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Abstract

Grafting is a well-established agricultural practice in cherry production for clonal propaga-

tion, altered plant vigor and architecture, increased tolerance to biotic and abiotic stresses,

precocity, and higher yield. Mobile molecules, such as water, hormones, nutrients, DNAs,

RNAs, and proteins play essential roles in rootstock-scion interactions. Small RNAs

(sRNAs) are 19 to 30-nucleotides (nt) RNA molecules that are a group of mobile signals in

plants. Rootstock-to-scion transfer of transgene-derived small interfering RNAs enabled

virus resistance in nontransgenic sweet cherry scion. To determine whether there was long-

distance scion-to-rootstock transfer of endogenous sRNAs, we compared sRNAs profiles in

bud tissues of an ungrafted ‘Gisela 6’ rootstock, two sweet cherry ‘Emperor Francis’ scions

as well as their ‘Gisela 6’ rootstocks. Over two million sRNAs were detected in each sweet

cherry scion, where 21-nt sRNA (56.1% and 55.8%) being the most abundant, followed by

24-nt sRNAs (13.1% and 12.5%). Furthermore, we identified over three thousand sRNAs

that were potentially transferred from the sweet cherry scions to their corresponding root-

stocks. In contrast to the sRNAs in scions, among the transferred sRNAs in rootstocks, the

most abundant were 24-nt sRNAs (46.3% and 34.8%) followed by 21-nt sRNAs (14.6% and

19.3%). In other words, 21-nt sRNAs had the least transferred proportion out of the total

sRNAs in sources (scions) while 24-nt had the largest proportion. The transferred sRNAs

were from 574 cherry transcripts, of which 350 had a match from the Arabidopsis thaliana

standard protein set. The finding that “DNA or RNA binding activity” was enriched in the tran-

scripts producing transferred sRNAs indicated that they may affect the biological processes

of the rootstocks at different regulatory levels. Overall, the profiles of the transported sRNAs

and their annotations revealed in this study facilitate a better understanding of the role of the

long-distance transported sRNAs in sweet cherry rootstock-scion interactions as well as in

branch-to-branch interactions in a tree.
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Introduction

Grafting, a bud or twig as scion attached onto the lower part of another plant as rootstock, has

been used widely in plant clonal propagation and crop production, especially for fruit trees [1,

2]. Its benefits include dwarfism of trees for easy harvest, increase of disease and pest resis-

tance, and reduction of juvenility, etc. [3]. The underlying mechanisms for producing a suc-

cessful graft have been studied for decades, of which how rootstocks and scions communicate

with each other remains an unresolved research problem. Thus far, many metabolites, protein,

mRNA, and small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siR-

NAs) are all suggested to be potential molecular signals facilitating rootstock-scion communi-

cations [4–13].

Taking the advantage of heterografts between different species of the Cucurbitaceae, Bolecki

and his colleagues demonstrated that at least nine proteins, including the filament-forming

phloem protein 1 (PP1) and the phloem lectin PP2, were found in developing scion exudate,

which corresponded to those of the respective proteins in the rootstock [7]. It was suggested

that PP1 and PP2 were likely involved in transporting macromolecules within the phloem

[14]. FLOWERING LOCUS T (FT) is a top candidate of the florigen because many reports

have demonstrated that FT proteins, instead of FT RNAs, acted as the mobile florigenic signals

mainly through short-distance transport (e.g., from leaves to their adjacent buds) [15–24].

Two other reports, however, suggested that both FT proteins and FT RNAs could be transmit-

ted [25, 26]. In additional, phytohormones regulated by FT expression may serve as important

signals in long-distance transfer of floral inductive signals [27].

Similarly, transcription profile in phloem-sap of heterografts of melon stocks and pumpkin

scions revealed the presence of long-distance transport of mRNAs from stocks to scions [28].

The long-distance trafficking of mRNAs via phloem and its impact on development of various

plant organs (leaf, tuber, root, and flower) in grafted plants were enumerated in detail by Spie-

gelman and colleagues [29].

Small RNAs are a short stretch of RNA molecules, usually referring to those with size rang-

ing from 19 to 30-nt. Small RNAs, including miRNAs and siRNAs, have been suggested to

function as both short- and long-distance trafficking signals [3, 30–35]. Using miRNA micro-

array and grafts of wild type Brassica to mutants, miR399 and miR395 were found to be able to

translocate through graft unions and function as regulating molecules in responses to stress

and nutrient deficiency [36]. Another miRNA, miRNA156, has been known to be key in main-

taining plant juvenile phase and mobility assays in potato heterografts suggested that it was a

graft-transmissible signal that affects potato architecture and tuberization [31]. In transgrafted

Arabidopsis mutants, transfer of a green fluorescent protein (GFP)-derived sRNAs (here 21–24

nt) as well as a substantial amount of endogenous sRNA through the graft unions were

reported, and that 24-nt sRNAs directed epigenetic modifications in the recipient cells [9].

We have previously reported long-distance transfer of sRNAs generated from a hairpin-

RNA transgene in transgenic ‘Gisela 6’ (Prunus. cerasus × P. canescens) rootstocks to nontrans-

genic sweet cherry (P. avium L.) scions [13]. Here, we report the findings of endogenous

sRNAs transferred from sweet cherry scions to rootstocks. We showed that 21-nt sRNAs were

the most abundant while 24-nt sRNAs were the second abundant sRNA species in the two

sweet cherry scions. Interestingly, among the scion-to-rootstock transferred sRNAs, 24-nt

sRNAs were the most abundant, which is in agreement with the role of 24-nt sRNAs acting as

long-distance silencing signals. Additionally, it indicated that sRNA movement was likely a

selective and somewhat controlled process. In summary, together with the previous finding of

rootstock-to-scion sRNA transfer, the finding of sRNA transfer from scions to rootstocks will
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help understanding the regulation of communications between rootstocks and scions and

between branches, which ultimately influences the development of grafted trees.

Materials and methods

Grafting and sample collection

In vitro ‘Gisela 6’ shoots were rooted and grown in a greenhouse to reach about 30 cm tall.

Bark graft was used to attach an individual bud of a sweet cherry (P. avium) ‘Emperor Francis’

to the trunk position of about 15 cm of a ‘Gisela 6’ tree (Fig 1A). Both grafted and ungrafted

trees were grown in the courtyard between two greenhouses under natural light and tempera-

ture conditions in East Lansing, Michigan. The trees were irrigated and fertilized using a regu-

lar schedule to keep them healthy. To study endogenous sRNA transfer between branches in a

grafted tree, we selected two 17-month old grafted ‘Emperor Francis’ trees in which the ‘Gisela

6’ branches below the graft union were retained. The selected trees were about 2 m tall by the

time of sample collection in mid-October. Two bud samples, 30–50 buds per sample, from

each of the two trees were collected from the branches above 1.5 m trunk positions and from

the branches of the ‘Gisela 6’, separately. Meanwhile, 30–50 buds were collected from the

branches above 1.5 m trunk positions of an ungrafted ‘Gisela 6’ tree. The collected buds in 2.0

ml cryotubes were frozen immediately in liquid nitrogen and then stored in a -80 ºC freezer

for RNA isolation.

Small RNA extractions and sequencing

Total RNA was isolated using a cetyltrimethylammonium bromide (CTAB) method [37]. The

samples were purified using miRNeasy Mini Kit (Qiagen, Valencia, CA). Integrity of the RNA

samples was assessed using the Agilent RNA 6000 Pico Kit (Agilent Technologies, Inc. Wald-

bronn, Germany). Small RNA libraries were constructed using the Illumina TruSeq1 Small

RNA Sample Prep Kit (Illumina, Inc., Hayward, CA), which were pooled and sequenced [50-

bp (base pair) single end reads] using the Illumina HiSeq2500 platform at the Research Tech-

nology Support Facility of Michigan State University (East Lansing, MI).

Transcriptome assembly and annotation

The transcriptome of sweet cherry (P. avium L. ‘Tieton’) was generated using Trinity

(v20140717) [38] using mRNAseq reads downloaded from NCBI SRA (SRA Sample #:

SRS671080). The representative transcripts were obtained by selecting the longest isoform of

each transcript. Functional annotation was assigned by searching against the Arabidopsis thali-
ana annotation (TAIR10) and Swiss-Prot plant protein database using NCBI BLAST [39], and

the Pfam (v29) [40] using HMMER (v3.1b1) [41].

Small RNA discovery

The quality of raw Illumina reads generated above was assessed using FASTQC (v0.11.2) [42]

using default parameters and raw reads were processed by removing residual adapter

sequences and low-quality bases using Cutadapt (v1.8) [43]. The cleaned reads were aligned to

the above-mentioned sweet cherry transcriptome using bowtie (v1.1.1) [44], only allowing

alignments for reads having one reportable alignment that have no mismatches (—strata–best

-m 1 -v 0). The candidate transferred small RNAs were obtained by taking the sRNAs present

in grafted rootstocks (RS15 and RS19) but absent in the ungrafted rootstock (RS3). The higher

confidence transferred sRNAs were obtained by requiring their presence in the transferred

sRNA pools of both RS15 and RS19.
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Gene network analysis

We imported annotated sRNAs to Cytoscape_v3.7.2 using BiNGO to construct a gene network

of the overrepresented Gene Ontology (GO) terms with selected Ontology file “GO_full” and

selected organism A. thaliana [45, 46].

Fig 1. Experimental design and sample collection (A) and small RNA profiles in sweet cherry scions (B).

https://doi.org/10.1371/journal.pone.0236376.g001
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Results and discussion

Endogenous small RNAs in sweet cherry scions

Previously, it was reported that small RNAs were transferred from rootstock to scion, suggest-

ing that sRNA signals may play a role in rootstock-scion communication [9, 13, 47, 48]. In this

study, the rootstocks (‘Gisela 6’) are different species from the scions (‘Emperor Francis’),

which allowed the distinction of sRNAs specific from scions. ‘Gisela 6’ rootstock is a triploid,

precocious, semi-dwarf rootstock generated from crosses between tetraploid P. cerasus (tart

cherry) and diploid P. canescens [49] whereas the scions are of the species sweet cherry (P.

avium). The nature that the rootstocks and scions are different species made it possible for us

to identify transferred sRNAs that are unique for either species but with the disadvantage of

the underestimation of sRNAs from highly conserved sequences shared by the two species. We

used two unique grafted sweet cherry trees, in which some branches of the rootstocks were

retained, to determine: 1) Whether endogenous sRNAs can be transferred in the opposite

direction, from scion to rootstock; 2) Whether endogenous sRNAs can be transferred in a long

distance between branches; and 3) What the potential roles of the total and transferred sRNAs

are. To such end, we compared the sRNA profiles of a ‘Gisela 6’ rootstock (RS3) and two

grafted sweet cherry ‘Emperor Francis’ trees (two replicates: Scion15 and Scion19) on ‘Gisela

6’ rootstocks (two replicates: RS15 and RS19) (Fig 1A). Immature buds were collected from

branches of the ‘Gisela 6’ rootstocks and sweet cherry ‘Emperor Francis’ scions, where the dis-

tance of these buds from scion and rootstock was ~1.5 meters. Small RNA sequencing was

conducted to get the pools of sRNAs. Overall, a total of 63 million 50 bp single-end reads were

generated, where >96% were with Phred qualities equal to or greater than 30 (Table 1).

In order to categorize the sRNAs, the transcriptome of sweet cherry (P. avium L. ‘Tieton’)

was generated using mRNAseq reads downloaded from NCBI SRA (SRA Sample #:

SRS671080). The resulting transcriptome consisted of 60,946 representative transcripts, rang-

ing from 151 to 15,645 bp in size and N50 transcript size of 1,582 bp (Table 2). The transcripts

were annotated by searching for Pfam domains and aligning to the Arabidopsis and Swiss-

prot plant protein sequences (S1 Data).

The sRNAs (19–30 nt) of the samples were obtained by aligning the reads to the representa-

tive transcriptome and then categorized according to their lengths. First, we compared sRNAs

in the two sweet cherry scions. The amount of sRNAs detected were comparable between the

two sweet cherry scions (S1 and S2 Tables; 2.5 million and 2.4 million sRNAs for Scion15 and

Scion19, respectively), with 21-nt sRNA (56.1% and 55.8%) being the most abundant, followed

by 24-nt (13.1% and 12.5%) sRNAs (Fig 1B and Table 3).

The detected sRNAs were from 17,356 transcripts in Scion15 and 16,592 transcripts in

Scion19, where 11,215 and 10,837 have best matches with the Arabidopsis proteome for

Scion15 and Scion19, respectively (S1 and S2 Tables). Among 78 unique transcripts producing

over 1,000 (111 sRNAs/million reads) 21-nt and 24-nt sRNAs in Scion15, nineteen had

Table 1. Summary of small RNA sequencing reads.

Sample Pass-Filter Reads Q-Score� 30 Average Q-Score Yield (Gbp)

RS3 23,333,748 95.0% 37.3 1.17

RS15 8,507,397 96.5% 37.9 0.43

Scion15 10,691,794 96.7% 38.0 0.53

RS19 10,021,317 96.9% 38.0 0.50

Scion19 10,876,609 96.8% 38.0 0.54

Total 63,430,865

https://doi.org/10.1371/journal.pone.0236376.t001
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matches in Arabidopsis proteome. Gene Ontology (GO) analysis revealed that “transporter

activity” in “molecular function” and “nucleus” in “cellular compartment” were the most prev-

alent in the nineteen transcripts. In the analysis of the overrepresented GO terms, 29 were

identified in “biological process”, three were in “molecular function”, and no overrepresented

GO terms were found in “cellular component”. Of the 29 overrepresented GO terms in “bio-

logical process”, 16 were annotated as “negative regulation of . . .”, which were all related to

“negative regulation of biological process” in addition to the other four overrepresented GO

terms including “regulation of cell communication”, “regulation of signaling pathway”, “regu-

lation of abscisic-acid mediated signaling pathway”, and “regulation of response to stimulus”

(Fig 2A). Three overrepresented GO terms in “molecular function” included “DNA helicase

activity”, “ATPase activity”, and “DNA helicase activity” (Fig 2B). Similar GO results were

observed for Scion19 (S1 Fig). These overrepresented GO terms revealed the potential roles of

the sRNAs produced in bud tissues collected in mid-October in Michigan before the trees

became dormant.

Transfer of endogenous small RNAs from scion to rootstock

The transferred sRNAs were obtained using a grafted vs. ungrafted rootstock subtraction

method (Fig 3). This resulted in 3,614 sRNAs from 2,169 transcripts for graft Scion15-to-RS15

and 3,225 sRNAs from 2,455 transcripts for Scion19-to-RS19, which were candidate sRNAs

transferred from sweet cherry scions to rootstocks (Fig 4, Table 3). Overall, the number of

transferred sRNAs per transcript is low, ranging from 1 to 29. In contrast to the sRNA profiles

Table 2. Metrics of the representative transcriptome of sweet cherry (Prunus avium L. ’Tieton’).

Metrics Value

Number of representative transcripts 60,946

Longest transcript 15,645 bp

Shortest transcript 151 bp

N50 transcript size 1,582 bp

Average transcript size 729 bp

https://doi.org/10.1371/journal.pone.0236376.t002

Table 3. The number and fraction (%) of sRNAs in sweet cherry scions and potential scion-to-rootstock transferred sRNAs.

sRNA species Scion15 (%) Scion19 (%) RS15_specific (RS15 vs. RS3)

(%)

RS19_specific (RS19 vs. RS3)

(%)

19-nt 70,186 (2.80) 71,087 (3.01) 133 (3.68) 163 (5.05)

20-nt 175,812 (7.02) 181,400 (7.67) 165 (4.57) 188 (5.83)

21-nt 1,405,289 (56.10) 1,318,390 (55.78) 529 (14.64) 622 (19.29)

22-nt 179,587 (7.17) 167,289 (7.08) 329 (9.10) 334 (10.36)

23-nt 76,850 (3.07) 71,610 (3.03) 253 (7.00) 200 (6.20)

24-nt 328,641 (13.12) 296,071 (12.53) 1,674 (46.32) 1,123 (34.82)

25-nt 45,122 (1.80) 42,368 (1.79) 150 (4.15) 128 (3.97)

26-nt 47,801 (1.91) 45,623 (1.93) 84 (2.32) 133 (4.12)

27-nt 35,566 (1.42) 32,873 (1.39) 74 (2.05) 77 (2.39)

28-nt 42,712 (1.70) 40,730 (1.72) 92 (2.55) 83 (2.57)

29-nt 59,896 (2.39) 61,128 (2.59) 70 (1.94) 85 (2.64)

30-nt 37,731 (1.51) 35,088 (1.48) 61 (1.69) 89 (2.76)

Total 2,505,193 2,363,657 3,614 3,225

Transcripts 17,356 16,592 2,169 2,455

https://doi.org/10.1371/journal.pone.0236376.t003
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in scions, 24-nt (46.3% and 34.8% for Scion15-to-RS15 and Scion19-to-RS19, respectively)

sRNAs are the most abundant followed by 21-nt (14.6% and 19.3% for Scion15-to-RS15 and

Scion19-to-RS19, respectively) sRNAs in the scion-to-rootstock transferred sRNAs (Fig 4). To

be more confident, we looked further into the common sRNAs in the two scion-to-rootstock

transferred sRNA pools. This resulted in a total of 1,991 sRNAs from 574 transcripts. Similarly,

24-nt (38.0%) and 21-nt (18.9%) sRNAs were the two most abundant species. Among the

small RNAs, functions of 21-nt and 24-nt species are the most well-studied, both having criti-

cal silencing functions within a given organism [9, 36]. The overrepresentation of 24-nt

sRNAs is in agreement with previous research findings that 24-nt sRNAs function in long-

range silencing [50]. It was suggested that 24-nt sRNA could initiate DNA methylation of the

recipient cells, transcriptional regulation, and epigenetic silencing [34].

Previous research suggested sRNA movements happen through a bulk flow process in the

phloem [36]. To determine whether there was any correlation between sRNAs in scions and

rootstocks, Pearson correlation coefficient was calculated between sRNAs in scions (source)

and scion-to-rootstock (sink) transferred sRNAs. A technically positive (R = 0.35, p = 0.26 for

Scion15 and Scion15-to-RS15 transferred sRNAs) and a moderate positive (R = 0.53, p = 0.07

for Scion19 and Scion19-to-RS19 transferred sRNAs) correlation were detected, albeit, neither

was statistically significant at p-value of 0.05. While for most sRNA species, the proportions of

Fig 2. Summary of sRNAs (A) and gene networks of overrepresented sRNAs in bud tissues of sweet cherry scion 15 (Scion15) ‘Emperor Francis’ grafted on a

‘Gisela 6’ rootstock (RS15). The ontology file of GO_FULL in BiNGO and A. thaliana annotation were used as the references to identify overexpressed GO

terms (P< 0.05). Bubble color indicates the P-value. Overrepresented sRNAs in “Biological process” (B) and “Molecular function” (C). No overrepresented GO

terms are present in “Cellular component”.

https://doi.org/10.1371/journal.pone.0236376.g002
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transferred sRNAs were relatively similar (1–2‰ of sRNAs in scions), it was particularly

intriguing that the transferred 21-nt sRNAs were only 0.38‰ (Scion15-to-RS15) and 0.47‰

(Scion19-to-RS19) of the total sRNAs detected in the source (scions), which were the lowest

among all sRNA species. On the contrary, the proportion of transferred 24-nt sRNAs

accounted for 5.09‰ (Scion15-to-RS15) and 3.79‰ (Scion19-to-RS19) of the sRNAs in the

source, which were 14 and 8-fold higher than that of 21-nt sRNAs. The uneven transfer of dif-

ferent sRNA species suggested sRNA transfer may be selective and somewhat controlled. More

in-depth genetic and genomic studies are required to further demystify this question.

Transferred small RNAs belong to transcripts involved in binding and

hydrolase activities

Among the 574 transcripts with transferred sRNAs common in the two replicates (S3 Table),

350 were annotated with best protein matches in Arabidopsis. To determine the potential

function of these sRNAs, gene ontology analysis was done. Within the biological process cate-

gory, transcripts with “DNA or RNA binding activity” (χ2 = 3.263, p = 0.07) and “hydrolase

activity” (χ2 = 1.133, p = 0.29) were enriched, but not statistically significant. Proteins with

“DNA or RNA binding activity” regulate many cellular processes, including transcription,

mRNA processing, translation, gene silencing [51]. Therefore, the transferred sRNAs of these

transcripts may affect the biological processes of the recipient plants (rootstocks) at different

levels.

Fig 3. A diagram showing the pipeline of determining scion-to-rootstock transferred sRNAs.

https://doi.org/10.1371/journal.pone.0236376.g003
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Summary

Although the transfer of sRNAs does not indicate a physiological role by itself, it is highly likely

that small RNAs transferred from scion to rootstock may affect the development of the root-

stock as was shown that rootstock-to-scion transferred sRNAs enabled virus resistance in

scion. Collectively, sRNA transfer can happen in either direction between rootstocks and sci-

ons, likely being involved in inter-communications between scions and rootstocks.

Supporting information

S1 Fig. Summary of sRNAs (A) and gene networks of overrepresented sRNAs in bud tissues

of sweet cherry scion 19 (Scion19) ‘Emperor Francis’ grafted on a ‘Gisela 6’ rootstock (RS19).

The ontology file of GO_FULL in BiNGO and A. thaliana annotation were used as the refer-

ences to identify overexpressed GO terms (P< 0.05). Bubble color indicates the P-value. Over-

represented sRNAs in “Biological process” (B) and “Molecular function” (C). No

overrepresented GO terms are present in “Cellular component”.

(TIFF)

S1 Table. Small RNAs in sweet cherry Scion15.

(XLSX)

S2 Table. Small RNAs in sweet cherry Scion19.

(XLSX)

S3 Table. Potential scion-to-rootstock transferred sRNAs in common between rootstocks,

RS15 and RS19.

(XLSX)

Fig 4. Profiles of putative sRNAs transferred from sweet cherry scions to rootstocks. RS15_specific and RS19_specific are sRNAs found in the grafted

rootstocks, RS15 and RS19, but absent in the ungrafted.

https://doi.org/10.1371/journal.pone.0236376.g004
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S1 Data. The transcriptome of sweet cherry (P. avium L. ‘Tieton’).

(FA)
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graft protection against pierce’s disease mediated by transgenic grapevine rootstocks. Front. Plant Sci.

https://doi.org/10.3389/fpls.2019.00084 PMID: 30787937

6. Gautier A. T., Chambaud C., Brocard L., Ollat N., Gambetta G. A., Delrot S., et al. (2019). Merging

genotypes: Graft union formation and scion-rootstock interactions. J. Exp. Bot. https://doi.org/10.1093/

jxb/ery422 PMID: 30481315

7. Golecki B., Schulz A., Carstens-Behrens U., and Kollmann R. (1998). Evidence for graft transmission of

structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206, 630–640.

https://doi.org/10.1007/s004250050441

8. Haroldsen V. M., Szczerba M. W., Aktas H., Lopez-Baltazar J., Odias M. J., Chi-Ham C. L., et al.

(2012). Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural

improvement. Front. Plant Sci. 3, 1–12. https://doi.org/10.3389/fpls.2012.00001 PMID: 22645563

9. Molnar A., Melnyk C. W., Bassett A., Hardcastle T. J., Dunn R., and Baulcombe D. C. (2010). Small

silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science (80-.).

328, 872–875. https://doi.org/10.1126/science.1187959 PMID: 20413459
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