7

Degradation of DNA-PKcs by caspase-3 is a late event in apoptosis induced by proteasome inhibition in PC-3 cells. Representative (n =
3) western blot of lysates from PC-3 prostate cancer cells after 3, 6 and 24 hours incubation with MG-132 (50 uM) or Velcade
(100 nM) using a specific antibody against human DNA-PKcs. The antibody recognizes the intact 460 kDa protein as well as the
specific 160 kDa fragment observed after caspase-3 dependent cleavage of DNA-PKcs. MG-132 caused no significant change of
the DNA-PKcs protein levels over a period of 6 hours. Detection of a caspase-3-cleavage specific 160 kDa fragment coincided
with apoptosis at 24 hours, but did not occur during the first 6 hours.
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Figure 5

MG-132 does not decrease DNA-PK activity. PC-3 cells were incubated for 3 hours with MG-132 (50 pM). Cells were washed and
incubated at 37°C. At indicated times, cells were lysed and DNA-PK activity was measured by phosphorylation of a human p53
derived oligopeptide in the presence of DNA DSB's. Proteasome inhibition did not cause any significant decrease of DNA-PK

activity (n = 2, data expressed as mean * standard error mean).

Because the level of DNA-PKcs might not reflect the total
kinase activity of the enzyme complex, functional activity
was assessed by phosphorylation of a p53 protein frag-
ment in the presence of DNA double strand breaks. This
was unchanged over a period of 5 hours after MG-132
treatment, which is the period over which most DNA
repair would be expected to take place (Fig 5). In order to
exclude a possible trivial explanation that MG-132 might
directly interfere with DNA-PK activity, lysates of PC-3
cells were incubated with MG-132 and studied for p53
phosphorylation. The drug did not affect DNA-PK activity
directly (Fig. 6). Since caspase-3 activity has been reported
to be increased by proteasome inhibition in the MOe7 cell
line [20], caspase-3 activity was measured using a fluoro-
genic substrate in PC-3 cells at various time points after
short-term (3 hours) treatment of PC-3 cells with MG-
132. We found a substantial drop in caspase-3-like activity
as early as 15' minutes after the end of MG-132 incuba-
tion if compared to untreated control cells. Caspase-3-like
cleavage activity slowly recovered about 3 hours after the
end of MG-132 incubation (Fig. 7), but was never
increased above baseline. Radiation (30 Gy) with or with-
out MG-132 pre-treatment also failed to activate caspase-
3-like activity during the first 3 hours.

Discussion
Proteasome inhibitors like MG-132 sensitize cancer cells
to ionizing radiation. In this study, we investigated inter-
ference of proteasome inhibition with NHE] by caspase-3-
dependent cleavage of DNA-PKcs as a possible underlying
mechanism.

Treatment with MG-132 caused cell cycle arrest in un-irra-
diated and irradiated cells, induced apoptosis, decreased
clonogenicity, and sensitized the surviving cells to ioniz-
ing radiation. This was in accordance with previous
reports [19-21,47,52-55].

Drug-induced changes in cell cycle redistribution were
most unlikely responsible for this effect because even after
24 hours MG-132 treatment mainly increased the number
of cells in late S-phase, which has been shown to coincide
with greatest radioresistance [56].

The relationship between pro-apoptotic pathways and
radiosensitization is controversial, as is the importance of
apoptosis in cell death following exposure to clinically rel-
evant doses of ionizing radiation. In general, the majority
of cells in solid carcinomas do not enter the apoptotic
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MG-132 does not interfere with DNA-PK directly. Lysates of untreated PC-3 cells were incubated with MG-132. There was no
decrease in DNA-PK activity, excluding any direct interaction with the drug (n = 3, data expressed as mean * standard error

mean).

death pathway [57]. Instead, they undergo several cell
divisions until they die or finally survive. Thus, the fate of
cells in solid carcinomas after irradiation may be deter-
mined more by their ability to repair DNA damage caused
by ionizing radiation than by initiation of apoptosis [58].
However, common molecular pathways may link these
two phenomena. So far, any link between survival path-
ways and molecules involved in DNA repair has been elu-
sive but cannot be excluded.

The most important DNA lesions occurring after exposure
of cells to ionizing radiation that determines death or
survival of a cancer cell are the double strand breaks. A
process called non-homologous end joining (NHE])
repairs these lesions in eukaryote cells. Concerted conces-
sion of NHE] requires the activity of the catalytic subunit
of the DNA-dependent protein kinase (DNA-PKcs), which
is a known substrate of caspase-3. In this study we there-
fore focused on the possibility that proteasome inhibition
by MG-132 activates caspase-3, as has been reported pre-
viously [24,30]. This could mediate apoptosis and cause
degradation of DNA-PKGcs, the catalytic subunit of DNA-
PK [20], resulting in radiosensitization. Reduction of
DNA-PK activity following inactivation or mutation of
DNA-PKcs is known to enhance radiosensitivity by

decreasing repair of DNA-DSB's [59-61]. Although DSB
repair is critical for cell survival after exposure to ionizing
radiation [62], it is not clear whether this is a rate-limiting
step dependent on the level of expression of DNA-PKcs.
For example, DNA-PKcs level has been reported not to
correlate with radiosensitivity of gliomas [63] and normal
fibroblasts [64]. In any event, we were not able to detect
meaningful changes in DNA-PK activity following MG-
132 drug treatment. Degradation that did occur, appeared
late at 24 hours and was probably an effect rather than a
cause of the apoptotic process. According to the kinetics of
the DSB-repair process described previously [65], any
event interfering with the repair of DNA-DSB's has to take
place during the initial 6 hours after irradiation. Consist-
ent with the late cleavage of DNA-PKcs, we were not able
to detect early activation of caspase-3 following treatment
of PC-3 cells with MG-132. In fact, we observed a substan-
tial drop in DEVD-AMC cleavage activity, which might be
explained by the observation, that proteasome activity is
necessary to activate caspase-3 at least in some cells
[66,67]. Our observations are in accordance with data
from Hideshima and coworkers who also could not detect
changes in DNA-PKcs levels or caspase-3 activation during
the initial 6 hours of Valcade-treatment in multiple mye-
loma cells [68]. Additionally, Wu and coworkers excluded
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MG-132 treatment reduces caspase-3-like activity in PC-3 cells. PC-3 cells were pre-incubated with MG-132 (50 uM) for 3 hours,
washed, irradiated, and incubated at 37°C. |5 minutes, |, and 3 hours later, cells were lysed and total cellular protein was
assayed for caspase-3-like activity, measuring the release of AMC from the fluorogenic caspase-3 substrate DEVD-AMC. Irradi-
ation with 30 Gy initially decreased constitutive caspase-3 activity in PC-3 cells at |5 minutes followed by a slight increase at |
and 3 hours after irradiation. In contrast, proteasome inhibition with MG-132 completely inhibited caspase-3 activity at |5 min-
utes. Activity recovered slowly reaching about 30% of baseline levels after 3 hours. This was not altered by combination of
MG-132 treatment with ionizing radiation (n = 3, data expressed as mean * standard error mean).

the involvement of caspases in apoptosis of MO7e cells
following proteasome inhibition, as caspase inhibitors
failed to prevent DNA fragmentation [20] and it is there-
fore possible that proteasome inhibition induces caspase-
independent apoptosis as described for cells, defective in
the ubiquitin pathway [69].

Taken together, we conclude that although proteasome
inhibition induces apoptosis in most cancer cells,
sensitization of PC-3 cells to ionizing radiation occurs
through mechanism that does not involve cleavage of
DNA-PKcs.
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