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1  |  INTRODUC TION

Marine benthic ecosystems are characterized by high biodiversity 
and are of global importance to climate, nutrient cycling and primary 
and secondary productivity (Austen et al., 2002; Covich et al., 2004; 
Snelgrove, 1997). From the intertidal to the deep sea, benthic fauna 
are central to the maintenance of ecosystem services, whereby a 
high diversity is thought to maintain a positive interaction among 

species and promoting stability and resistance to ecosystem func-
tioning (Danovaro et al., 2008; Leduc and Pilditch, 2013; Levin et al., 
2001).

Effective monitoring of the benthic fauna is a first crucial step 
towards conservation of the marine benthic ecosystems (Patrício 
et al., 2009). Traditionally, benthic biodiversity assessments are 
based on the morphological identification of species (see for in-
stance Compton et al., 2013; Diaz et al., 2004). These morphological 
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Abstract
DNA metabarcoding methods have been implemented in studies aimed at detect-
ing and quantifying marine benthic biodiversity. In such surveys, universal barcodes 
are amplified and sequenced from environmental DNA. To quantify biodiversity with 
DNA metabarcoding, a relation between the number of DNA sequences of a species 
and its biomass and/or the abundance is required. However, this relationship is com-
plicated by many factors, and it is often unknown. In this study, we validate estimates 
of biomass and abundance from molecular approaches with those from the traditional 
morphological approach. Abundance and biomass were quantified from 126 samples 
of benthic intertidal mudflat using traditional morphological approaches and com-
pared with frequency of occurrence and relative read abundance estimates from a 
molecular approach. A relationship between biomass and relative read abundance 
was found for two widely dispersed annelid taxa (Pygospio and Scoloplos). None of the 
other taxons, however, showed such a relationship. We discuss how quantification of 
abundance and biomass using molecular approaches are hampered by the ecology 
of DNA i.e. all the processes that determine the amount of DNA in the environment, 
including the ecology of the benthic species as well as the compositional nature of 
sequencing data.
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inventories are time- consuming, require taxonomic expertise which 
is scarce and are often limited to macrofauna species (Beukema & 
Dekker, 2020; Bucklin et al., 2011; Cardoso et al., 2011; Cowart 
et al., 2015). Thus, there is a need for methods that can assess ma-
rine benthic biodiversity in a rapid and cost- effective yet detailed 
and accurate manner (Aylagas et al., 2018).

In recent years, DNA metabarcoding methods have been suc-
cessfully implemented in various studies to assess marine benthic 
biodiversity. For instance, Chariton et al. (2015) used this approach 
to assess the ecological condition of estuaries, whereas Lanzén et al. 
(2016) was able to identify effects of offshore oil- drilling activities 
using eukaryotic metabarcoding. DNA metabarcoding provides the 
opportunity to assess the benthic community in a replicable manner 
that allows for the simultaneous recovery of a wide variety of taxa 
from all size classes without first isolating any organisms, facilitating 
rapid biodiversity monitoring (Taberlet, Coissac, et al., 2012). DNA 
metabarcoding most often relies on the extraction of DNA from a 
matrix of choice -  sediment, water, air or a mixture of organisms -  
followed by the amplification of a DNA barcode via PCR (Hebert 
et al., 2003; Taberlet, Coissac, et al., 2012). These DNA barcodes 
are sequenced and taxonomically assigned against globally available 
databases to infer information about the community (Pruesse et al., 
2007).

Morphological methods to identify benthic macrofauna rely on 
the sorting and identification of individual specimens. These mor-
phological methods most often produce quantitative data including 
measurements on heterogeneity diversity, for example, the propor-
tional abundances of species (Gray, 2000). The ability to acquire 
such quantitative data, as opposed to qualitative data only, can 
greatly enhance the power of ecological studies as it provides more 
insights on the biodiversity and/or the conservation status of a spe-
cies (Gray, 2000; Mace et al., 2008). Comparable to morphological 
studies, results in metabarcoding studies are frequently reported 
in (semi- )quantitative terms. In these studies, it was assumed these 
quantitative measurements would relate to the quantifications used 
in traditional benthic surveys (Porazinska et al., 2010). Two main ap-
proaches can be distinguished in quantifying communities using a 
molecular method: a frequency of occurrence approach and a rel-
ative read abundance approach. The frequency of occurrence ap-
proach counts the presence of a taxon over multiple samples and 
assumes that a higher occurrence reflects a higher abundance of this 
taxon in the environment (Deagle et al., 2019). The frequency of oc-
currence approach has been used extensively in dietary studies (e.g., 
Berry et al., 2017; De Barba et al., 2014) but also in biodiversity stud-
ies (e.g., Chariton et al., 2015; Jeunen et al., 2019). The relative read 
abundance approach uses percentages of the total number of reads 
as an estimate of biomass (Lamb et al., 2019) and has been widely 
adopted in marine benthic studies (e.g., Cahill et al., 2018; Sinniger 
et al., 2016). A meta- analysis on 22 metabarcoding studies by Lamb 
et al. (2019) showed a weak but positive relationship between rela-
tive read abundance and biomass and such a relationship was also 

reported for studies on invertebrate species (Elbrecht et al., 2017; 
Porazinska et al., 2010).

Nonetheless, using eDNA metabarcoding studies in a quantita-
tive manner is debatable. The quantification of macrofauna species 
from small environmental samples, normally used in metabarcod-
ing studies, is challenging due to several factors. Firstly, there a 
methodological issues in metabarcoding studies that include the 
effectiveness of different DNA extraction approaches on different 
communities (Brannock & Halanych, 2015; Klunder et al., 2019); 
primer biases (Deagle et al., 2014; Piñol et al., 2015; Piñol et al., 
2019) and biases induced in bioinformatic pipelines (Nichols et al., 
2018; Plummer & Twin, 2015; Richardson et al., 2017). Secondly, 
ecological and biological issues can arise. Quantitative measure-
ments are derived from the presence of environmental DNA (eDNA), 
where DNA fragments are used as a proxy for the presence of a 
specimen (Harrison et al., 2019). This presence of eDNA is affected 
by, for example, the shedding rates of DNA by the source organism. 
Specifically, shedding rates depend on morphological and physiolog-
ical characteristics or seasonal patterns and can increase up to 100- 
fold at certain times (Barnes & Turner, 2016; Harrison et al., 2019). 
Furthermore, the variability of DNA per gram tissue varies due to 
variable tissue cell density (Pompanon et al., 2012) or the transport 
of eDNA through the environment (Kelly et al., 2018). Lastly, there 
is no true independence between the quantitative measurements 
of species within an eDNA data set due to the compositional base 
of sequencing data. This compositional base is due to the maximum 
limit of reads which can be translated during sequencing,and leads 
to a negative correlation bias between species abundancies (Gloor 
et al., 2017). The frequency of occurrence approach is only based on 
detections and not on the compositional data set, and, this is hypo-
thetically not under influence of the negative correlation bias.

To summarize, metabarcoding studies can aid biodiversity as-
sessments. However, the quantitative abilities of such studies are 
unknown and questionable. The aim of this study is to explore to 
what extent traditional and metabarcoding approaches align in as-
sessing abudances and biomass of marine macrofauna communi-
ties. Specifically, whether metabarcoding outputs from sediment 
samples can be used as a quantitative estimate for abundance and 
biomass of benthic macrofauna in the intertidal Dutch Wadden Sea. 
For this study, we chose to use a fast and easy sampling approach 
for the collection of eDNA samples in which environmental DNA 
is extracted from small sediment cores (Klunder et al., 2019); an 
approach which can readily be adopted in future monitoring pro-
grams. Simultaneously, we collected morphological- based data to 
estimate species occurrence and abundance. The first aim of the 
study was to examine whether detection rates for benthic macro-
fauna species were comparable between molecular and traditional 
analyses. Following that, we compared the morphological approach 
with the DNA metabarcoding approach to test the reliability of both 
a frequency of occurrence approach and relative read abundance 
approach for estimating abundances and biomass.
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2  |  MATERIAL S AND METHODS

2.1  |  Sampling

Divided over seven sampling events between June 2016 and July 
2017, a total of 126 locations were sampled on tidal flats north- east 
of the isle of Texel in the western part of the Dutch Wadden Sea 
(N53°06' E4°54'). Each sampling event comprised 18 stations within 
a 500 m spatial range (Figure 1). At each station, two cores were 
taken; one larger core for the morphological identification of macro-
fauna (177 cm2, 25– 30 cm depth) and one smaller for the molecular 
identification (5.6 cm2, 10 cm depth). The two cores were sampled 
directly adjacent to each other and were taken simultaneously.

2.2  |  Morphological approach

The samples for morphological analyses were washed over a 1 mm 
mesh sieve in the field and stored in the freezer at – 20°C. In the lab-
oratory, samples were thawed and preserved in a 4% formaldehyde 
solution with Bengal rose (~2.5 mg/L). Species were sorted by hand 
and identified. Taxonomic identification was based on the NIOZ refer-
ence collection of local benthic macrofaunal species conform WoRMS 
Editorial Board (2019). Individuals were counted and biomass (g) was 
determined as ash- free dry mass of the flesh following Compton et al. 
(2013). To minimise weighing error for small biomasses, specimens 
of small taxa such as Tharyx sp., Eteone sp., Oligochaeta and Pygospio 
sp. where only weighted for a minimum of four individuals and 
Heteromastus sp. was only weighted with a minimum of two individuals 
and average biomass estimates from the data set were used instead.

2.3  |  Molecular approach

To remove extracellular DNA, the entire samples for molecular 
identification were rinsed twice with a saturated phosphate- buffer 

(Na2HPO4; 0.12 M; pH ≈ 8). During this process, the sediments 
were submerged in the buffer for 5 min to release the extracellular 
DNA from the sediments (Taberlet, Prud'homme, et al., 2012) and 
the supernatant was removed subsequently. The extracellular DNA 
bound to the sediment by phosphate bridges is less susceptible to 
degradation and might lead to an overpresentation of the actual liv-
ing community due to a temporal buffering (Corinaldesi et al., 2008; 
Guardiola et al., 2016). The sediments were then cryodesiccated and 
ground in liquid nitrogen.

Ten grams of the homogenized sediment served as starting 
material for the DNA extraction. DNA was extracted using the 
Powermax Soil DNA isolation kit (Qiagen Inc.) following the man-
ufacturer's instructions. DNA from all extractions, as well as four 
identical mock samples (Table S1) were used as template for ampli-
fication in triplicate. A 450 base pair (bp) part of the nuclear small 
ribosomal subunit (18S) was amplified using the oligonucleotides 
F04 and R22mod as primer pair (Sinniger et al., 2016). This primer 
pair was chosen from a set of six primers tested, both 18S and cyto-
chrome c oxidase subunit I (COI). The primers were found to amplify 
all taxa after an in vitro test on a set of macrofauna species from 
the experimental area (Tables S2 and S3). All forward and reverse 
primers were extended with 12nt unique barcodes based on the 
NEXTflex- HT barcodes as to prevent false reads and/or sample as-
signments due to chimera's and taq- jumps. The 18S gene was am-
plified in a 50 μl volume reaction, containing 0.6 μM of each primer, 
0.2 μM dNTP, 800 ng/μl BSA, 1 U Phusion high- fidelity DNA poly-
merase (Thermo Scientific Inc.), 1× Phusion HF buffer (Thermo 
Scientific Inc.) and 5 μl of DNA extract. The thermal cycle condi-
tions were as follows: an initial cycle of 30 s at 98°C; followed by 
27 cycles, each comprised of 10 s at 98°C, 20 s at 60°C and 30 s at 
72°C, followed by a single cycle of 5 min at 72°C. The PCR products 
as well as four blank PCR controls were excised from a 1% agarose 
gel, purified using the Qiaquick Gel Extraction Kit (Qiagen, Inc.) and 
quantified with a Qubit 3.0 fluorometer (Qiagen Inc.). All samples 
were pooled in equimolar quantities. The pooled sample was then 
subjected to a final purification using MinElute PCR Purification 
columns (Qiagen Inc.) as described by the manufacturer. The pooled 
sample was sequenced at Useq on an Illumina MiSeq using the 2× 
300 bp V3 kit.

2.4  |  Bioinformatics

Raw sequences with a quality score ≤30 over 75% of the nu-
cleotide positions were discarded using the fastq_quality_filter 
script in the FASTX- Toolkit (https://hanno nlab.cshl.edu/). Quality 
filtered reads were demultiplexed using the split_libraries.py 
script in QIIME (Caporaso et al., 2010), allowing zero mismatches 
in both the forward and reverse barcode label. Subsequently, 
reads were checked for chimera's and dereplicated in VSEARCH 
(Rognes et al., 2016) and unique sequences were discarded. The 
remaining sequences were clustered with a 98% similarity cutoff. 

F I G U R E  1  Map of Texel, showing the sampling locations at the 
intertidal mudflats, NE of Texel. Also, a graphical display of the 
sampling scheme is shown. All points were sampled in 2016 at: 
6 June and 14 November and in 2017: 13 March, 9 May, 23 May, 
6 June and 26 June

100 meters

https://hannonlab.cshl.edu/
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This cutoff was found sufficient for genus- level identification 
for the macrofauna species in our reference library for this area. 
Singletons were discarded and the remaining out clusters were 
taxonomically assigned using the RDP Classifier (Wang et al., 
2007) with a minimum confidence of 0.8 against the SILVA 18S 
rRNA database (release 132, Pruesse et al., 2007) and our local 
reference database (Table S3 and Genbank accession numbers 
MZ709983– MZ710042). Our local reference database covers 
all macrofauna species found with the morphological approach. 

Only reads from taxonomic families containing macrofauna spe-
cies were retained (see Table 1), reads from other families and 
reads assigned at a higher taxonomic level were omitted. OTUs 
assigned at the family level were compared against the NCBI da-
tabase (https://blast.ncbi.nlm.nih.gov, accessed at 10/2019) using 
blastn; the OTUs which returned a match with a percent identity 
>99% at the genus level were assigned accordingly. Raw Illumina 
sequences were deposited in the European Nucleotide Archive 
(ENA accession number: PRJEB46793).

Taxonomy Detections

Phylum Family Genus Morpho DNA

Annelida Nereididae Alitta 1 3

Arenicolidae Arenicola 104 104

Capitellidae Capitella 104 107

Echiuridae Echiurus - 8

Phyllodocidae Eteone 68 20

Phyllodocidae Eumida - 6

Syllidae Exogone - 6

Glyceridae Glycera - 10

Nereididae Hediste 9 46

Capitellida Heteromastus 42 98

Terebellidae Lanice 2 89

Magelonidae Magelona 3 1

Spionidae Marenzelleria 40 10

Nephtyidae Nephtys 6 3

Oligochaeta sp. Oligochaeta 58 101

Phyllodocidae Phyllodoce 4 2

Spionidae Polydora - 3

Spionidae Pygospio 76 94

Orbiniidae Scoloplos 122 110

Spionidae Spio - 12

Spionidae Streblospio - 20

Cirratulidae Tharyx 46 123

Arthropoda Carcinidae Carcinus 2 2

Crangonidae Crangon 38 3

Gammaridae Gammarus 3 - 

Urothoidae Urothoe 81 4

Mollusca Tellinidae Macomangulus - 3

Cardiidae Cerastoderma - 18

Ostreidae Magallana - 36

Pharidae Ensis 2 80

Tellinidae Limecola 16 5

Myidae Mya 1 35

Mytilidae Mytilus - 54

Hydrobiidae Peringia 2 29

Veneridae Petricolaria - 13

TA B L E  1  Frequency of detections per 
genus among a total of 126 samples for 
morphological (Morpho) and molecular 
(DNA) methods

https://blast.ncbi.nlm.nih.gov


    |  1047KLUNDER Et aL.

2.5  |  Data analysis

All statistical analyses and data visualisations were performed in 
R 3.5.2. For the morphological approach, count and biomass data 
were calculated at the genus level, resulting in a total number of 
individuals and a total biomass per taxonomic genus per sample. 
Both the abundance and biomass data showed a skewed distribu-
tion and hence were square root transformed. To prevent a bias in 
the molecular data set between samples due to variable sequencing 
depths per sample, read numbers per genus for all molecular sam-
ples were transformed into a relative abundance of reads per sam-
ple. Although read numbers per samples differed, no relation was 
found between sequencing depth and species richness (r(124) = – .36, 
p = .72) Therefore relative abundancies were chosen over rarefac-
tion to conserverare OTUs (McMurdie & Holmes, 2014) whereas rel-
ative read abundance transformations preserve all read calls (Lanzén 
et al., 2016). For each taxon, their presence per sample was scored 
and the occurrence was calculated as the sum of total detections di-
vided by the total number of samples. Unfortunately, detection rates 
for all taxa within the arthropod and mollusc phyla were too low (de-
tection rate < 20% for both approaches) and highly biased in either 
the morphological or the molecular methods to test these assump-
tions within these taxa. Therefore, the reliability of the quantitative 
approaches could only be tested on annelid taxa.

To test the reliability of the frequency of occurrence approach, 
the assumption that a higher occurrence in the morphological 
method corresponds to a higher detection probability in the molec-
ular method was tested. The square root of the abundance data as 
derived from the morphological method was compared to the occur-
rence in the molecular method based on a logistic regression using 
the popbio package in R. The strength of the logistic regression was 
assessed using Wald's- χ2 and a receiver operating characteristics 
(ROC) curve. The ROC curve shows the sensitivity (true positive 
rate) of the logistic regression as a function of the nonspecificity 
(false positive rate) and was built using R package ROCR. The reli-
ability of the relative read abundance approach was tested using a 
linear regression. This linear regression was based on the square root 
of the biomass data for the morphological method and the relative 
read abundance data for the molecular method.

3  |  RESULTS

3.1  |  Detection probability

In total, 23 and 35 macrofauna taxa (genus- level) could be identified 
from the morphological and molecular samples, respectively (Table 1) 
of which 22 taxa were identified by both approaches. The molecu-
lar approach detected seven extra taxa attributed to Annelida and 
five extra Mollusca taxa compared to the morphological approach, 
whereas the arthropod Gammarus was only identified by the mor-
phological approach but not with the molecular approach. The an-
nelid taxa exclusively detected by the molecular approach mostly 

include smaller specimens such as Echiura, Eumida, Spio, Streblospio 
and Polydora. Moreover, the genus Polydora is known to include para-
sitic species and might therefore have been present concealed in its 
host species. Figure 2 shows that the average number of taxa de-
tected per sample was significantly higher (paired t test, t125 = 13.1, 
p < .001) for the molecular approach (mean = 10.0 ± 2.2) than for the 
morphological approach (mean = 6.6 ± 2.1).

The detection rates (calculated as sum of detections divided by 
the number of samples) for the 21 most abundant species are visu-
alized in Figure 3. A clear discrepancy could be seen for the mollusc 
and arthropod taxa. The detection rates for arthropod taxa were 
higher in the morphological samples. For instance, Urothoe was de-
tected in 64% of the samples for the morphological approach and 
only in 3% of the samples in the molecular approach. Mollusc spe-
cies were overall detected at higher rates in the molecular samples. 
Five mollusc taxa which were detected in the molecular samples 
(i.e., Macomangulus [2.4%], Cerastoderma [14.3%], Magallana [28.6%], 
Littorina [0.79%] and Petricolaria [10.3%]) were never detected in the 
morphological samples. Detection rates for the annelids were higher 
for both approaches compared to the detection rates of the other 
phyla. Except for Eteone and Marenzelleria, detection rates for the 
annelid taxa were higher in the molecular approach compared to the 
detection rates in the morphological approach.

3.2  |  Frequency of occurrence and relative 
read abundance

To test the reliability of the frequency of occurrence approach, the 
abundance data as derived from the morphological method were 
modelled using a logistic regression against the occurrence in the 
molecular data set. Only the abundance data for Pygospio, as derived 
from the morphological approach, was a significant predictor for 
the detection of this taxon within the molecular method (Figure 4, 
Table 2). For Pygospio, per unit of increase in abundance, the odds 
of a detection in the molecular approach increased by a factor 1.34 
(Wald- χ2

(124) = 3.27, p = .001). Most of the other annelid taxa did, 
however, show a positive relationship between the abundance in 
the morphological approach and occurrence in the molecular in-
ventory. The only exception was Arenicola for which the odd- ratio 
of occurrence in the molecular approach declined with increasing 
abundance.

The sensitivity and specificity for each taxon as based on the 
logistic regression model is shown in Figure 5 as a ROC curve. The 
degrees of measure for the predictive ability of the model were 
calculated based on these plots as the area under curve percent-
age (AUC, Table 2). The logistic model for Pygsopio was able to pre-
dict the presence of this taxon in the molecular approach at a 77% 
rate based on the abundance data in the morphological approach. 
Scoloplos had a predictability of roughly 60%, with a χ2 of 1.52; how-
ever, for all other species, predictability was lower. The lowest pre-
dictability was found for Heteromastus and equalled 52%, which is 
close to a random guess.



1048  |    KLUNDER Et aL.

The relative read abundance as derived from the molecular 
method was modelled in a linear regression against the biomass esti-
mates from the morphological method for six annelid taxa (Figure 6, 
Table 2). The steepest positive slope was found for Pygospio, followed 
by Scoloplos and Tharyx. The slope found for Pygospio and Scoloplos 
were significant (respectively, F1,40 = 6.25, p = .017, R2 = .14 and 

F1,40 = 5.69, p = .022, R2 = .13). Capitella and Heteromastus both 
showed no relationship between relative read abundance and bio-
mass, while Arenicola displayed a (nonsignificant) negative slope.

The frequency of occurrence and the relative read abundance 
approaches both showed roughly the same results (Table 2). A strong 
positive relationship was obtained for Pygospio for both approaches. 
The relative read abundance approach also found a positive relation-
ship for Scoloplos. Both approaches showed negative relationships 
for Arenicola.

4  |  DISCUSSION

The present study offers a insight in the quantitative abilities of DNA 
metabarcoding methods. We compared quantitative measurements 
for abundance and biomass for benthic macrofauna in the intertidal 
Dutch Wadden Sea for DNA metabarcoding approaches with tradi-
tional morphological approaches. Although some widely dispersed 
annelid taxa showed positive relationships between the outcome of 
both methods, most taxa did not show such a relationship.

4.1  |  Species detection

The combined use of a morphological as well as a molecular method 
to quantify the same benthic community allowed us to examine 
whether detection rates for benthic macrofauna taxa are compara-
ble between the two methods. Although the overlap between spe-
cies found with both methods is high, 23 and 35 taxa, respectively 
were found from which 22 taxa in both methods, the detection rates 
between methods within a taxon showed differences. The detec-
tion rates for most arthropod and mollusc taxa showed deviating 
results between the two methods, but the detection rates for the 
annelid taxa were comparable. The detection rate of arthropod taxa 
was higher in the morphological compared to the molecular method 
while the opposite was true for most molluscs. Additionally, several 
mollusc taxa (e.g., Cerastoderma, Magallana and Mytilus) detected by 
the molecular method were never detected by the morphological 
method. Explanations for the striking differences in output between 
the two methods for the different phyla could potentially be sought 
both in a methodological and an ecological context.

Methodological issues within the molecular method, which can 
hamper the assessment of a community, have been described exten-
sively (e.g., Alberdi et al., 2018; Elbrecht & Leese, 2015; Kelly et al., 
2019; Lanzén et al., 2017 and Piñol et al., 2019). Two key steps nec-
essary to avoid technical biases emerge from these earlier studies: 
the use of PCR- replicates and the use of a mock community. Alberdi 
et al. (2018) showed that considerable diversity differences exist 
between PCR replicates for the same sample, possibly due to PCR 
stochasticity and/or the accumulation of PCR errors. In the present 
study, three PCR replicates per sample were included to minimize 
these biases as suggested in Grey et al. (2018). Also, a mock commu-
nity, an artificial community with known species was included to be 

F I G U R E  2  Histogram showing frequency distribution of number 
of macrofauna taxa (genus) identified per sample for morphological 
(black) and molecular method (white). The grey area indicates 
overlap
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F I G U R E  3  Occurrence per taxon, calculated as the sum of 
detections divided by the total number of samples (n = 126) for 
both the morphological method (x- axis) and the molecular method 
(y- axis). Taxa detected belonged to three phyla: Annelida (red), 
Arthropoda (green) or Mollusca (blue) [Colour figure can be viewed 
at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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able to identify biases induced in the metabarcoding process. This 
could be, for instance, biases induced during the sequencing pro-
cess, during PCR due to a mismatch between a (group of) species and 
the universal primer, as well as biases induced in the bioinformatics 
pipeline (Leray & Knowlton, 2016). In our study, all species added 
to the mock community were recovered and the analysis of read 

numbers showed no indication of a bias in the detection rate of taxa 
from different phyla, as differences in read numbers were unrelated 
to phylum level. Hence, we assume that biases induced in the labo-
ratory procedures are negligible and do not cause the discrepancy 
in detection rates for the molluscs and arthropods between both 
methods.

F I G U R E  4  Logistic regression and abundance distribution histograms for six annelid taxa. The histograms on the top show the abundance 
distribution if the species was also found in the molecular samples, the histograms on the bottom is the species was not present in the 
molecular data set, the frequency is shown on the y- axis. The abundance distribution as derived from the morphological method are shown 
in histograms at the sqrt- transformed x- axis

TA B L E  2  Summary of logistic regression and linear regression as used for frequency of occurrence and relative read abundance 
approaches compared to the traditional morphological methods, respectively

Taxa

Frequency of occurrence approach
Relative read abundance 
approach

Odd- ratio 2.5% 97.5% Wald- χ2 p- value AUC (%) Slope R2 (%) p- value

Arenicola – 0.84 – 0.62 – 1.14 1.37 .242 55 – 0.35 11 .030

Capitella 1.05 0.98 1.16 1.25 .263 55 0.68 1 .630

Heteromastus 1.19 0.73 2.13 0.42 .518 52 0.59 4 .231

Pygospio 1.34 1.16 1.66 10.7 .001* 77 2.44 14 .017*

Scoloplos 1.48 0.70 3.16 1.52 .218 59 2.28 13 .022*

Tharyx 1.06 0.55 4.67 0.02 .899 63 1.79 2 .426

Note: For the frequency of occurrence approach the odds ratio for positive detection and its confidence interval were calculated, as well as Wald- χ2 
and the area under the predictability curve. For the relative read abundance approach, slope of the linear regression, coefficients of determination 
(R2) and p- value are given.
*p< .05.
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Another explanation can be sought in the ecological and biolog-
ical features of eDNA and the host species. The eDNA in an envi-
ronmental sample such as marine sediments is a mixture of DNA 
molecules which can include traces of organisms (e.g., air, faeces, 
mucus) rather than the organism itself (Taberlet, Coissac, et al., 
2012). The amount of eDNA in the environment is a result of the 
biology (physical appearance, ontogenetic state, physiology) and 
ecology (seasonal and spatial patterns) of the taxa from which it 
originates (Harrison et al., 2019). In our data sets, we found a higher 
detection rate of mollusc with the molecular approach compared to 
the morphological approach. If we break down the detection rates 
of Cerastoderma, Magallana and Mya per sampling event, a poten-
tial seasonal pattern can be seen in which the peaks in detection 
rate coincided with known spawning periods of these taxa (Figure 
S1, Philippart et al., 2014). Second, the taxa Mytilus and Magallana 
are known to live in high densities in intertidal beds (Folmer et al., 
2017) that were situated approximately 500 m from the sampled 
area during the study period. Even though specimens of these taxa 
were not found using the morphological approach, eDNA could eas-
ily have spread and be trapped within the sampled area due to tidal 
movements. The low detection rate of arthropods in the molecular 
samples compared to the morphological samples may also be ex-
plained by biological factors. Arthropods are characterized by an 
exterior skeleton made of chitin. This skeleton might inhibit eDNA 
exchange with the environment. Also, in contrast to mollusc taxa, 
the arthropod taxa found in this study rely on internal fertilization, 
which minimizes the extra production of eDNA due to spawning. 
Biases induced due to ecological characteristics of eDNA and its 

host species have been described scarcely but deserve a great deal 
of attention in the future (Stewart, 2019).

4.2  |  Quantification

The second aim of this study was to test the reliability of the fre-
quency of occurrence and the relative read abundance approaches 
for quantifying abundance and biomass of marine benthic taxa 
with molecular methods. For this, we tested the underlying as-
sumptions that a higher abundance or biomass in the morpho-
logical data set leads to a higher detection rate or relative read 
abundance in the molecular data set for the frequency of occur-
rence and relative read abundance approach, respectively (Deagle 
et al., 2019). We only found a positive relationship for Pygospio 
using the frequency of occurrence approach and for Pygospio and 
Scoloplos for the relative read abundance approach and not for 
any of the other species. Comparable results have been found by 
Bijleveld et al., (2018) in which they showed that occurrence data 
from a morphological data set on macrozoobenthic taxa in the in-
tertidal Wadden Sea did not predict abundancies for these taxa. 
They discussed that the predictions in that study were highly in-
fluenced by dispersal and aggregation patterns and more reliable 
predictions could be made for taxa with higher dispersal rates. 
The same bias might also play a role in the present study. Adult 
arenicola, which has holobenthic development, has relatively low 
dispersal capacity, resulting in an aggregated distribution pattern 
(Günther, 1992). These Arenicola showed negative relationships in 
the frequency of occurrence approach, whereas Pygospio, which 
is distributed more evenly across mud flats (Gudmundsson, 1985), 
showed a strong positive relationship. This may be interpreted to 
indicate that species with an even spatial distribution also distrib-
ute their DNA evenly over the environment, while patchily dis-
tributed species correspondingly also have patchily distributed 
DNA, despite, for example, tidal water movements. DNA- based 
frequency of occurrence of the more evenly distributed species 
would then typically not only be higher overall but also correlate 
better with morphology- based quantifications than would be the 
case for patchily distributed taxa.

Compared to the frequency of occurrence approach, the relative 
read abundance is thought to be more influenced by methodologi-
cal issues than by ecological issues (Deagle et al., 2019; Piñol et al., 
2019). We hypothesized that the relative read abundance approach 
would be more influenced by the compositional nature of the molec-
ular data set as relative abundances within an eDNA metabarcoding 
data set are negatively correlated, that is, an increased abundance 
of one species leads to a lower abundance for the other due to lim-
ited sampling depth (Gloor et al., 2017). However, the frequency of 
occurrence and relative read abundance gave comparable results in 
this study, which is a significant positive relationship for Pygospio. 
Moreover, relative read abundance approach also showed a signif-
icant positive relationship for Scoloplos between the relative read 
abundance and biomass.

F I G U R E  5  Receiver operating characteristics (ROC) curve 
as derived from the logistic regression for six annelid taxa. The 
ROC curve shows the sensitivity on the y- axis, calculated as the 
true positive predictions by the logistic model and the specificity, 
calculated as the false positive predictions, on the x- axis [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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The comparable results between the frequency of occurrence 
and relative read abundance methods might imply that both meth-
ods were subject to the same factors or biases in this study. We 
discussed that the ecological and biological features might be an 
important factor in this. The sampling strategy used in this study 
possibly induced biases in the quantitative measurements as well. 
Smaller species and species which are more evenly distributed such 
as Pygospio and Scoloplos, showed positive relationship for both ap-
proaches whereas bigger and more aggregated species such as mol-
lusc species and Arenicola showed no relationship. For this study, 
a molecular sampling method was chosen in which only small sed-
iment samples were collected from which DNA was extracted di-
rectly. Specimens of the smaller taxa might be physically present in 
the sample while larger metazoan taxa are sampled via their eDNA 
traces (Taberlet, Prud’homme, et al., 2012). Larger macrofauna spe-
cies might have shown better quantitative relationship when bulk 
samples would have been used (Klunder et al., 2019). However, 
we chose the current method as it applies fewer treatments to 
the samples, which makes the method less susceptible to contam-
ination (Aylagas et al., 2016; Elbrecht et al., 2017) as well as faster 
and easier to perform. In accordance with this, Elbrecht et al. (2017) 
found that read abundance of unsorted samples were dominated by 
taxa containing higher biomass within the sample and size sorting 
could help in preventing this bias. However, they also discuss size 

sorting should only be used when highly necessary to prevent cross- 
contamination between the samples.

4.3  |  Future outlook

Metabarcoding methods have undergone considerable develop-
ments in the past decade and the methodology is still advancing 
rapidly. These advancements and new insights possibly harbour 
solutions to the current challenges and limitations in quantifying 
species abundancies from eDNA studies. It is outside the scope 
of this study to discuss them all, but we would like to highlight 
some. First, in this study we tested the conventional frequency 
of occurrence and relative read abundance approaches to quan-
tify macrobenthic abundancies from eDNA studies. We showed 
that both approaches are limited in their quantitative abilities 
towards this community. In recent years, approaches have been 
developed that better incorporate the compositional conditions 
of eDNA data for microbial communities (Gloor et al., 2017) which 
are potential useful for all eDNA data (Quinn et al., 2019). Second, 
in this study it became clear that ecological and biological fac-
tors are important factors which can bias species detection and 
quantification. Ecological factors driving the distribution of eDNA 
have been described sparsely in the past and only gained scientific 

F I G U R E  6  Relative read abundance approach relationships for six annelid taxa. The square- root of biomass estimates as derived from the 
morphological method are shown on the x- axis and the log10 of the relative read abundance of the same sample in the molecular data set is 
shown on the y- axis
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interest recently (Stewart, 2019). Moving forward, we suggest fur-
ther knowledge about the factors driving eDNA distribution in the 
environment for different taxa and how this coincides with the 
sampling strategy of choice should be gained.
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