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Abstract 

Social network analysis and shared-patient physician networks have become effec-
tive ways of studying physician collaborations. Assortative mixing or “homophily” 
is the network phenomenon whereby the propensity for similar individuals to form 
ties is greater than for dissimilar individuals. Motivated by the public health concern 
of risky-prescribing among older patients in the United States, we develop network 
models and tests involving novel network measures to study whether there is evidence 
of homophily in prescribing and deprescribing in the specific shared-patient network 
of physicians linked to the US state of Ohio in 2014. Evidence of homophily in risky-
prescribing would imply that prescribing behaviors help shape physician networks 
and would suggest strategies for interventions seeking to reduce risky-prescribing 
(e.g., strategies to directly reduce risky prescribing might be most effective if applied 
as group interventions to risky prescribing physicians connected through the network 
and the connections between these physicians could be targeted by tie dissolution 
interventions as an indirect way of reducing risky prescribing). Furthermore, if such 
effects varied depending on the structural features of a physician’s position in the net-
work (e.g., by whether or not they are involved in cliques—groups of actors that are 
fully connected to each other—such as closed triangles in the case of three actors), this 
would further strengthen the case for targeting groups of physicians involved in risky 
prescribing and the network connections between them for interventions. Using 
accompanying Medicare Part D data, we converted patient longitudinal prescription 
receipts into novel measures of the intensity of each physician’s risky-prescribing. Expo-
nential random graph models were used to simultaneously estimate the importance 
of homophily in prescribing and deprescribing in the network beyond the character-
istics of physician specialty (or other metadata) and network-derived features. In addi-
tion, novel network measures were introduced to allow homophily to be characterized 
in relation to specific triadic (three-actor) structural configurations in the network 
with associated non-parametric randomization tests to evaluate their statistical signifi-
cance in the network against the null hypothesis of no such phenomena. We found 
physician homophily in prescribing and deprescribing. We also found that physicians 
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exhibited within-triad homophily in risky-prescribing, with the prevalence of homo-
philic triads significantly higher than expected by chance absent homophily. These 
results may explain why communities of prescribers emerge and evolve, helping to jus-
tify group-level prescriber interventions. The methodology may be applied, adapted 
or generalized to study homophily and its generalizations on other network and attrib-
ute combinations involving analogous shared-patient networks and more generally 
using other kinds of network data underlying other kinds of social phenomena.

Keywords:  Risky prescribing, Shared-patient physician network, Homophily, 
Deprescribing, Quantifying polypharmacy, State-space, Transition matrix

Introduction
The excessive prescribing (“polypharmacy”) of unwarranted prescriptions that devi-
ate from guidelines (Dreischulte and Guthrie 2012; Gnjidic et al. 2013; Bushardt et al. 
2008) commonly known as risky prescribing is a health concern, particularly among 
the older population, for which public health interventions are critically needed. In the 
U.S., the older population consumes more than one-third of prescription medications, 
yet they consist of around 15% of the population (Fulton and Riley Allen 2005; Werder 
and Preskorn 2003). Even more concerning are the adverse events associated with risky 
prescribing. For example, evidence was found that the combined usage of opioids and 
benzodiazepines or non-benzodiazepine sedative-hypnotics (sedative-hypnotics) has a 
higher risk of overdose than using opioids alone (Cho et al. 2020; Centers for Disease 
Control and Prevention and others 2016; Sun et al. 2017).

Physicians are a major determinant of patient drug regimes, especially for drugs that 
patients cannot directly access. Social network analysis has proven to be effective for 
studying collaborations among physicians and their association with patients’ health 
outcomes (Barnett et al. 2012; Fattore et al. 2009; Pollack et al. 2015; Moen et al. 2016). 
Understanding how different prescribing behaviors are embedded in the shared-patient 
physician network may help identify candidate physicians to intervene on in order for 
the impact of the intervention to be maximized. This would be the case if the most con-
nected physicians also transmitted the effects of a behavior change intervention spillo-
ver to the greatest number of other physicians; e.g., through a process of peer-effects 
(Ran et al. 2024b). Similarly, if actors with certain shared or similar traits are clustered 
together in the network, targeting groups of connected persons exhibiting undesirable 
traits might be the most effective way of implementing a behavior change interven-
tion. Assortative mixing or “homophily”, commonly known as “birds of a feather flock 
together”, is a social phenomenon in which people who share similar traits are more 
likely to form relationships with each other (McPherson et al. 2001; Apicella et al. 2012; 
Rand et al. 2011). Because individuals are more prone to interact with individuals they 
resemble than those they don’t, the existence of homophily can reinforce shared behav-
iors between pairs (“dyads”) or larger groups of connected individuals in social networks 
(Centola 2011). Therefore, knowing that homophily exists suggests that interventions 
that positively change the behavior of individuals might also seek to dissolve problematic 
ties (e.g., those in which both actors are risky prescribers).

Previous studies have found that physicians with the same organizational affiliation 
were more likely to develop professional relationships (Landon et al. 2012; Mascia et al. 
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2015) and that homophily in a network of opioid users was associated with the num-
ber, type and daily dosage of opioid prescriptions (Aroke et al. 2021). These prior works 
motivate the conjecture that homophily on risky prescribing may generalize to more 
complex phenomena than a dyadic phenomenon resulting in the emergence of clusters 
of three or more heavy prescribers. However, with the exception of the preliminary work 
by Ran et al. (2024b), to our knowledge structural characteristics of shared-patient phy-
sician networks of prescribers of risky drugs such as those in the opioids, benzodiaz-
epines and sedative-hypnotics classes is understudied.

Several studies have quantified patients’ receipt of polypharmacy and physicians’ opi-
oid prescribing patterns among different specialties (Quinn and Shah 2017; Levy et al. 
2015). However, current approaches for quantifying physicians’ prescribing behaviors 
identify risky prescribing without accounting for the extent to which appropriate depre-
scribing occurs. Unlike prescribing, deprescribing often takes place in conversations 
during physician-patient encounters involving reviews of patients’ medications (Farrell 
and Mangin 2019) and triggers no insurance claim. This leads to challenges in identify-
ing the physician or physicians responsible for deprescribing. An important contribu-
tion within the emerging field of data science is the development of heuristic algorithms 
for identifying likely instances of deprescribing and the physicians responsible in claims 
data.

Exponential random graph models (ERGMs) provide a general modeling framework 
for relating network phenomena and actor attributes to the likelihood of observing a 
network. In theory, they provide an ideal methodological basis for estimating which fac-
tors, including those relating to physician prescribing behavior, are most strongly asso-
ciated with the observed network. One challenge with ERGMs is the phenomenon in 
which the model puts most of its mass on a very dense or sparse network. Known as 
degeneracy, this phenomenon has been commonly encountered by investigators exam-
ining whether dyadic-dependent network phenomena such as transitivity underlie the 
network (Handcock et al. 2008; Handcock 2003; Moen et al. 2016). When using ERGMs 
to study homophily, degeneracy may limit our ability to isolate the true level of homoph-
ily from the confounding effects of other network phenomena.

To avoid degeneracy while still testing for the presence of higher-order (extra-dyadic) 
homophily, we introduce two new network statistics that capture specific triadic phe-
nomena and develop statistical tests of whether their prevalence in the network exceeds 
that expected by chance in the absence of homophily. The two new statistics quantify 
risky-prescribing associated homophily acting within closed triadic configurations (“tri-
angles”). To evaluate whether the observed prevalence of such configurations in the 
network is statistically significant, we construct a permutation test that randomly re-
distributes the node attributes across the nodes in the network to evaluate the null dis-
tribution of the test statistic. Using these new statistics and associated statistical tests, 
we studied the extent to which risky prescribing is associated with the closed triads of 
physician relationships.

The specific contributions of our work include:

•	 Investigation of prescribing-associated homophily in physician shared-patient net-
works using ERGMs adjusting for other network statistics and the prevalence of node 
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attributes. In addition, we derive identifiability conditions for the effect of homoph-
ily when including actor-specific node-attributes of the same variables defining the 
homophily measures in order to isolate the pure effect of homophily.

•	 Development of novel triadic network statistics and non-parametric statistical tests 
for determining whether homophily generalizes to exhibit an extra-dyadic effect (i.e., 
acts beyond dyads) while avoiding degeneracy.

•	 A novel framework to quantify physician prescribing behavior by their contribution 
to patient prescription state transitions and the development of multiple prescrib-
ing indexes that can be conveniently computed and used as node attributes to study 
homophily of physician prescribing.

Motivating application: risky prescribing study
The methodological research in this paper is motivated by whether physicians who 
engage in prescribing of three classes of risky drugs—opioids, benzodiazepines and sed-
ative-hypnotics—to US Medicare beneficiaries are more likely to be connected in a phy-
sician professional relationship network than physicians whose prescribing tendencies 
differ from one another. We hypothesis that this dependency extends beyond dyads to a 
higher-order network phenomena (i.e., configurations of three or more physicians). The 
dependent variables are the physician network and quantities derived from it while the 
key predictors are physician prescribing indexes constructed from sequences of patient 
prescription drug states. Distinct data sets and data wrangling pipelines (see Figure 1 in 
the Supplemental Appendix) were used to construct the physician network and the pre-
scribing indexes for each physician. These are outlined in the remainder of this section 
and described in more depth in the companion methodological sections on modeling 
the network data and constructing the prescribing indexes in sections “Network Mode-
ling and statistical analysis methods” and “Measures of homophily in physician prescrib-
ing and deprescribing”, respectively.

Overview of physician network formation and methods

We used a 40% random sample of all Medicare fee-for-service claims in 2014 of benefi-
ciaries residing in the state of Ohio (the only state for which we had patient-physician 
encounter data) in 2014 to extract a dataset of physician-patient encounters. Initially, a 
directed physician network was constructed by assuming that a visit to physician i fol-
lowed by a visit to physician j by the same patient within 2014 provides evidence of a 
meaningful professional relationship (e.g., a genuine “patient referral”) from physician i 
to j (O’Malley et al. 2022; An et al. 2018, 2018a). Because we felt that a dyad with a bidi-
rectional relationship was more likely to depict a true referral relationship than one with 
a directed relationship (e.g., because two patient visit sequences would need to occur 
for reasons other than each physician making a deliberate choices to refer their patients 
to the other), we restricted the connections between physicians to mutual edges (those 
physician dyads with edges in both directions). Thus, the rule for an (undirected) edge to 
be present in the network is that at least one patient encounters one physician first and 
then the other and vice-versa for at least one other patient during 2014.
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A network of 35,765 physicians resulted. However, following linkage of the physicians 
with the prescription drug data, the network was reduced in size as not all physicians 
prescribed drugs in at least one of the three risky drug classes (section “Final network 
and prescription drug analytic datasets”). The network methodology including ERGMs, 
measures of homophily and the identifiability of their effects, and the extra-dyadic net-
work statistics and associated statistical tests are described in section “Network Mod-
eling and Statistical Analysis Methods”.

Overview of prescription drug data and methods

A distinct nationwide 40% random sample of Medicare Part D claims (prescription drug 
events) from 2014 was used to obtain beneficiaries’ prescription fill records and iden-
tify their corresponding prescribers for opioids, benzodiazepines and sedative-hypnot-
ics. The beneficiaries’ prescription records, including the physicians who prescribed 
their drugs from Medicare Part D claims, were used to trace the trajectories of patients’ 
prescriptions and then to construct the physicians’ prescribing indexes. The construc-
tion of the physician prescribing indexes involves specialized algorithms for attributing 
the physician(s) responsible for both prescribing and deprescribing transitions that are 
presented and described in the Supplemental Appendix. The formation of drug-state 
transition matrices specific to each physician and the summarization of these matrices 
in the form of prescribing indexes to test for the presence of homophily in risky pre-
scribing are described in section “Measures of homophily in physician prescribing and 
deprescribing”.

Final network and prescription drug analytic datasets

As noted in section “Overview of physician network formation and methods”, the 35,765 
physicians in the Ohio shared-patient network were merged with the above dataset of 
physicians who prescribed at least one drug in the drug classes of interest (opioids, ben-
zodiazepines, or sedative-hypnotics) in 2014 according to Medicare Part D data. This 
reduced the number of physicians in both the network and the prescription drug data 
sets to 22,655 physicians. Finally, we reduced the network to its largest connected com-
ponent (LCC) to eliminate isolated dyads (pairs of physicians who only shared patients 
with each other and thus have a network degree of 1) as such physicians were likely 
practicing in a part-time or other reduced manner, resulting in network and prescrip-
tion drug datasets containing 17,363 linked physicians (see Figure 1 in the Supplemental 
Appendix).

Network modeling and statistical analysis methods
Exponential random graph models (ERGMs)

An ERGM is an exponential family model in which the dependent variable is a socio-
centric network of relationships and the predictors are statistics reflecting network fea-
tures believed to underlie the network. Homophily is one such network feature making 
ERGMs a natural choice for modeling the association between the similarity of physician 
prescribing indexes and the likelihood that they are connected in the network. Stand-
ard regression models cannot handle sociocentric network data if the status of the edges 
(ties) in the network are statistically dependent as this violates the independence and 
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no-interference assumptions of standard regression (Contractor et  al. 2006). ERGMs 
overcome this issue and allow nodal attributes, edge attributes, dyadic dependencies, 
and some higher-order network dependencies to be simultaneously modelled (Robins 
et al. 2007, 2007; Snijders et al. 2006). ERGMs model the probability distribution of all 
possible networks given a set of nodes, a discrete-valued distribution of a categorical 
random variable with a large number of possible states (O’Malley and Marsden 2008), 
and in estimation seek the parameters weighing the importance of each network statistic 
that make the observed network the most likely among all of its possible realizations 
(Robins et al. 2007). Mathematically, ERGMs model the probability that a random net-
work A is realized by an observed network a ( aij = 1 if there is an edge between nodes i 
and j and 0 otherwise) as:

where κ(x) =
∑

a∈A exp{
∑

p ηpgp(a, x)} is a normalizing constant that makes the prob-
abilities sum to 1 across possible networks with the given number of nodes and hav-
ing attributes X with realized value x (Goodreau 2007; O’Malley and Marsden 2008); 
the vector of attributes of node i is the ith row of x , denoted xTi  ; and gp(a, x) is the pth 
network statistic. In general, a positive ηp for the network configuration represented by 
gp(a, x) indicates that the model for the network favors networks with feature p while 
a negative value indicates that networks with a high prevalence of feature p have lower 
likelihood.

Conditional interpretation of ERGM coefficients

The model in (1) implies that the conditional probability of a single edge satisfies:

where Ac
ij denotes all edges in the network other than Aij and

is the difference in network statistic gp(a, x) when Aij = 1 to when Aij = 0Hunter et al. 
(2008). Therefore, the parameter ηp is the log-odds of Aij = 1 to Aij = 0 if the presence 
of Aij would lead to a one-unit increase in gp(a) , conditioned on the rest of the network. 
In general, changing the value of Aij from 0 to 1 can impact multiple network statistics, 
complicating the interpretation of the parameter values (see end of Sect. 3.3).

In theory, any network statistic may be included as a predictor in (1) and in practice 
a wide range of statistics capturing various network features have been represented in 
ERGMs (Morris et  al. 2008; O’Malley and Marsden 2008). Commonly used network 
statistics include the number of: edges, reciprocated or mutual edges (for directed 
networks), certain degree-related configurations (e.g., k-stars), triadic configurations 
(e.g., triangles, transitive triads, three-cycles), node attributes (e.g., node factor and 
node covariates) and network statistics that quantify the level of homophily of speci-
fied attributes in the network. An example of the latter is the nodematch term, which 

(1)Pr(A = a | X = x) =
1

κ(x)
exp







�

p

ηpgp(a, x)






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c
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∑
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in its simplest form (see the uniform nodematch specification in Table  1) counts 
the number of edges in the network with identical values of a categorical attribute x, 
nodematchx(a, x) =

∑

i<j I(xi = xj)aij and so

where m denotes nodematch. Therefore, if ηm denotes the coefficient of nodematchx(a, x) , 
ηm is the increase in the log-odds that Aij = 1 to Aij = 0 if xi = xj . Intuitively one can see 
that homophily in x is positive in the network if the probability of Aij = 1 is greater when 
physicians i and j have the same x than if they don’t.

The ergm package within in the statnet suite of packages in R contains an extensive list of 
network statistics (Hunter et al. 2008) and (as in the risky prescribing application) may be 
used to estimate ERGMs (Hunter et al. 2008; Handcock et al. 2008) while Table 1 includes 
the network statistics used in this paper.

Network statistics measuring homophily and the identifiability of their effects

Homophily can be thought of as a within-dyad interaction between the two nodes compris-
ing the dyad of the given attribute (Hunter et al. 2008; Morris et al. 2008). When studying 
the homophily of an attribute, it is important to adjust for the main effect of the node attrib-
ute to ensure that homophily is a relative measure as opposed to being confounded with the 
prevalence of the attribute across the network. The network statistics associated with these 
main effects are named nodefactor (for categorical attributes) and nodecov (for continuous 
attributes) in ERGMs. Table 1 shows the mathematical definitions of the ERGM terms used 
in this study and their interpretations. For illustration, suppose that xi is a scalar (i.e., each 
node in the network has a single attribute) and that the network is undirected. For a binary 

(3)δm(a
c
ij , x) = I(xi = xj)

Table 1  Definitions of ERGM terms for undirected networks and interpretations

A = [aij ] is the adjacency matrix of the binary-undirected network and aij = 1 if physician i and j shared patients during 
2014. The variables xi and xj are the node attributes of physician i and j, and k and l denote the values of a categorical 
attribute held by the two actors comprising a dyad

Terms Math definition Interpretation

Edges m = 1

2

∑

ij aij Number of edges in the network; controls for 
network density

 Node attribute terms

 nodefactor Zk =
∑

i<j(I(xi = k)+ I(xj = k))aij Number of times a node possessing a categorical 
attribute of value k appears on an edge in the 
network

 nodecov Z =
∑

i<j(xi + xj)aij For continuous attributes, the sum of the attrib-
ute across node pairs for all edges present in the 
network

Homophily terms

 nodematch S =
∑

i<j I(xi = xj)aij Uniform homophily; the number of edges in 
which the two nodes have the same categorical 
attribute

 nodematch Sl =
∑

i<j I(xi = l)I(xj = l)aij Differential homophily; the number of edges 
whose two nodes have the same categorical 
attribute value of l

 absdiff S =
∑

i<j |xi − xj |aij For continuous attributes, the sum of absolute 
differences in the attribute within a dyad across 
all edges present in the network
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node attribute x taking a value of 0 or 1, the network statistic for the nodefactor term is 
given by,

The two statistics added by the differential homophily nodematch term are,

for the node attribute taking a value of 1, and

for the node attribute taking a value of 0 (Table  1). For a binary node attribute, the 
three predictors in Eqs.  (4), (5) and (6) are linearly dependent and an ERGM for an 
undirected network including the edges term 

∑

i<j aij , the nodefactor term and the 
two nodematch terms corresponding to differential network homophily is not iden-
tifiable. The lack of identifiability is seen by the fact that the nodematch term (Eq.  6) 
is the sum of the edges (Table 1), nodefactor (Eq. 4) and the 1-level nodematch (Eq. 5) 
terms. Hence, when controlling for network density with the edges term and the 
main effect of an attribute with a nodefactor term, the uniform homophily statis-
tic 

∑

i<j I(xi = xj) =
∑

i<j((1− xi)(1− xj)+ xixj)aij (the sum of the two nodematch 
terms) can be identified but both of its components (the two differential homophily 
terms) cannot. When estimating homophily while adjusting for the node-level effect of 
the same attributes, only the effect of uniform homophily (the effect of having the same 
value of the attribute irrespective of its value) can be estimated. In contrast, under dif-
ferential homophily, the coefficients of the network statistics are unidentifiable due to 
linear dependencies between the predictors.

Representation of homophily as an interaction effect

When an ERGM includes the density, nodefactor(x) and uniform nodematch(x) terms 
with associated coefficients ηd , ηf  and ηm , respectively, and x is a binary attribute, it fol-
lows that

as δd(acij , x) = 1 , δf (acij , x) = xi + xj , and δm(acij , x) = I(xi = xj) . Forming a system of four 
equations by evaluating (7) at the four combinations of (xi, xj) and solving for the homo-
phily coefficient ηm , it follows that:

(4)
∑

i<j

(xi + xj)aij .

(5)
∑

i<j

xixjaij

(6)
∑

i<j

(1− xi)(1− xj)aij =
∑

i<j

(1− (xi + xj)+ xixj)aij

(7)logit(Pr(Aij = 1 | Ac
ij = a

c
ij,X = x) = ηd + ηf (xi + xj)+ ηmI(xi = xj),

(8)

exp(ηm)

=
Pr(Aij = 1 | xi = 1, xj = 1,Ac

ij = a
c
ij)Pr(Aij = 1 | xi = 0, xj = 0,Ac

ij = a
c
ij)

Pr(Aij = 1 | xi = 0, xj = 1,Ac
ij = a

c
ij)Pr(Aij = 1 | xi = 1, xj = 0,Ac

ij = a
c
ij)
.
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Recognizing the right-hand-side of (8) as a contrast of a multiplicative interaction, ηm is 
seen to be an interaction term capturing the incremental effect of a pair of actors shar-
ing the same value of the node attribute x above and beyond the density of the edges 
and the distribution of x across the network. The same interpretation holds if the ERGM 
includes other nodefactor, nodecov, nodematch and absdiff terms and a similar inter-
pretation holds for nodecov terms; all homophily terms have interpretations emulating 
those of interaction effects.

Triadic homophily network statistics

ERGMs including only the network statistics discussed to date are examples of dyadic 
independent models. These can be estimated straightforwardly. However, because the 
status of one of the three triads comprising a tetrad restricts the possible status of the 
triad with which it shares an edge, network statistics for triadic terms restrict the param-
eter-space of an ERGM—at a minimum inducing statistical dependencies in estimation 
and at worst leading to degeneracy. To avoid these issues, we computed two triadic sta-
tistics that are restricted through the involvement of attribute information:

•	 The proportion of closed triangles with the same node attribute, Tri1(a, x).
•	 The proportion of open two-paths (2-stars or open-triangles) with the same node 

attribute that are closed, Tri2(a, x).

Tri1(a, x) is the proportion of closed triangles in which each of the three actors has the 
attribute in common while Tri2(a, x) is the proportion of two-paths (2-stars or open 
triangles) with the same node attribute that are closed, an attribute-specific version of 
transitivity (Latapy et al. 2008). For a binary node attribute (taking the value of 0 or 1), 
Tri1(a, x) is defined as,

Likewise, for a binary node attribute, the statistic Tri2 is defined as,

In our application, A = [aij] is the adjacency matrix of the binary-undirected network 
(see Sect. 2.1) such that aij = 1 if physician i and j shared at least one patient in each 
direction (i visited before j and vice-versa) during 2014. Thus, Tri1(a, x) is the proportion 
of times that three physicians who shared patients among themselves all contributed to 
risky prescribing, while Tri2(a, x) is the proportion of 2-star configurations with physi-
cian i as the apex (triads with an undirected 2-path from j to k via i) that are closed 
(physicians j and k also shared patients) among those for which nodes i, j, and k are all 
risky prescribers. Therefore, Tri2(a, x) is an attribute-restricted version of node transitiv-
ity (Latapy et al. 2008). See Fig. 1 for an illustrative example of Tri1(a, x) and Tri2(a, x).

(9)Tri1(a, x) =
�xixjxk · aijajkaki

�aijajkaki
.

(10)Tri2(a, x) =
�xixjxk · aijajkaki

�xixjxk · aijaik
.
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Non‑parametric test for triadic homophily

The numerator and denominator in (9) have their respective ERGM terms in the ergm 
package (Handcock et  al. 2008). However, the ratio of them is not available in ergm. 
Likewise, the denominator in (10), the total number of 2-stars among nodes with a cer-
tain attribute, is not directly available in ergm. Instead of estimating an ERGM, we per-
form non-parametric tests by randomly re-distributing the node attribute in question 
across the nodes, preserving the total number of nodes, the number of nodes with a cer-
tain attribute, and the structure of the observed network. For example, in our applica-
tion, we performed 30 random permutations of the attribute of interest across the nodes 
of the network and computed Tri1(a, x) and Tri2(a, x) on each. The resulting empirical 
distribution of these test statistics is evaluated on each of the 30 permuted networks to 
evaluate the plausibility of the observed value of the statistic under the null hypothesis 
of no homophily. Tri1 and Tri2 generalize to continuous node attributes by standardizing 
the attribute to have a range from 0 and 1. All the analyses were performed using Python 
3.7 and R (R Core Team 2022; Van Rossum and Drake 2009).

Measures of homophily in physician prescribing and deprescribing
In this section, we describe the construction of measures of physician prescribing and 
deprescribing that serve as the focal node attributes throughout the empirical analysis of 
the motivating risky prescribing application. In section “Results of network-related risky 
prescribing analysis”, the resulting measures will be analyzed descriptively, included 
in ERGMs as nodematch or absolute difference (absdiff) terms (Table  1) to study the 
homophily of prescribing accounting for the density of network connections and the 
levels of risky prescribing across the network (via the nodefactor or nodecov terms in 

Fig. 1  Illustrative computation of triadic homophily statistics Tri1(a, x) and Tri2(a, x) . Suppose nodes A, B, C, 
and D are physicians who have contributed to risky prescribing, and nodes E and F are non-risky-prescribing 
physicians. The number of risky 2-stars with nodes A, B, C, and D being the center vertex is 1, 3, 1, and 0, 
respectively. Therefore, the total number of 2-stars among risky prescribing physicians is five
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Table 1), and may be used as the attribute measure in the tests of extra-dyadic homoph-
ily developed in section “Triadic homophily network statistics”.

Modeling patient prescription states

For each patient, their prescription fills of the three-drug classes of interest were divided 
into discrete time intervals, capturing the initialization and discontinuation of a pre-
scription, with each time interval reflecting the number and class of drugs they were 
prescribed (Fig.  2). Because every initialization or discontinuation of a drug changes 
a patient’s prescription state, it is important to distinguish new fills from refills. As 
detailed in Section 2.1 of the Supplemental Appendix, we implemented an empirical rule 
of 20% overlapping fill length, where a subsequent prescription fill of the same drug was 
appended to the preceding fill if the gap in between was less than 20% of the fill length of 
the preceding prescription.

Following the determination of discrete patient prescription state time-intervals for 
each patient, we assigned each interval to one of the 23 = 8 combinations of prescription 
states in the set {zero,O, B, S,OB,OS, BS,OBS} , where O, B, and S denote opioids, ben-
zodiazepines and sedative hypnotics, respectively. State zero is a state of taking no drugs 
in the three-drug classes of interest. States {O,B, S} correspond to taking at least one 
drug in precisely one of the three drug classes. States {OB,OS,BS} correspond to taking 
drugs in at least two different drug classes concurrently. State OBS indicates concurrent 
receipt of at least one drug in each of the three different classes.

For the ease of mathematical notation, the eight prescription states are numbered 1 
to 8. Whereas we consider a patient taking drugs in multiple drug-groups as in a riskier 
state than a patient taking only one, the drug-groups are not themselves ordered based 
on severity. Herein we consider a lone benzodiazepine to have the same risk as a lone 
opioid. However, any combination of a benzodiazepine and an opioid is considered to 
have the same risk as the combination of a sedative-hypnotic and an opioid but any com-
bination of two drug states (states 5, 6 and 7) is considered more risky than any of the 
three singleton drug states (2, 3, and 4).

Fig. 2  Workflow of representing patient prescription states. Note: The left-hand panel (L) shows a made-up 
example of a patient’s sequence of prescription fills with their corresponding drug class. The center panel 
(C) shows the counting process to split the sequence of prescription fills into discrete exposure time 
intervals that reflect the initialization and the discontinuation of a prescription fill. The red line indicates the 
prescription fill length of the opioid in panel (L), and the blue line indicates the benzodiazepine (BZD) fill 
length. The right-hand panel (R) shows the corresponding prescription state during each time interval in 
panel (C) and the transition between them, forming a trajectory of prescription states across time. “O” stands 
for filling an opioid, “B” stands for filling a BZD, and “OB” stands for filling an opioid and a BZD concurrently
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Attributing physician responsibility to prescribing and deprescribing prescriptions

Enumerating the transitions between the eight patient drug states 
{zero,O, B, S,OB,OS, BS,OBS} over all patients yields an 8 by 8 transition matrix whose 
off-diagonal elements contain the number of transitions from one state to another over 
the entire sample. However, to form physician-specific prescribing indexes, physician-
specific versions of this matrix were required, necessitating the attribution of each 
patient drug state transition to one or more responsible physician(s). We describe the 
attribution processes when a patient starts or stops taking drugs in one of the {O,B, S} 
drug-categories in Sections  2.2 and 2.3 of the Supplemental Appendix, respectively. 
While a physician ID appears with each prescription in Medicare Part D, no such entry 
is made for deprescribing making the identification and attribution of deprescribing 
events particularly intricate, as evinced by the two pseudo-codes constructed for this 
purpose (see Algorithms 1 and 2 in the Supplemental Appendix).

Physician transition responsibility matrix

Following the attribution of each patient drug state transition to one or more responsi-
ble physicians, we constructed an 8 by 8 physician transition responsibility count matrix 
(PTRCM) for each physician using all of the transitions in patient drug status attributed 
to them. The rows of the PTRCM correspond to patient prescription states in the pre-
ceding time interval, while the columns correspond to patients’ prescription states in the 
current time intervals. For physician k, the PTRCM is given by

where C(k)
i,j  is the total number of patient prescription state transitions from (prescrip-

tion) state i to state j for which physician k was deemed responsible. To mathematically 
depict the calculation of C(k)

i,j  , let h denote a patient, s the prescription change occasion, 
Dhs patient h’s prescription state after prescription change s, and Phs the corresponding 
responsible physician. Then

where I(event) = 1 if event is true and 0 otherwise. To account for the scenario when 
multiple physicians are responsible for a prescription state transition from i to j, let Nhs 
denote the total number of responsible physicians for prescription state transition s of 
patient h and define

(11)PTRCM(k) =


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






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
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






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
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(12)C
(k)
i,j =

∑

h

∑

s

I(Dhs = i,Dh(s+1) = j)I(Phs = k).

(13)C
(k)
i,j =

∑

h

∑

s

I(Dhs = i,Dh(s+1) = j)

∑

r I(Phsr = k)

Nhs
.
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Quantitative measures of physician prescribing behavior

Motivated by aspects of decision-making during physicians’ prescribing practice, in this 
section we define multiple summary measures of C(k)

i,j  termed prescribing indexes. As 
noted at the start of section “Measures of homophily in physician prescribing and depre-
scribing”, these prescribing indexes are the physician attributes we use to test for homo-
phily using ERGMs and to test for extra-dyadic homophily.

Difference in relative frequency of prescribing and deprescribing

As a first prescribing index, we construct a measure of the relative net tendency of a pro-
vider to prescribe new classes of drugs over their tendency to remove classes of drugs. Let 
Inum(ω) denote the number of drugs a patient is taking while in prescription state ω , so that

Then, for example, a transition from state B (or state 3) to state OBS (or state 8) involves 
signed and absolute changes of 2 drugs whereas the transition in the opposite direction 
involves a signed change of −2 drugs and an absolute change of 2 drugs. We then define 
the overall net prescribing-deprescribing index for physician k as,

a quantity that ranges between −1 and 1. An integral element of I (k)1  is that the counts 
C
(k)
i,j  of the number of transitions to which physician k contributed are multiplied by the 

number of drug changes involved. A more general measure is obtained by introducing a 
parameter α that weighs the number of drug changes, as follows:

for α ≥ 0 . If α = 1 we obtain (15) while under the boundary case α = 0 yields the 
reduced measure, I (k)0  , in which the numerator is the sum of the above-diagonal ele-
ments of C(k) less the sum of the below-diagonal elements.

Frequency of transitioning to riskiest prescribing state

We next focus on physician k’s tendency to write prescriptions that transition patients to 
the riskiest form of prescribing, state OBS (or state 8), as this may best capture their willing-
ness to expose patients to risk. This measure is given mathematically as,

where C(k)
i,8  is the number of transitions physician k contributed to for which patients 

transitioned from state i to state 8 (state OBS). We construct a reduced version of I (k)OBS 

(14)Inum(ω) =











0, ω = 1,
1, ω ∈ {2, 3, 4},
2, ω ∈ {5, 6, 7},
3, ω = 8.

(15)I
(k)
1 =

∑

j

∑

i �=j C
(k)
i,j (Inum(i)− Inum(j))

∑

j

∑

i �=j C
(k)
i,j |Inum(i)− Inum(j)|

,

(16)I (k)α =

∑

j

∑

i<j C
(k)
i,j |Inum(i)− Inum(j)|

α −
∑

i

∑

i>j C
(k)
i,j |Inum(i)− Inum(j)|

α

∑

j

∑

i �=j C
(k)
i,j |Inum(i)− Inum(j)|α

,

(17)I
(k)
OBS =

∑

i<8 C
(k)
i,8

∑

j

∑

i �=j C
(k)
i,j
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by thresholding the numerator of (17) at 0 to obtain the binary indicator of whether phy-
sician k ever contributed to bringing a patient into state OBS:

Frequency of substantial prescribing and deprescribing transitions

We now develop measures that quantify the percentage of patients’ prescription drug 
state transitions physician k contributed to involving two or more drug class additions 
or removals. For example, a transition from state zero to state OBS involves three addi-
tions, and a transition from state OBS to state B involves two removals of drug classes, 
respectively. The intent of these measures is to focus on the frequency with which a phy-
sician makes substantial changes to their patients’ drug regimes. We construct separate 
prescribing and deprescribing measures as these may capture different aspects of a phy-
sicians practice. The prescribing version of this measure is operationalized as the pro-
portion of physician k’s prescribing that involves the addition of two or more of the three 
targeted drug classes, given by

where 
∑

j

∑

i<j C
(k)
i,j > 0 as by construction of the study sample 

∑

j C
(k)
0,j > 0 . Similarly, 

the proportion of physician k’s deprescribing that involves removing two or more drug 
classes is,

if 
∑

i

∑

i>j C
(k)
i,j > 0 and 0 otherwise.

Results of network‑related risky prescribing analysis
We first present descriptive features of the physician network for the state of Ohio 
and the prescribing indexes used to study the presence of homophily and extra-dyadic 
homophily in this network in section  “Physician shared-patient networks” and  “Pre-
scribing and deprescribing measures”, respectively. The results for the ERGMs used to 
test for homophily while adjusting for the prevalence of edges in the network and the 
physicians’ overall prescribing tendencies are in section  “ERGMs for estimating inde-
pendent effects of homophily” while the results of the tests of extra-dyadic homophily 
are in section “Triadic-level hyper homophily”.

Physician shared‑patient networks

Table 2 shows the network statistics of the entire (Ohio) shared-patient physician net-
work, the prescribing network, and the LCC of the prescribing network. Around 63% 

(18)I
(k)
everOBS = I

(

∑

i<8

C
(k)
i,8 > 0

)

.

(19)I
(k)
presc2mr =

∑

j

∑

i<j C
(k)
i,j I(|Inum(i)− Inum(j)| ≥ 2)
∑

j

∑

i<j C
(k)
i,j

,

(20)I
(k)
depresc2mr =

∑

i

∑

i>j C
(k)
i,j I(|Inum(i)− Inum(j)| ≥ 2)
∑

i

∑

i>j C
(k)
i,j

,
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(22,655 out of 35,765) of physicians in the shared-patient physician network were iden-
tified as prescribers of at least one opioid, benzodiazepine, or sedative-hypnotic, and 
around half of the ties in the network took place among the prescribers. The LCC of the 
prescribing network consists of more than 76% of physicians and more than 98% of the 
ties in the full prescribing network. As shown in the final two rows of the upper seg-
ment of Table 2, the prescribing network and its LCC were similar in terms of network 
statistics and physician prescribing measures, except that physicians in the LCC had 
a slightly higher average node degree (just above 30) and the number of Ohio patients 
encountered annually (nearly 92 patients on average). The facts that the average degree 
and average volume of patients are both higher within the LCC of the network is reflec-
tive of the fact that the LCC retains on average the more highly connected physicians 
who see more patients.

Prescribing and deprescribing measures

We first present the network statistics of the entire Ohio shared-patient physician net-
work, the prescribing network and the LCC of the prescribing network. In the LCC of 
the Ohio physician prescribing network, the distributions of the I0 index of the rela-
tive net difference between prescribing and deprescribing, is skewed to the left often 
obtaining the largest possible value of 1 limiting the utility of this measure (Table 2). On 
average, among all the patient prescription state transitions a physician contributed to, 
around 0.9% of them involve bringing patients to state OBS, the riskiest state. Around 

Table 2  Network statistics of the largest connected component of the shared-patient physician 
prescribing network (specific to prescriptions of opioids, benzodiazepines, and sedative-hypnotics) 
for Ohio in 2014

The physician network is constructed based on the overlap of patient care at any point during 2014 between physician 
dyads treating patients residing in Ohio. The prescribing network is a subset of the whole network where its physicians have 
prescribed at least one opioid, benzodiazepine, or sedative-hypnotic during 2014. Volume is the number of Ohio Medicare 
fee-for-service beneficiaries a physician encountered throughout 2014. The entries of n/a signify that the true value is 
suppressed to satisfy data suppression rules designed to protect patient privacy by the Center for Medicare and Medicaid 
Services. LCC = largest connected component

 Descriptive statistics Whole network Prescribing network LCC of prescribing 
network

Shared-patient physician network

 Number of nodes 35765 22655 17363

 Number of ties 494462 265112 261816

 Density 0.0008 0.0010 0.0010

 Number of components 3002 2056 1

 Size of LCC 27503 17363 17363

 Degree (mean, IQR, SD) 27.7 (n/a, 44.0) (37.5) 23.4 (n/a, 38.0) (28.7) 30.2 (n/a, 45.0) (29.6)

 Global clustering 0.168 0.171 0.171

 Average path length 4.663 4.599 4.599

 Volume (mean, IQR, SD) 62.7 (n/a, 96.0) (86.3) 70.6 (n/a, 112.0) (87.8) 91.6 (18.0, 136.0) (90.3)

Physician prescribing measures

 I0 (mean, IQR) 0.871 (0.843, 1.0) 0.876 (0.875, 1.0)

 IOBS (mean, IQR) 0.009 (0.0, 0.0) 0.009 (0.0, 0.0)

 IeverOBS (# of 1, # of 0) (1972, 20683) (1412, 15951)

 Ipresc2mr (mean, IQR) 0.030 (0.0, 0.0) 0.029 (0.0, 0.0)

 Idepresc2mr (mean, IQR) 0.017 (0.0, 0.0) 0.016 (0.0, 0.0)
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8.1% of physicians (1,412 out of the sum of 1,412 and 15,921) have at least once contrib-
uted to a patient’s transition to state OBS. Among all of the transitions associated with 
prescribing, around 2.9% of them involved adding two or more drugs. Likewise, among 
all the transitions associated with deprescribing, on average around 1.6% involved a 
reduction of two or more drugs. These proportions are nearly invariant between the pre-
scribing network and its LCC, suggesting that little is lost from using the easier to ana-
lyze LCC as the basis of our network analyses.

Figure 3 presents mean values of four prescribing indexes by physician specialty for the 
LCC of the Ohio shared-patient physician network in 2014; each physician was classed 
as either a primary care physician, medical specialist or surgeon specialist based on their 
lookup information in the National Plan and Provider Enumeration System (NPPES) 
(Centers for Medicare & Medicaid Services 2012). In terms of overall prescribing and 

Fig. 3  Prescribing measures by specialty of physicians in the largest connected component of the 
shared-patient prescribing physician Ohio network in 2014. Specialists are medical specialists other than 
surgeons. Hospital-based services include anesthesiology, radiology, and pathology. PCP denotes primary 
care physicians. I0 is the net relative difference in prescribing and deprescribing transitions ( I1 , a measure in 
the same family as I0 that accounts for the change in the number of prescription classes (Eq. 15), had a similar 
barplot), IOBS is the prescribing index based on a physician’s contribution to bringing patients to the riskiest 
prescription state OBS, Ipresc2mr ( Idepresc2mr ) is the prescribing index based on a physician’s contribution to 
prescribing (deprescribing) two or more drug types to patients. Error bars show the standard errors of the 
respective measures
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deprescribing reflected by I0 , there was minimal difference across specialties, although 
surgeons and medical specialists appeared to have slightly higher average I0 values than 
other specialties. Other prescribing measures reflect physicians’ prescribing behav-
ior with more granularity. Hospital-based physicians (often referred to as hospitalists) 
and primary care physicians (PCPs), in particular, have a higher likelihood of bringing 
patients to state OBS, prescribing two or more drugs, and deprescribing two or more 
drugs, compared to medical specialists and surgeons. While the relative magnitude of 
these differences is large, the absolute magnitude is modest as the three types of transi-
tions at the core of these measures are at best infrequent and in the case of IOBS occur 
seldomly. The confidence interval for hospitalists is the widest, implying that such physi-
cians are the least common.

Section 3 of the Supplemental Appendix presents a visualization of the physician net-
work that provides visual evidence of these homophily patterns. An important observa-
tion is that central physicians with higher patient volume and higher node degrees have 
lower risky prescribing intensity than peripheral physicians. In addition, there are closely 
positioned clusters of physicians with similar prescribing intensity and behavior.

ERGMs for estimating independent effects of homophily

The key terms of interest in the ERGMs for relating the physician network to the pre-
scribing indexes are the estimated coefficients of the prescribing indexes; these estimate 
the level of homophily of physician (risky) prescribing in the LCC of the Ohio physician 
network. In line with the identifiability conditions derived in Sect. 3.3, we only include 
uniform homophily terms in the models. However, we fit four separate models corre-
sponding to the separate inclusion of IeverOBS , IOBS , Ipresc2mr and Idepresc2mr in the model 
and in each model adjust for network density, the prevalence of each physician specialty 
(nodefactor term), uniform homophily of physician speciality (nodematch term), and the 
physician-level distribution of the prescribing index (depending on the measure, node-
factor or nodecov).

Table  3 shows the estimated ERGM-adjusted homophily effects in the LCC of the 
shared-patient prescribing physician network. When controlling for network density 
and the main effects of nodal prescribing and deprescribing attributes, the network 
exhibited assortative clustering in terms of different prescribing measures. An over-
all homophily effect was found among physicians in ever bringing patients to the OBS 
state (est. = 0.037, p < 0.001) . As illustrated by Eqs. (2) and (3), 0.037 is the log-odds 
that Aij = 1 to Aij = 0 conditional on IeverOBS,i = IeverOBS,j and Ac

ij , the remainder of 
the network. In addition, exp(0.037) = 1.038 is the value of the multiplicative interac-
tion effect given in Eq. 7 implying that net of the density of edges and the prevalence 
of IeverOBS in the network, the likelihood of the edge Aij being present is approximately 
3.8% greater (a substantial number of edges given the substantial size of the network) if 
IeverOBS,i = IeverOBS,j than otherwise.

The status of connections among physicians were also associated with the continu-
ous prescribing measures; because these are distance measures, a negative coefficient 
estimate implies greater homophily. Physicians with a larger difference in their like-
lihood of transitioning patients to OBS were less likely to be connected to each other 
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(est. = −1.200, p < 0.001) while those with larger differences in the likelihood of 
prescribing two or more drugs to patients at once had a lower likelihood of a tie 
(est. = −0.619, p < 0.001) . Similarly, ties were less likely if there was a larger difference 
in their propensity to deprescribe two or more drugs, although the effect is substantially 
lower in magnitude (est. = −0.203, p < 0.01) . The last two results justify the considera-
tion of deprescribing separately from prescribing. Because a physician’s deprescribing 
behavior may address different aspects of their medical practice than their prescribing 
behavior and the act of prescribing is more formerly recognized in terms of generat-
ing a medical claim, it is reasonable to expect that the prescribing homophily coefficient 
would exceed that of the deprescribing homophily coefficient for the analogous meas-
ure. Observing that the estimated coefficient of Ipresc2mr is approximately 3 times that 
of Idepresc2mr is consistent with this hypothesis and so is a sanity check that our results 
cohere with intuitive reasoning and thus as a form of face validity of our approach.

The estimated effect of physicians’ propensity to form ties with other physicians of the 
same specialty was consistent across all models. Compared to PCPs, emergency medi-
cine physicians, neurologists, and psychiatrists had fewer connections with other phy-
sicians in the network. After controlling for the main effects of each type of physician 
specialty, PCPs and neurologists were less likely to be connected to same specialty phy-
sicians. In contrast, emergency medicine physicians and psychiatrists were more likely 
to form ties with physicians of the same specialty. We believe the latter finding reveals 
that psychiatrists are more likely to send a patient to another psychiatrist for a second 
opinion or that patients are more likely to doctor-shop among psychiatrists than among 
other specialists and especially PCPs. In contrast, PCPs seldom refer patients to other 
PCPs. Finally, the positive main-effects of the prescribing indices and the negative main-
effects for each type of speciality reflects that physicians involved in more prescription 
transitions have more ties in the network and that PCPs have more network ties to other 
physicians than do specialists.

A goodness-of-fit analysis revealed that each of the models fit the data well with no 
indication of a major source of lack-of-fit (see Section 4 of the Supplemental Appendix). 
Furthermore, due to the inclusion of only dyadic independence terms as network statis-
tics in each of the ERGMs, there are no concerns of model degeneracy and so we have 
near to 100% assurance that the algorithm for estimating each of the ERGMs converged.

When the ERGM analysis was stratified by health referral region (HRR), we found 
sizeable heterogeneity in the level of homophily (see Section  5 of the Supplemental 
Appendix for details and results of these analyses). However, the signs of the homophily 
terms were almost exclusively negative implying that the results of the ERGM analysis 
reported in Table 3 hold relatively generally.

Triadic‑level hyper homophily

In this section, we report the results from the non-parametric permutation test of 
extra-dyadic homophily developed in section “Triadic homophily network statistics” 
and illustrated in Fig. 1. Because it obtained the estimated effect of greatest magni-
tude across the ERGMs in section  “Exponential random graph models (ERGMs)”, 
we performed the test for the IeverOBS prescribing index. Hence, using the notation 
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of section “Triadic homophily network statistics”, x = (I
(1)
everOBS , I

(1)
everOBS , . . . , I

(N )
everOBS)

T  , 
where N = 17, 363 is the total number of physicians in the LCC of the Ohio net-
work. The realized values of the triad-level measures of homophily quantified by the 
network statistics Tri1(a, x) and Tri2(a, x) for the IeverOBS risky prescribing index are 
0.0015 and 0.0007, respectively (Fig. 4). The interpretation of the realized Tri1(a, x) is 
that among 10,000 closed triangles (mutual patient-sharing within all three physician 
dyads), 15 of them include nodes with the same attribute (the three physicians each 
contributed to bringing at least one patient to the riskiest prescription state OBS). 
The interpretation of Tri2(a, x) is that among 10,000 open two-paths (2-stars) with the 
same node attribute ( IeverOBS ) in the network, 7 of them are closed. The attribution 
re-distribution permutation test described in section  “Non-parametric test for tri-
adic homophily” found that the observed values of Tri1(a, x) and Tri2(a, x) in the net-
work were significantly higher than expected ( p < 0.001 ). These results suggest that 
1) when three physicians share patients among themselves, they are all more likely to 
all be involved in risky prescribing than by chance; and 2) when two physicians share 
patients with a common third physician, and all three have been involved in risky 
prescribing, then these two physicians are more likely to also share patients between 
them than by chance. These results suggest that risky prescribing is in part driven by a 
higher-order (extra-dyadic) form of homophily involving ≥ 3 physicians, a more com-
plex network phenomena than traditional dyadic homophily.

Discussion
This paper has made several methodological contributions to quantify physicians’ 
prescribing and deprescribing behaviors comprehensively and to study homophily 
associated with prescribing in a shared-patient physician network. Using judiciously 
constructed algorithms we attributed physicians as responsible for observed changes 
in each patient’s prescription drug status allowing each physician’s contribution to their 
patients’ prescribing and deprescribing transitions to be quantified in the form of a tran-
sition matrix. By summarizing these matrices in the form of multiple prescribing indexes 
and using ERGMs that included measures of the similarity of or distance between their 
prescribing indexes for each physician dyad, we developed a complete methodological 
procedure for estimating the independent effect of homophily of a physician prescribing 
index net of network density and the physicians’ individual attributes (e.g., their special-
ity and the overall intensity of their prescribing).

Another methodological contribution is the development of two triadic homophily 
network statistics and associated statistical tests that avoided degeneracy in ERGMs. 
The two new network statistics and associated statistical tests advance the study of 
homophily from dyads to triads. Although we use standalone non-parametric attribute 
redistribution permutation tests to compare the observed statistics to those expected 
by chance, such statistics may be incorporated in ERGMs as network statistics so that 
their independent effect net of other network statistics included in the model can be 
estimated. A related direction of future research is to develop methods of generating the 
null distribution of the triadic homophily statistics considered herein while accounting 
for the effects of other network statistics and physician attributes.
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In our risky prescribing application, we discovered substantial homophily of prescrib-
ing behaviors among physicians, as well as the assortative and disassortative mixing 
patterns with respect to physician specialty in the prescribing network. We also found 
significant risky-prescribing-associated homophily at the triadic level in the observed 
network compared to that expected by chance. We found that physicians’ level of 
involvement in prescribing and deprescribing varied across specialties, and variation 
in prescribing-associated homophily across HRRs (see Supplemental Appendix for the 

Fig. 4  Histogram of triadic homophily network statistics generated by the non-parametric test for triadic 
homophily. The triadic homophily statistic Tri1(a, x) is the proportion of closed triangles in the network 
in which each node has the IeverOBS node attribute, reflecting whether a physician has ever contributed 
to bringing patients to the riskiest prescription state OBS. The triadic homophily statistic Tri2(a, x) is the 
proportion of open two-paths with all nodes having the same attribute that are closed in the network. Panel 
a is the histogram of Tri1(a, x) and panel b is the histogram of Tri2(a, x) calculated from 30 networks with 
randomly shuffled node attributes under the null hypothesis of no homophily with respect to the given 
prescribing index. The red vertical lines denote the values in the observed network
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latter). Our findings of the homophily associated with prescribing behaviors and physi-
cians’ specialties in the shared-patient physician network provide a basis for promot-
ing guideline-concordant prescribing practice and informing interventions (Ran et  al. 
2024a). The act of sharing patients can be a channel for behavior changes and so physi-
cians who only share patients with risky prescribers might expose the focal physician to 
so much high-risk behavior that the prescribing practices of those physicians changes, 
forming a loop of problematic prescribing. Given this potential reinforcement of influ-
ence between physicians when homophily exists (Centola 2011), external interventions 
may be warranted to help break the cycle of risky prescribing among communities of 
guideline non-concordant prescribers.

Understanding the assortative and disassortative patterns among different physicians’ 
specialties in the context of prescribing may provide an overarching view of the patient 
flow between different types of providers when patients seek medical care and prescrip-
tions. The finding that prescribers in psychiatry were more likely to share patients with 
each other may be due to the complexity of conditions they generally encounter, requir-
ing their patients to have multiple visits to different psychiatrists. In contrast, PCPs often 
refer patients to secondary care and are less likely to share patients among themselves. 
Given the variations in prescribing intensity across different physician specialties, our 
findings also suggest that it is worth targeting interventions to address risky prescrib-
ing. For example, if policymakers were to impose guidelines to promote safe prescribing 
among different physician specialties, they may expect differential impacts as specialties 
do not all have the same baseline prescribing intensities and some of the specialties (e.g., 
psychiatry) may have better outcomes of interventions because they are more likely to 
share patients with physicians in the same specialty than across specialties.

Various aspects of the methodology developed in this paper can be adapted or gener-
alized to study the homophily of prescribing behaviors for other classes of drugs or med-
ical procedures, especially if they may be repeatedly performed across time and their use 
may be considered discretionary (e.g., harmful or guideline inconsistent in some situ-
ations). For instance, the methods developed herein may be used to construct a physi-
cian network and indexes of physician treatment appropriateness; the later could involve 
matrices of transitions in patient treatment status that each physician was responsible 
for or a different data object. ERGMs or another network model may be used to deter-
mine whether the professional relationships between the physicians treating the patients 
receiving the given treatments or procedures are clustered (are more likely to exist) 
among physicians with the same or similar treatment tendencies. Furthermore, if there 
is interest in knowing whether homophily occurs at least in-part as a higher-order phe-
nomenon than a purely dyadic phenomenon, tests of extra-dyadic homophily like those 
constructed herein may be used. The methodology also extends beyond medicine to any 
situation in which the goal is to determine whether homophily and extra-dyadic homo-
phily of an actor attribute are associated with the structure of a network (e.g., between 
risk-taking behavior of traders on stock exchanges or other financial markets). All that is 
needed is a network and a node attribute of interest x.

This study is subject to several limitations. First, although our study is the first to our 
knowledge to deduce deprescribing from administrative claims data, not having depre-
scribing events recorded let alone time-stamped in claims data meant that we needed to 
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define deprescribing heuristically, likely resulting in the attribution of deprescribing not 
being as sensitive as ideal (as evinced by the distributions of I0 and I1 being dominated by 
prescribing events). The availability of Electronic Health Record (EHR) data might have 
enabled deprescribing to be more accurately identified. However, despite the limited 
data we had, the involvement of deprescribing in our indexes was critical as it allowed 
measures of the net excess of prescribing over deprescribing to be used as indexes. Sec-
ond, the data used in this study was cross-sectional, which led to challenges in estimat-
ing network effects beyond homophily. The availability of longitudinal data would have 
allowed dyadic dependent network effects to be modeled as lagged variables to avoid 
degeneracy (Paul and O’Ḿalley 2013). Longitudinal data would also have allowed the 
process of social selection (i.e., the factors governing the selection of relationships (Run-
ciman 2009)) to be more easily distinguished from social influence (i.e., the process of 
one individual exerting influence on another so that they adopt similar traits). Third, our 
study focused on the Medicare population, whereas the same research question within 
younger populations is also of interest.

Conclusion
In conclusion, we proposed a novel framework to model the relationship between infor-
mal physician professional networks and new measures for quantifying physicians’ 
prescribing and deprescribing behavior. We discovered significant homophily and extra-
dyadic homophily associated with prescribing among physicians’ connections through 
sharing patients. These findings provide important insights into the mechanism underly-
ing the spread of risky prescribing among the older population in the United States and 
of how communities of prescribers emerge and evolve. We hope that this work helps to 
incentivize interventions to reduce practices that are not compliant with guidelines and 
to promote safe practices among healthcare providers.

Supplemental appendix
The supplemental appendix contains sections describing the identification of prescribing 
and deprescribing events and their attribution to one or more physicians. It also includes 
a visualization of the network, a goodness-of-fit analysis of the fit of one of the estimated 
ERGMs and analyses of the heterogeneity in the direction and level of homophily across 
health referral regions in the United States. These materials are intended to be published 
with the paper and will also be available at the paper’s GitHub site listed above.
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