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Abstract: The present manuscript reports on optimized formulations of alcohol-based conductive
paints for electromagnetic interference shielding (EMI), which can ensure compatibility and reduce the
visibility of electronic equipment, as a continuation of our previous work in this field, which examined
water-based formulations for other applications. Graphite, carbon black, graphene, Fe3O4, Fe ore,
and PEDOT:PSS in various ratios and combinations were employed in an alcohol base for developing
homogeneous paint-like fluid mixtures that could be easily applied to surfaces with a paintbrush,
leading to homogeneous, uniform, opaque layers, drying fast in the air at room temperature; these
layers had a reasonably good electrical conductivity and, subsequently, an efficient EMI-shielding
performance. Uniform, homogeneous and conductive layers with a thickness of over 1 mm without
exfoliations and cracking were prepared with the developed paints, offering an attenuation of up to
50 dB of incoming GHz electromagnetic radiation. The structural and morphological characteristics
of the paints, which were studied in detail, indicated that these are not simple physical mixtures of
the ingredients but new composite materials. Finally, mechano-climatic and environmental tests on
the coatings demonstrated their quality, since temperature, humidity and vibration stressors did not
affect them; this result proves that these coatings are suitable for commercial products.

Keywords: EMI shielding applications; alcohol-based conductive paints; multicomponent nanocom-
posites; carbon-based materials

1. Introduction

The revolution of the new 5G technology is ongoing, and it comes with some sig-
nificant challenges regarding an increasing level of electromagnetic background noise
as a result of wireless connections between intelligent sensors, actuators, and numerous
associated routers. These conditions increase electromagnetic interference, and special
measures will be required to prevent the problems coming from this phenomenon. As is
known, electromagnetic interference (EMI) can disrupt electronic devices, equipment, and
systems used in critical applications. Examples, to name a few, include medical, military,
and aerospace electronics, mass transit systems, industrial touch screens, and navigation
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and vehicular control systems. The causes of electromagnetic interference are numerous
and based on both manufactured and natural radiation sources. The results can range from
temporary disturbances and data losses to system failure and even loss of life, since EMI
also affect humans, animals, and the environment. Therefore, EMI shielding materials are
required, materials such as flexible metal screens, metal wires, and metal foams. Coatings
made of metallic inks can be also applied to the interiors of electronic enclosures to pro-
vide an EMI-shielding solution. Each of these shielding methods has its advantages, but
lightweight paint-like carbon-based coatings can combine the electrical properties of metal
with excellent mechanical material properties at a lower cost and easier application. In very
recent and extensive reviews on this subject [1–12], many nanomaterial-based potential
solutions have been developed and tested for specific electromagnetic-shielding applica-
tions. Among these, different forms of carbon, such as graphene, carbon nanotubes, carbon
fiber, carbon aerogels, carbon black, activated carbon, and carbon nanoparticles, as well as
their hybrid composites, have been widely advanced and considered for EMI shielding in
the GHz range [4,5,10–17]. The electrical and dielectric properties, as well as the shielding
effectiveness of various polymer/graphene nanoplatelets (GNP) polymer/carbon black
(CB) nanocomposites, were investigated recently [5,7–13], but multiple component formu-
lations that can result in hybrid composites based on carbon-allotrope conductive fillers
are not so frequent. Hybrid composites based on carbon-allotrope conductive fillers are
very important for the current developments due to the new 5G technology that requires
improved EM-shielding properties, particularly in the highest bands of frequencies needed
for wireless applications. The combination of the microstructures of these carbon materials
as building blocks of the shielding layers, as well as the inclusion of magnetic and dielectric
materials in the shield, proved to be helpful for EMI-shielding effectiveness [2,13].

EMI shielding regards the attenuation of an incident EM radiation by reflection and
absorption by a material that would act as a barrier against the penetration of the radiation
into a system. The reflection loss links to the interaction between the incident wave and mo-
bile electric-charge carriers and the impedance discrepancy at the interface of the shielding
material. The absorption loss is associated with the dissipation of electromagnetic-wave
energy into the shielding materials due to heat loss under the interaction of the electric
dipoles in the material and the incident EM radiation. The present paper reports the
most recent achievements in a larger research trial that is dedicated to the development
of efficient and environmentally friendlier multicomponent paints for EMI-shielding pur-
poses. Previously, we reported the successful fabrication of water-based formulations of
EMI-shielding effective paints [13] for use on hydrophilic surfaces and the compositional
optimization of the CB-based solid-state composites formulations for further integration in
the EMI-shielding paints [18].

This study focuses on fabricating homogeneous alcohol-based paint-like fluid mix-
tures, easily applied onto surfaces with a paintbrush; the application of these mixtures
leads to homogeneous, uniform, opaque layers that dry fast in the air at room tempera-
ture and have quite good electrical conductivity, which can offer efficient EMI-shielding
performance on polymeric and metallic surfaces. Various ratios of carbon-based materials
and different preparation parameters were tested so that effective shielding paints can be
obtained by taking into account an optimum combination of physical/chemical properties
and shielding performance. As a result, hybrid composites based on carbon-allotrope
conductive filler paints with optimized properties were developed; these paints both offer
uniform, homogeneous, and conductive layers with a thickness up to 0.5 mm without
deformation and cracking and exhibit a shielding effectiveness of up to −50 dBs for elec-
tromagnetic radiation in the GHz frequency range. The structural and morphological
characteristics of these paints were studied in detail. These simple paint-like coatings can
become an excellent choice for product designers who need to meet various sealing and
insulation challenges.
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2. Materials and Methods

The electromagnetic-shielding layers were deposited on thin paper placed directly
on a metallic frame, designed especially for the waveguide used, by brushing paint-like
dispersions. Graphene nanoplatelets (GNPs), natural graphite, carbon black, magnetite
(Fe3O4), iron ore (Fe ore), poly (3,4-ethylenedioxythiophene) poly (styrene sulfonic acid)
(PEDOT:PSS) and polyvinyl butyral were mixed into an alcohol base for developing the
paints as follows. For the preparation of the B1, B2, B3 paints, battery-grade graphite GAK-1
from Zavalie Graphite Co. (Kiev, Ukraine) and graphitized carbon black (PUREBLACK®)
(PB) (Superior Graphite Co., Chicago, IL, USA) were used. Natural flake graphite GAK-1
relates to coarse-grained graphite with an average particle size of 132 microns and provides
the paint with electrical conductivity on a sufficiently high level. To prepare V paints,
large grains of pure natural graphite (EMFUTUR Technologies Ltd. Spain) were milled
using a ball mill and dimensionally separated using a 0.02 microns sieve. Graphene
nanoplatelets (EMFUTUR Technologies Ltd., Villarreal, Spain) (GNPs), carbon black (CB),
poly (3,4-ethylenedioxythiophene) poly (styrene sulfonic acid) (PEDOT:PSS) purchased
from Heraeus Germany and polyvinyl butyral PVB (Sigma, Roedermark, Germany) were
also used. The compositions of the paints, based on preliminary compositional studies
reported in [18] and on an initial parametric investigation, were as following:

â B1: 60% GAK-1, 20% PB and 20% PVB
â B2: 50% GAK-1, 16.7% PB, 16.7% Fe3O4, 16.7% PVB
â B3: 50% GAK-1, 16.7% PB, 16.7% Iron Ore, 16.7% PVB
â V: 25% natural graphite, 25%GNPs, 25% Fe3O4, 12.5% CB, 7.5% PEDOT:PSS, 5% PVB

The ingredients were carefully weighed and mechanically mixed to obtain a homo-
geneous suspension with adequate rheological properties to be used as paint. Various
preliminary trials were performed to achieve the strength requirements in practical applica-
tions, such as peel strength and tensile strength. The formulation was successively adjusted
until the fluid mixtures became suitable as paint. The uniformity of the paint thickness was
achieved by using a controlled quantity of dry substance in a specific volume. Given the
paint homogeneity, the thickness would be approximately the same by applying the same
amount of paint on a particular surface.

Characterization Methods

The obtained materials were characterized by SEM, XRD, and Raman Spectroscopy,
and their electrical and shielding properties were evaluated.

Scanning electron microscopy (SEM) characterization was performed with a W fila-
ment LV6064 SEM (Jeol company, Tokyo, Japan) in a high vacuum, in order to investigate
and understand the formation and the architecture of the obtained nanocomposite mate-
rials. All samples were characterized in the high-vacuum mode without any conductive
coating. X-ray-diffraction (XRD) investigations were performed using a Rigaku Ultra
high-resolution triple-axis multiple reflection SmartLab X-ray Diffraction System (Osaka,
Japan) in grazing incidence geometry, varying the 2θ from 5 to 50◦ with a speed of 4◦/min.
The peak indexing was achieved using ICDD (International Center for Diffraction Data)
database. Raman analysis was done using a Witec alpha 300S Gmbh Germany system,
with an Nd-YAG laser at 532 nm and confocal Raman microscopy (high-resolution confocal
Raman imaging, AFM and SNOM). Finally, the electrical resistance of the nanocompos-
ite samples was determined with a FLUKE 8846A (Fluke Electronics, Everett, WA, USA)
multi-meter using the four-point configuration [17].

The shielding performance of the developed materials was examined and presented
in our previous study [13], in terms of shielding effectiveness, a parameter that depends
on several factors related to both the material and the design used; this parameter can be
expressed as:

SE = 10 log
(

Pi
Pt

)
= 20 log

∣∣∣∣Ei
Et

∣∣∣∣



Nanomaterials 2022, 12, 1839 4 of 18

where Pi is the incident and Pt the transmitted wave, Ei and Et are incident and transmitted
electric fields, respectively.

The absorbance (Ab) of the radiation could be calculated by measuring the reflectance
(Re) and the transmittance of the material; this measurement can be obtained with the
following formula:

Ab = 1 − Tr − Re

where Re is the reflectance and Tr is the transmittance of the material

Re =

∣∣∣∣Er

Ei

∣∣∣∣2 = |S11orS22 |2

Tr =

∣∣∣∣Et

Ei

∣∣∣∣2 = |S12orS21 |2

S11, S12, S12, S21 are the scattered parameters [18] and could be measured with a Vector
Network Analyzer (VNA).

The measuring setup used for the determination of the shielding performance of the
developed paints is presented in Figure 1, and it was based on the portable vector network
analyzer Anritsu MS214C: 9 kHz–6 GHz (Anritsu Co., Ltd., Tohoku, Japan), two Waveguide
to Coax Adapters, and a diaphragm (holder for sample). The waveguides had a cut-off
frequency of 4.3 GHz, resulting in a measurement range between 4.3 and 6 GHz. With
this setting, the accuracy of measurements was the highest possible, since they were not
affected by any interferences.

Figure 1. The measuring setup for EMI-shielding efficiency based on the ANRITSU Vector
Network Analyzer.

The reference measurement was conducted with an empty holder at the beginning of
the experiments. In addition, five markers (4.398 GHz, 4.588 GHz, 5.079 GHz, 5.541 GHz,
5.900 GHz) were set in order to perform better measurements in points of interest.

The tests for potential commercial applications were conducted for two of the devel-
oped paints, which presented the best absorption properties. The behaviour of the painted
surface was environmental and mechano-climatic tested in an Angelantoni CH250 climatic
chamber + TIRA S55240/LS—Vibration system, presented in Figure 2. The tests were
performed according to the referenced documents [19–23].
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Figure 2. Angelantoni CH250 climatic chamber + TIRA S55240/LS—Vibration system.

3. Results and Discussion
3.1. SEM Characterization

Examples of SEM characterization of 1, 2, and 3 layers of paints, respectively, in either
B2 or V are presented in Figures 3 and 4. As one can observe from the low magnification
(×100) images in Figure 3, paint B2 forms discontinuous layers characterized by some
domains. This is a common characteristic of all 3 B formulations. The domains boundaries
may be preventing the electrons’ flow, leading to lower conductivity of the layers; therefore,
lower conductivity is expected. The medium and larger magnification images show that
quite homogeneous layers are formed that become more compact and uniform as the
number of layers increases. In the case of V formulation, it can be observed that the
coatings are homogeneous and uniform in all the cases and that surface morphology
is less affected by the number of layers. The crisp contrast of images (characteristic of
surfaces formed of regions with very different electric conductivity, the insulating regions
prevent electrostatic charge discharge to ground) in the B2 paint formulation shows that
the composite components’ conductivity is quite different, and charge accumulation is
promoted on the surface. In the case of the V formulation, the coating shows a more
uniform conductivity of components in the composite.

Figure 3. Cont.
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Figure 3. SEM characterization of 1, 2 and 3 layers of paint B2 at different magnifications. (a) B2.1
×100 (b) B2.1 ×1500 (c) B2.1 ×2500 (d) B2.2 ×100 (e) B2.2 ×1500 (f) B2.2 ×2500 (g) B2.3 ×100 (h)
B2.3 ×1500 (i) B2.3 ×2500.

Figure 4. SEM characterization of 1, 2 and 3 layers of paint V at different magnifications. (a)
V1 × 100 (b) V1 ×1500 (c)V1 ×2500 (d) V2 ×100 (e) V2 ×1500 (f) V2 ×2500 (g) V3 ×100 (h) V3 ×1500
(i) V3 ×2500.
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The above observations are more evident from the SEM images at magnification×5000
presented for the 3 layers of all coatings in Figure 5.

Figure 5. ×5000 magnification SEM images of 3 layers of paint (a) 3 layers of B1 paint (b) 3 layers of
B2 paint (c) 3 layers of B3 paint (d) 3 layers of V paint.

SEM characterization can explain the similar electric and EMI-shielding properties of
B2 and B3 samples that were observed as well as the enhanced performances of V samples,
in which GNPs seem to act as electrical connectors of the other paint components. The
effects of the discontinuities characteristic of all “B” composites on EMI-shielding prop-
erties cannot be assessed, and further studies regarding the multicomponent composites
structuring are ongoing.

3.2. XRD Characterization

Grazing incidence X-ray diffraction was employed to study the microstructure of the
obtained nanocomposites for one (_1), two (_2), or three layers (_3) of all the paints studied.
The peak identification was made with International Crystallography for Diffraction Data
(ICDD) database. GI-XRD patterns for B1, B2, B3, and V samples are shown in Figure 6a–d.

It is known that black carbon exhibits two diffraction peaks at 25.9◦ and 42.8◦, which
correspond to an interplanar distance of 0.35 nm and 0.21 nm, respectively [24], which can
be seen in Figure 6a–c. In addition, a broad diffraction feature was observed below 20◦,
indicating that PVB was a partially crystalline polymer [25]. The presence of a diffraction
feature at 22.7◦ for two layers of paints should be noted, which would be ascribed to the
battery-grade graphite (GAK-1) with an enlarged interplanar distance (e.g., 0.39 nm) than
that of the pure graphite (e.g., 0.33 nm) [26]. Similarly, B2 samples present diffraction
peaks characteristic of PVB and black carbon without any trace of iron oxide, since this was
used at a low concentration. Further, the XRD pattern for B3 indicates the coexistence of
graphite and black carbon. One can observe that the (0002) hexagonal graphite reflection
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(ICDD card no 041-1487) possesses a superior crystallinity to the black carbon. According
to the relative intensity ratio (RIR) analysis, the relative intensity of graphite against black
carbon increases from 47% (one layer) to 68% (three layers) as the number of layers of paint
increases. At the same time, a small diffraction feature occurred at two and three layers,
ascribed to Fe2O3 (hematite phase ICDD card no. 33-0664) at 35.5◦, and this feature can be
observed. Since a magnetite phase was used as precursor in the composite preparation,
one can assume that the conversion of Fe3O4 to Fe2O3 occurred while mixing with the
other components. The small Full Width at Half Maximum (FWHM) of the (0002) reflection
of the graphite proves the high degree of crystallinity, reflected in the large value of the
mean crystallite size. According to the Scherrer’s equation, the mean crystallite size for
graphite is 24 nm, 21.5 nm, 23.5 nm at 1, 2, and 3 layers of paint. This equation relates the
mean crystallite size (τ) to the FWHM, β of the diffraction peak, in the following way [27]:
τ = kλ

βcosθ , where k is a shape factor taken as 0.9, while θ is the angular position of the
evaluated diffraction peak. A significant broadening can be observed for black carbon
for the B1 and B2 samples (FWHM~1.24◦), indicating that the black carbon crystalline
domains are around 7 nm. Finally, the V samples present a narrow diffraction peak
attributed to graphite at 26.44◦, two broader diffraction features at 16.4◦ and 22.4◦ assigned
as PEDOT:PSS (card no. 47-1748), as well as a small diffraction feature given by Fe2O3.
XRD characterisation suggests that the increase of thickness improves the coating quality
for all four paints, and it proves that the coatings are not simple physical mixtures of the
ingredients but new composite materials.

Figure 6. GIXRD patterns for (a) B1, (b) B2, (c) B3, (d) V sample.

3.3. Raman Spectroscopy Characterisation

Figure 7 shows Raman spectra of 1, 2 and 3 layers of the (a) B1 (b) B2, (c) B3 and (d) V
paints. The Raman spectra of all samples show three distinct Raman peaks for the D band
(disordered graphitic site sp3) at around 1384 cm −1, G band (graphitic site sp2) at around
1518 cm−1, and 2D band at 2680 cm−1, which indicate the number of stacked graphitic
layers respectively [28].
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Figure 7. Raman spectra of 1, 2 and 3 layers of (a) B1 (b) B2, (c) B3 and (d) V paints.

The other way to recognize the signature structural characteristics of the stacked layers
is the ratio IG/I2D, where the peak intensity is denoted as I(D), I(G), and I(2D) for the
D, G, and 2D peaks, respectively (Figure 7). For measuring the ID/IG in the carbonic
materials, in the literature two methods are used: measuring the area under the curve by
peak fitting (Integration of peaks function in Origin Program) for broader peaks, or the
direct intensity is used to calculate the ratio when the peaks are sharp. The ratio IG/I2D
in this case was estimated by extracting the intensity values with two decimals for de
D-band and G-bands in Origin 8.5 program from the processing of numerical data of the
Raman-spectra acquisition in Witec software. In the case of samples B1-B3, the IG/I2D
ratio is higher than 1, which may be due to the stacking-like multilayer arrangement of
graphitic structure in the PVB polymer matrix. [26]. The ratio of the intensities (ID/IG) that
provide the information on graphitic material’s structure and domain size was calculated
for all the samples. ID/IG increases with an increasing defect density for low and moderate
defect density. ID/IG is markedly increased in contrast with the graphitic sample B1,
suggesting the formation of some sp3 carbon by functionalization with Fe3O4 in the B2
sample and Iron Ore in the B3 sample [29–31]. These values give only a qualitative insight
into the structure of multicomponent composite materials. For an accurate study, further
experiments are ongoing.

The characteristic peaks of C-H stretching vibration and CH2 bond of the PVB and
PEDOT:PSS hydrocarbon backbone are clearly visible at 2942 cm−1 (*) and 1421 cm−1 (**),
respectively, in the V samples [13].

Raman spectroscopy results confirms once more the fact that the hybrid composite coat-
ings are not a physical mixture of components but new materials with
particular properties.
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3.4. Resistance Measurements

The measured values of the electrical resistance are presented in Table 1. As one can
observe, the samples with 3 layers of paint show the lowest electrical resistance for all the
formulations. This can be attributed to the better structuring of the composite material as
observed from the composite layers’ SEM observed characteristics.

Table 1. Resistance measurements results.

Paint Resistance (ohm) ± 0.01

B1.1 322.10

B1.2 142.90

B1.3 60.12

B2.1 217.30

B2.2 156.80

B2.3 66.09

B3.1 215.10

B3.2 158.60

B3.3 69.01

V1.1 336.37

V1.2 148.70

V1.3 70.80

3.5. Shielding Properties

The measurements were conducted on samples painted with 1, 2, and 3 layers of
the respective paint applied, as shown in Figure 1 in the Experimental section. The first
EMI-shielding measurements were conducted on the V samples. Examples of spectra are
provided in Figure 8b–d.

Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. EMI shielding measurements in V sample and reference. (a) EMI-shielding measurement of
reference; (b) EMI-shielding measurements on 1 layer of V sample; (c) EMI-shielding measurements
on 2 layers of V sample; (d) EMI-shielding measurements on 3 layers of V sample.

The results can be more clearly seen in Figure 9. As can be observed, the third layer
of paint shows a significant absorbance within the entire band measured. This is also in
correlation to the measured resistance of the layers.

Figure 9. EMI-shielding measurements on V sample. Blue reference, orange 1 layer, grey 2 layers,
yellow 3 layers.

Then, samples were prepared using the B paints. Overall, attenuations from −25 up
to −50 dB at some frequencies were also observed for the B formulations. Examples of
shielding performance of the B1 and B2 paints are presented Figure 10. Regarding the B3
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paint, this was proven to have a similar response to that of the B2 paint, and its behaviour
was not included in the figure.

Figure 10. EMI-shielding measurements on B formulations samples. Blue reference, orange 1 layer,
grey 2 layers, yellow 3 layers. (a) Graphic representation of EMI-shielding measurements results on
B1 sample; (b) Graphic representation of EMI-shielding measurements results on B2 sample.

For the B1 formulation, it was observed that the difference in shielding between a
different number of layers of paint is not significant, as observed in Figure 10a. However,
for the B2 and B3 formulations, where similar behavior and shielding values were obtained,
the number of applied layers was found to significantly affect the shielding performance,
as shown in Figure 10b. Therefore, the material presents good absorbance properties.

For the 3 layers of each formulation, a comparison of their attenuation at the specific
marker frequencies is presented in Figure 11.

It could be observed that the V1-3, B1-3, and B2-3 samples are pretty similar in
behavior and that the absorption of the composite layers seems to correlate strongly with
their electrical resistance. The lower the resistance, the better is the absorption.

Based on the structural characterization, we can assume that the presence of a high
number of interfaces in the multicomponent composites promotes the interfacial polariza-
tion, which occurs on the carbon allotropes particles with relatively high conductivity. This
leads to the accumulation of charges at interfaces and the generation of dipoles on semi-
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conductive magnetite particles. The interfacial polarization and associated space-charge
relaxation processes contribute to the EMI-shielding performance of the composites. To
elucidate the shielding mechanism, further detailed study is ongoing. The most important
issues of this study were finding the composition and the preparation method to obtain a
high-shielding performance while at the same time maintaining ease of application and
the development of uniform and stable surfaces. As a next step, the mechanisms will be
studied in more details.

Figure 11. EMI-shielding measurements on 3 layers of each paint studied.

3.6. Environmental Testing for Potential Commercial Applications

The tests for commercial applications were conducted for two of the developed paints
presenting the best shielding properties. The test was focused on potential applications to
the cellular-phone industry, and the paint was applied, as illustrated in Figure 12, on the
backside of a cellular-phone chassis.

Figure 12. Cellular phone back side chassis coated with 2 paints samples.

The smart cellular phones are complex electronic devices that contain both analogue
and digital circuits. People are carrying these devices wherever they go, many times
accessing industrial sites with a high density of electromagnetic fields or nearby processes
that are generating a broad spectrum of electromagnetic perturbations such as welding,
plasma cutting, high power frequency inverters, etc. In addition, these devices could also
be generators of electromagnetic fields and could disturb sensitive electronic equipment in
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laboratories. Thus, these devices are prone to EMI, and they were considered a potentially
good application for testing the functionality of our paints onto a polymeric surface.

It was observed that both paint samples presented excellent adhesion properties, and
despite the fact that the paint coating was applied with a paintbrush, the obtained layer
was uniform, and no agglomerations occurred. In order to verify the behaviour of the paint
under the stress of environmental factors such as temperature and humidity, two cycles
of combined humidity and temperature challenges were conducted. In each cycle, the
temperature was lowered to −20 ◦C and humidity (RH) at 10% and maintained there for 8
h, and then the temperature was raised to 60 ◦C and humidity (Rh) 90% and maintained
there for 8 h (the method was presented in experimental section). As can be observed in
Figure 13, after these cycles, the paints were not deteriorated, and no exfoliations occurred.

Figure 13. The sample coatings after two combined cycles of temperatures from +60 ◦C to−20 ◦C and
relative humidity from RH 90% to 10% with 8 h maintaining time at higher and lower temperatures.

The second step of testing of paints applied to the cellular-phone chassis was vibrations.
Sine vibrations according to the specifications in Table 2 and Figure 14, and random
vibrations according to 20 Hz to 80 Hz +3 dB/octave, rise to 0.04 g2/Hz; 80 Hz to 350 Hz
at 0.04 g2/Hz; 350 Hz to 2 kHz −3 dB/octave, roll off and profile as shown in Figure 15
were used.

Figure 14. Acceleration profile and Output drive for the applied sine vibrations.
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Table 2. Sine vibrations specifications.

Frequency Amplitude Durate

5–2000 Hz 0.5 (g) 2 (Oct/min) (up)

Figure 15. Acceleration profile and Output drive for the applied random vibrations.

In Figure 16, one can observe that both the V and B3 paint formulations had an
excellent behaviour, and applied vibrations did not generate any cracks or exfoliations and
did not affect the coatings.

Figure 16. The sample coatings after vibrations.

4. Conclusions

Alcohol-based paint-like fluid mixtures based on graphite, carbon black, graphene,
Fe3O4, Fe ore, and PEDOT:PSS in various combinations were prepared and studied as
potential materials for electromagnetic-interference shielding (EMI) in electronic equipment.
The trials were focused on the development of homogeneous paint-like fluids that could be
easily applied to plastics and metallic surfaces with a paintbrush, leading to homogeneous,
uniform, opaque layers, drying fast in the air at room temperature; these layers had
a reasonably good electrical conductivity and, subsequently, an efficient EMI-shielding
performance. The structural and morphological characteristics of the coatings based on
these paints indicated that these are not simple physical mixtures but hybrid composite
coatings with particular properties. Increasing the number of applied layers resulted in
more compact, homogeneous composite coatings with improved conductivity, due to better
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assembled carbon-based building-blocks components at a microscopic level. The EMI-
shielding performance of these paints’ formulations of over 50 dBs proved to be comparable
or even better than that of already existing market solutions that show EMI attenuations
from 5 to ~37 dB with a few exceptions going over 50 dB. The environmental and mechano-
climatic tests conducted on coatings onto cellular-phone chassis demonstrated that these
paints pass the technology-readiness level (TRL) 5—technology validated in a relevant-
environment (industrially relevant environment in the case of key enabling technologies)
stage, a fact that places them only two steps away from the competitive manufacturing level.
In conclusion, it was demonstrated that the developed paints could be effectively employed
in commercial applications and be used in quite challenging environmental conditions.

Author Contributions: Conceptualization, I.V.T., V.Z.B., M.P.S. and E.K.; Data curation, I.V.T., M.P.S.
and E.K.; Formal analysis, I.V.T., K.M., O.N.I., C.R., V.H.K. and M.P.S.; Funding acquisition, V.Z.B.
and E.K.; Investigation, K.M., O.N.I., C.R., C.P., E.P., V.H.K., O.B., O.C. and M.P.S.; Methodology,
I.V.T., M.P.S. and E.K.; Project administration, V.Z.B. and E.K.; Resources, V.Z.B. and E.K.; Supervision,
V.Z.B., M.P.S. and E.K.; Validation, I.V.T., O.N.I., C.R., C.P., E.P., V.H.K., M.P.S. and E.K.; Visualization,
K.M., O.N.I., C.R., C.P., E.P., O.B., O.C. and M.P.S.; Writing—original draft, I.V.T., K.M., O.N.I., C.R.,
C.P., E.P., V.H.K., O.B., O.C., V.Z.B., M.P.S. and E.K.; Writing—review & editing, O.N.I., V.Z.B., M.P.S.
and E.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the project G5477 of the NATO Science for Peace and Security
(SPS) Programme. The APC was supported by IMT Bucharest.

Data Availability Statement: The raw and processed data required to reproduce these findings
cannot be shared at this time due to technical or time limitations. The raw and processed data will
be provided upon reasonable request to anyone interested anytime until the technical problems
are resolved.

Acknowledgments: IMT contribution was partially financed by the Romanian Ministry of Research,
Innovation and Digitization through “MICRO-NANO-SIS PLUS” core Programme and MicroNEx,
Contract nr. 20 PFE din 30 December 2021, financed by the Ministry of Research, Innovation and
Digitalization through Program 1—Development of the National R & D System, Subprogram 1.2—
Institutional Performance—Projects for Institutional Excellence.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

References
1. Jaroszewsk, I.M.; Thomas, S.; Rane, A.V. Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications;

John Wiley & Sons: Hoboken, NJ, USA, 2018; p. 464. ISBN 978-1-119-12863.
2. Suchea, M.; ITudose, I.V.; Pascariu, P.; Koudoumas, E. Chapter 12—Carbon-Based Nanocomposites for EMI Shielding: Recent

Advances. In Materials for Potential EMI Shielding Applications; Joseph, K., Wilson, R., George, G., Eds.; Elsevier: Amsterdam, The
Netherlands, 2020; pp. 201–211. ISBN 9780128175903. [CrossRef]

3. Singh, A.K.; Shishkin, A.; Koppel, T.; Gupta, N. Chapter 18—Porous materials for EMI shielding. In Materials for Potential
EMI Shielding Applications; Joseph, K., Wilson, R., George, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 287–314.
ISBN 9780128175903. [CrossRef]

4. Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Ma, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; et al. Overview of carbon
nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733. [CrossRef]

5. Gupta, S.; Tai, N.H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band.
Carbon 2019, 152, 159–187. [CrossRef]

6. Sankaran, S.; Deshmukh, K.; Basheer Ahamed, M.; Khadheer Pasha, S.K. Recent advances in electromagnetic interference
shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A Appl. Sci. Manuf.
2018, 114, 49–71. [CrossRef]

7. Kausar, K. Chapter 14—Hybrid polymeric nanocomposites with EMI shielding applications. In Materials for Potential EMI
Shielding Applications; Joseph, K., Wilson, R., George, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 227–236.
ISBN 9780128175903. [CrossRef]

8. Pradhan, S.S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S.K. Thermally Conducting Polymer Composites with EMI Shielding: A
review. J. Electron. Mater. 2020, 49, 1749–1764. [CrossRef]

http://doi.org/10.1016/B978-0-12-817590-3.00012-9
http://doi.org/10.1016/B978-0-12-817590-3.00018-X
http://doi.org/10.1016/j.carbon.2018.09.006
http://doi.org/10.1016/j.carbon.2019.06.002
http://doi.org/10.1016/j.compositesa.2018.08.006
http://doi.org/10.1016/B978-0-12-817590-3.00014-2
http://doi.org/10.1007/s11664-019-07908-x


Nanomaterials 2022, 12, 1839 18 of 18

9. Zubair, K.; Ashraf, A.; Gulzar, H.; Fayzan Shakir, M.; Nawab, Y.; Rehan, Z.A.; Rashid, I.A. Study of mechanical, electrical and EMI
shielding properties of polymer-based nanocomposites incorporating polyaniline coated graphene nanoparticles. Nano Express.
2021, 2, 010038. [CrossRef]

10. Ramanujam BT, S.; Sabu, A.; Pranesh, M.; Thiruvengadathan, R. Carbon Nanostructures Fundamentals to Applications. In
Chapter 15 Conducting Polymer Nanocomposites with Carbon Nanostructures as Advanced EMI Shielding Materials: Recent Advancements
and Challenges; Thiruvengadathan, R., Roy, S.C., Sundriyal, P., Bhattacharya, S., Eds.; AIP Publishing: Long Island, NY, USA, 2021.
[CrossRef]

11. Ram, R.; Rahaman, M.; Khastgir, D. Carbon-Containing Polymer Composites; Rahaman, M., Khastgir, D., Aldalbahi, A., Eds.;
Springer Series on Polymer and Composite Materials; Springer: Singapore, 2019. [CrossRef]

12. Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference
shielding. Prog. Mater. Sci. 2019, 103, 319–373. [CrossRef]

13. Tudose, I.V.; Mouratis, K.; Ionescu, O.N.; Romanitan, C.; Pachiu, C.; Popescu, M.; Khomenko, V.; Butenko, O.; Chernysh,
O.; Kenanakis, G.; et al. Novel Water-Based Paints for Composite Materials Used in Electromagnetic Shielding Applications.
Nanomaterials 2022, 12, 487. [CrossRef] [PubMed]

14. Ru, J.; Fan, Y.; Zhou, W.; Zhou, Z.; Wang, T.; Liu, R.; Yang, J.; Lu, X.; Wang, J.; Ji, C.; et al. Electrically Conductive and Mechanically
Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater.
Interfaces 2018, 10, 39245–39256. [CrossRef] [PubMed]

15. Chen, Y.; Pang, L.; Li, Y.; Luo, H.; Duan, G.; Mei, C.; Xu, W.; Zhou, W.; Liu, K.; Jiang, S. Ultra-thin and highly flexible cellulose
nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf.
2020, 135, 105960. [CrossRef]

16. Khomenko, V.; Butenko, O.; Chernysh, O.; Barsukov, V.; Suchea, M.P.; Koudoumas, E. Electromagnetic Shielding of Composite
Films Based on Graphite, Graphitized Carbon Black and Iron-Oxide. Coatings 2022, 12, 665. [CrossRef]

17. Waremra, R.S.; Betaubun, P. Analysis of Electrical Properties Using the four point Probe Method. E3S Web Conf. 2018, 73, 13019.
[CrossRef]

18. Choma, J. Scattering Parameters: Concept, Theory, and Applications. 2021. Available online: https://www.ieee.li/pdf/essay/
scattering_parameters_concept_theory_applications.pdf (accessed on 1 April 2022).

19. ISO 16750-1. Road Vehicles—Environmental Conditions and Testing for Electrical and Electronic Equipment—Part 1. General.
Available online: https://www.iso.org/standard/39008.html (accessed on 1 April 2022).

20. IEC 60068-2, 6. Environmental Testing—Part 2–6: Testing, Test Fc: Vibration (Sinusoidal). Available online: https://www.
saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf (accessed on 1 April 2022).

21. IEC 60068-2, 14. Basic Environmental Testing Procedures—Part 2–14: Tests—Test Nb: Change of Temperature. Available online:
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf (accessed on
1 April 2022).

22. IEC 60068-2, 64. Environmental Testing—Part 2–64: Test Methods—Test Fh—Vibration, Broad-Band Random (Digital Control)
and Guidance. Available online: https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7
Bed7.0%7Db.pdf (accessed on 1 April 2022).

23. IEC 60068-2, 80. Environmental Testing—Part 2–80: Tests—Test Fi: Vibration—Mixed Mode Testing. Available online: https://
www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf (accessed on 1 April 2022).

24. Bragg, W.L. The Diffraction of Short Electromagnetic Waves by a Crystal. Proc. Camb. Philos. Soc. 1913, 17, 43–57.
25. Zhang, Y.; Ding, Y.; Li, Y.; Gao, J.; Yang, J. Synthesis and characterization of polyvinyl butyral–Al(NO3)3 composite sol used for

alumina based fibers. J. Sol Gel Sci. Technol. 2009, 49, 385–390. [CrossRef]
26. Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Expanded graphite as superior anode for

sodium-ion batteries. Nat. Commun. 2014, 5, 4033. [CrossRef] [PubMed]
27. Patterson, A.L. The Diffraction of X-rays by Small Crystalline Particles. Phys. Rev. 1939, 56, 972. [CrossRef]
28. Arthisree, D.L.; Sumathi, R.R.; Joshi, G. Effect of graphene quantum dots on photoluminescence property of polyvinyl butyral

nanocomposite. Polym. Adv. Technol. 2019, 30, 790–798. [CrossRef]
29. Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some

Silicone Composites. C 2015, 1, 77–94. [CrossRef]
30. Hatel, R.; Majdoub, S.E.; Bakour, A.; Khenfouch, M.; Baitoul, M. Graphene oxide/Fe3O4 nanorods composite: Structural and

Raman investigation. J. Phys. 2018, 1081, 012006. [CrossRef]
31. Dresselhaus, M.S.; Jorio, A.; Saito, R. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu.

Rev. Condens. Matter Phys. 2010, 1, 89–108. [CrossRef]

http://doi.org/10.1088/2632-959X/abe843
http://doi.org/10.1063/9780735423114_015
http://doi.org/10.1007/978-981-13-2688-2_10
http://doi.org/10.1016/j.pmatsci.2019.02.003
http://doi.org/10.3390/nano12030487
http://www.ncbi.nlm.nih.gov/pubmed/35159833
http://doi.org/10.1021/acsami.8b12933
http://www.ncbi.nlm.nih.gov/pubmed/30346124
http://doi.org/10.1016/j.compositesa.2020.105960
http://doi.org/10.3390/coatings12050665
http://doi.org/10.1051/e3sconf/20187313019
https://www.ieee.li/pdf/essay/scattering_parameters_concept_theory_applications.pdf
https://www.ieee.li/pdf/essay/scattering_parameters_concept_theory_applications.pdf
https://www.iso.org/standard/39008.html
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
https://www.saiglobal.com/PDFTemp/Previews/OSH/iec/iec60000/60000/iec60068-2-6%7Bed7.0%7Db.pdf
http://doi.org/10.1007/s10971-008-1865-2
http://doi.org/10.1038/ncomms5033
http://www.ncbi.nlm.nih.gov/pubmed/24893716
http://doi.org/10.1103/PhysRev.56.972
http://doi.org/10.1002/pat.4516
http://doi.org/10.3390/c1010077
http://doi.org/10.1088/1742-6596/1081/1/012006
http://doi.org/10.1146/annurev-conmatphys-070909-103919

	Introduction 
	Materials and Methods 
	Results and Discussion 
	SEM Characterization 
	XRD Characterization 
	Raman Spectroscopy Characterisation 
	Resistance Measurements 
	Shielding Properties 
	Environmental Testing for Potential Commercial Applications 

	Conclusions 
	References

