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Coronary heart disease (CHD) is the leading cause of mortality in the world. Early

detection and treatment of CHD are crucial. Currently, coronary CT angiography (CCTA)

has been the prior choice for CHD screening and diagnosis, but it cannot meet the clinical

needs in terms of examination quality, the accuracy of reporting, and the accuracy of

prognosis analysis. In recent years, artificial intelligence (AI) has developed rapidly in the

field of medicine; it played a key role in auxiliary diagnosis, disease mechanism analysis,

and prognosis assessment, including a series of studies related to CHD. In this article,

the application and research status of AI in CCTA were summarized and the prospects

of this field were also described.

Keywords: coronary heart disease, artificial intelligence, coronary CT angiography, deep learning, machine

learning

INTRODUCTION

Coronary heart disease (CHD) has been a disease with the highest mortality worldwide (1),
and early detection and treatment will be beneficial to controlling risk factors and reducing
cardiovascular events (2). Currently, digital subtraction angiography (DSA) is the gold standard
for diagnosing coronary artery disease (CAD) (3, 4). However, DSA is an invasive examination
and possesses some defects, such as it can only display the shape of blood vessels but cannot
analyze the composition and nature of the plaques and the cost of DSA is high (2). Coronary CT
angiography (CCTA) could use prospective or retrospective ECG gating to collect the optimal phase
to reconstruct the images at any heart rate, displaying the main branches of the coronary artery in
multiple directions and analyzing the diseased vessels (5). Moreover, CCTA could also provide the
basis for cardiovascular risk stratification and treatment decision-making and can be used to predict
the occurrence of cardiac events (6). The advantages of CCTA include noninvasiveness, convenient
examination, fast speed, and relatively low price, whichmake it the best choice for clinical screening
of CHD (7). In recent years, the number of CCTA examinations has increased year by year and
the cardiovascular imaging data have increased rapidly (8, 9). Moreover, because of the shortage
of imaging diagnostic talents, the quality of CCTA examinations has declined, diagnostic reports
have been delayed, and missed or misdiagnosed cases have also increased. As an emerging frontier
technology, artificial intelligence (AI) has been developing rapidly in the medical field, including
the field of cardiovascular CT imaging (10–12). In this article, the application and research status
of AI in CCTA, including imaging technology and assisted diagnosis, and its future development,
are reviewed. For this purpose, studies were searched mainly in the PubMed database, by using
“Artificial intelligence” or “Machine learning” and “Coronary CT angiography” as keywords and
cross-searched in citations; articles published in the last 6 years were retrieved.
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ARTIFICIAL INTELLIGENCE TECHNOLOGY

Artificial intelligence technology can be mainly divided into
machine learning (ML) and intelligent computing. ML is the
main technology of AI, which includes supervised learning,
unsupervised learning, and deep learning (DL; Figure 1).
Specifically, supervised learning includes artificial neural network
(ANN), support vector machine (SVM), decision tree, Random
Forest (RF), naive Bayes classifier, and K-nearest neighbor
(k-NN) algorithm. Unsupervised learning mainly includes
clustering algorithms and association rule algorithms. DL
contains convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and deep neural networks (DNNs)
(13, 14). AI technology differs in its applications and limitations
for different data types. Therefore, the accurate diagnosis of
coronary artery disease can only be achieved by finding an
appropriate intelligent mathematical model to match the CCTA
imaging data.

STATUS OF AI APPLICATIONS AT CCTA

AI-Optimized CCTA Imaging Technology
Reduce the Radiation Dose of CCTA Examination
Coronary CT angiography (CCTA) has high sensitivity and
specificity for detecting CAD, but for a patient who needs long-
term follow-up, multiple CCTA examinations would inevitably
lead to the accumulation of radiation doses and increase the
probability of radiation injury. Researchers have been developing
various technologies to reduce the dose level for patients and
to achieve low-dose CCTA examinations (15–17). If we only

FIGURE 1 | The classification of machine learning.

focused on reducing radiation dose while ignoring image quality,
the accuracy of our diagnostics would be affected. AI technology
can be used to lower radiation doses without affecting image
quality in patients (Table 1). Wolterink et al. (18) suppressed the
image noise caused by low-dose CT through the combination of
CNN and adversarial CNN. Yang et al. (24) proposed a method
of generative adversarial networks (GANs) for visual perception,
which could reduce the noise level of the image in low-dose CT
and preserve the key details of the images. Brodoefel et al. (25)
reported that body size was an independent factor affecting the
quality of CCTA images. To obtain the same image quality, the
patients with large body sizes required higher tube voltage and
tube current than patients with normal body sizes. Nevertheless,

increasing the tube voltage and tube current would undoubtedly

increase the patients’ radiation dose (26). AI reduces the radiation

dose by learning from CT images in regular-dose phases to
remove noise from low-dose phases while maintaining image

details (19). In addition, several studies have used DL methods,

the radiation dose of CCTA has been significantly reduced by

using a low scanning voltage, and the degree of radiation dose
reduction is 36%−55.65% (19–23).

Reduce Image Noise
By using DL-based image reconstruction (DLR) and iterative

reconstruction (IR), Takatsugami compared the quality of CCTA

images processed by DLR and IR and also measured the noise

in the image of the ascending aorta, the left atrium, and the
ventricular septum in all the images (27). A contrast-to-noise
ratio (CNR) for the proximal coronary artery was calculated as
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TABLE 1 | Application of artificial intelligence to reduce the radiation dose of CCTA.

Study Year Networks Algorithm ED (mSv) Degree of radiation dose

reduction (%)

Wolterink et al. (18) 2017 CNN Discriminator CNN 0.2 NA

Kang et al. (19) 2018 GAN Cycle-consistent adversarial denoising network NA NA

Benz et al. (20) 2022 CNN DLIR 0.8 43

Liu et al. (21) 2020 GAN GAN, Adversarial CNN combined with CNN 0.91 55.65

Li et al. (22) 2022 DNN DLIR-H 0.75 ± 0.14 54.5

Sun et al. (23) 2022 DNN DLIR 0.57 ± 0.31 36

DNN, deep neural network; GAN, generative adversary networks; CNN, convolutional neural network; CCTA, coronary computed tomography angiography; DL, deep learning; ED,

effective dose; DLIR, deep learning image reconstruction; DLIR-H, high-strength deep learning image reconstruction.

TABLE 2 | Application of artificial intelligence in reducing image noise.

Study Year Algorithm Degree of image

noise reduction

Image quality mean

scores (AI group vs.

contrast group)

Mean image noise

(HU) (AI group vs.

contrast group)

ERD mean (mm) (AI

group vs. contrast

group)

Degree of

radiation dose

reduction

Tatsugam et al. (27) 2019 DCNN 20% 3.58 vs. 2.96 18.5 vs. 23.0 16.7 vs.18.5 36%

Benz et al. (28) 2020 DCNN 43% 4.2–4.6 vs. 1.8–2.2 30 vs. 53 NA 65%

Hong et al. (29) 2020 CNN (U-net) >20% 3.65 vs. 2.45 52.64 vs. 67.22 0.9141 vs. 0.9589 NA

DCNN, deep convolutional neural network; CNN, convolutional neural network; ERD, edge rise distance; NA, not applicable.

well. The results indicate that the average image noise for DLR
images is lower than that for IR images (18.5 ± 2.8 vs. 23.0 ±

4.6 HU, P < 0.01) and CNR increased significantly (P < 0.01).
With the DL image reconstruction method, Dominik C. Benz
reduced the image noise by about 43% in comparison with the
IR method (28). In addition, Hong et al. (29) applied DL to
the removal of image noise by using an improved U-Net-type
CNN; the denoised image was finally obtained by predicting the
low-dose noise that might occur in the original model and then
subtracting the prediction noise from the original noise. Image
clarity was measured by edge rise distance (ERD), and the quality
of the images was subjectively rated by two physicians. The
results showed that the average ERD of the denoised image was
significantly less than that of the original image (0.98 ± 0.08 vs.
0.09± 0.08, P< 0.001). In terms of diagnostic accuracy, there was
no significant difference between the paired comparison groups.
The study confirmed that, combined with IR techniques, the DL
method could significantly facilitate noise reduction performance
and image quality (Table 2).

Reduce Motion Artifact of the Images
The coronary artery continuously supplies blood to the heart
through regular contraction and relaxation. In patients with
arrhythmia and high heart rates, the motion speed exceeds the
scanning and the acquisition speed of CT equipment, resulting
in motion artifacts in CT images, which influences the diagnostic
accuracy and the reliability of coronary CT images and interferes
with the evaluation of coronary lesions (30). In the branches of
the coronary arteries, the motion direction of the right coronary
artery is perpendicular to the CT scanning plane, which is more
prone to motion artifacts. CT equipment with better hardware
and higher resolution could be replaced for improvement, but the

cost is too high. Thus, it is necessary to explore another approach
to improve the image quality. Lossau et al. (31) believed that the
time resolution of the CCTA images was limited by the angular
range required for the reconstruction and the rotation time of
the system. They modeled coronary motion artifact CT data to
generate the data needed for AI and then used the trained CNN to
iterate to an alternative path of a motion vector field (MVF) and
motion compensated filtered back projection (MC-FBP), which
effectively suppressed the artifacts caused by the angle in the
image. After incorporating AI technology, the motion artifacts
caused by heartbeat in CCTA images were significantly reduced,
and the time resolution of the device was also made up.

Segmenting Automatically Decreases

Postprocessing Time
Coronary CT angiography (CCTA) can estimate the origin and
variation of branch coronary artery, the location of stenosis
site, and the degree of stenosis. However, the process is time-
consuming and energy-consuming and requires experienced
doctors to take part in the analysis (32, 33). The lack of
radiologists caused a large number of images from the CCTA to
not be processed in time. Multiple study centers reported that AI
could be used to automatically recognize the images and could
mark and measure the lesions in advance (34–37). A radiology
doctor only needs to proofread the reports that are generated by
AI, which drastically increases diagnostic efficiency and reduces
the probability of misdiagnosis or missed diagnosis.

Coronary artery segmentation is an important content in
image postprocessing and the data should be collected according
to the relative stationary phase in the individual cardiac cycle
as the optimal time window (38). An optimal cardiovascular
structure model should be constructed so that the physicians
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TABLE 3 | Application of artificial intelligence for image segmentation in CCTA.

Study Year Algorithm Degree of the

post-processing time

reduction

Post-processing time of

the contrast group

Post-processing

time of test group

DSC

Kolossváry et al. (35) 2019 Radiomics-based ML NA NA NA NA

Podgorsak et al. (36) 2020 CNN NA 25min 40ms NA

Kong et al. (39) 2020 FCN (Tree-structured

CNN)

55% DenseVox: 58 s

ConvGRU: 26 s

26 s 0.8537

Huang et al. (40) 2018 CNN (3D U-Net) NA NA NA 0.8291

Han et al. (41) 2020 CNN 85% 15–20min 2–3min NA

Wan et al. (42) 2018 Hessian matrix 94% Lankton’s: 2min

Zhang’s: 1.53 s

Li’s: 29.90 s

1.72 s 0.93

AUC, area under the receiver operating characteristic curve; CNN, convolutional neural network; CCTA-AI, CCTA-artificial intelligence; DSC, dice similarity coefficient; D, Dimensions;

FCN, fully connected network; NA, not applicable.

could evaluate the anatomy of the coronary artery from multiple
perspectives and analyze the lesions. Kong et al. (39) developed
a fully convolutional network (FCN) with tree structure, which
involved the architecture model of multiscale discriminant
feature extraction and final prediction and a tree structure layer
for constructing anatomical structure. The model was carried out
on four large-scale three-dimensional CCTA datasets. The final
experimental results illustrated that it was more accurate and
efficient than other methods of coronary artery segmentation. In
several comparative studies, the accuracy of AI in segmenting
coronary vessels is close to the manual, but the speed is much
faster than manual (Table 3) (40–42).

AI-Assisted Diagnosis of CCTA
Coronary Artery Calcium Score
Coronary artery calcium (CAC) is a manifestation of coronary
atherosclerosis. The formation of CAC is an organic,
complicated, and controllable process. The coronary artery
calcium score (CACS) is usually detected and calculated by
CCTA, which could predict the cardiac events of asymptomatic
individuals (43). The CACS can guide lipid-lowering therapy
and patients with CACS > 100 are most likely to benefit from
lipid-lowering therapy, thereby reducing the incidence of
atherosclerotic cardiovascular disease events (44).

The CACS calculation is a semi-automatic process that is
required to draw the contour to obtain the region of interest
(ROI) or click all the calcium-containing objects, which is usually
time-consuming with manual intervention by the physicians
(45). AI can accurately find and segment the vascular calcification
through the algorithm and can automatically complete the
calcification score, and then, the CACS was reviewed by
the diagnostic physician; this prominently accelerates the
process of the diagnostic system (Figure 2, Table 4). Wolterink
et al. introduced a CNN algorithm, which could skip vessel
segmentation and directly identify and quantify calcium. The
results indicated that the CACS was very consistent with the
reference quality score (46). June-Goo Lee demonstrated the high
accuracy of AI on the CACS through a large sample study and
used AI to perform risk stratification for CHD (47). D de Vos and

van Assen (48, 49) used a CNN approach to accurately identify
calcifications in cardiac and chest CT, extending automatic
assessment of calcification scores to non-ECG-gated CT scans.
AI can rapidly process CT images and calculate the CACS, which
greatly alleviates the current shortage of medical talent. However,
in reality, the CACS AI is still in its infancy, and it is only being
piloted in a small number of hospitals. An important reason
for this situation is the lack of large-scale clinical testing and
validation of related AI software.

Analyze Coronary Plaque and Assess Risk
Atherosclerotic plaque and coronary artery stenosis are causally
related. When plaque is accumulated on the coronary artery
wall, it causes blood flow obstruction. When plaque continues to
accumulate, it would lead to lumen stenosis and even myocardial
ischemia, eventually resulting in myocardial infarction (50). In
addition to the clinically explained qualitative characteristics of
the disease, the volume of plaque is also correlated with the
severity, progression, and prognosis of CHD (51).

Clinically, plaques can be classified into calcified plaques,
noncalcified plaques, and mixed plaques. Plaques of different
types would also cause different degrees of stenosis, and
treatment methods will vary from person to person. The
identification of noncalcified and mixed plaques is not as good
as that of calcified plaques. In the face of a large number of
CT images, missed diagnosis and misdiagnosis might be caused
by visual fatigue. To detect patients who may suffer from CHD
from the CCTA images, it is necessary to visually evaluate the
plaque and measure the stenosis; this is a tedious and time-
consuming process (52). AI can quantify the underlying concepts
of textures and structures, input certain characteristics into
the machine learning model, and automatically complete the
plaque analysis and stenosis rate assessment, therefore greatly
reducing the actual burden of imaging workers (Figure 3) (49).
Majd Zreik et al. (53) used the CNN method to detect and
classify the types of coronary plaques with an accuracy of 0.77;
according to the CNN method, coronary plaque detection and
classification by automatedmethods are feasible. The detection of
vulnerable plaque is the importance of CCTA examination. The
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FIGURE 2 | Using artificial intelligence, coronary artery calcification is identified, segmented, and scored.

instability of vulnerable plaque increases the incidence of adverse
cardiovascular events (54). Plaque could be affected by external
forces, such as dynamic pressure or shear stress. Meanwhile,
not all unstable plaques would contribute to cardiovascular
events (55). AI is capable of extracting quantitative information
through the algorithm integration of imaging data and it would
also facilitate extracting vulnerable plaques more quickly and
automatically and provide accurate decision-making based on
multiple specific features of an anatomical segment. Kolosvalay
et al. (35) introduced radiomic parameters into 8 machine
learning algorithms. A total of 75% of the data were employed
to train the ML model, and the remaining 25% of the data were
visually evaluated and histogram evaluated using the feature area
under the curve (AUC) and compared with the ML model. It
was found that the ML model was better than visual evaluation
in the identification of advanced atherosclerotic lesions. Tesche
and Rosendael compared ML risk scores with conventional CT
risk scores using the AUC, namely, the Agatston calcium score
and the segment involvement score (SIS); they demonstrate that
the ML model could improve the accuracy of risk stratification
in plaque-derived information (56, 57). Their results indicated
that the AUC of the ML model was significantly higher than
that of the conventional CT risk score and that there was
good agreement between the unstable plaque measurements and
clinical parameters (including the Framingham Risk Score). ML
could identify all the plaque information fromCCTA and provide
a more precise risk assessment. Gudigar et al. (50) selected 122
works of literature; they analyzed and summarized the methods
and performance indexes of ML and DL, compared the artificial
plaque classification scheme, and concluded the application

TABLE 4 | Application of artificial intelligence in automatic coronary calcium

scoring.

Study Year Algorithm ICC κ Accuracy

Fischer et al. (45) 2020 RNN (LSTM) NA 0.85 0.903

Wolterink et al. (46) 2016 CNN 0.944 0.83 83%

Lee et al. (47) 2021 CNN 0.99 0.94 NA

de Vos et al. (48) 2019 CNN 0.98 0.95 0.99

van Assen et al. (49) 2021 CNN 0.921 0.74 0.7

CNN, convolutional neural network; CCTA, coronary computed tomography angiography;

ICC, Intra-class correlation coefficient; κ, Cohen’s linearly weighted kappa; NA, not

applicable; CAC, coronary artery calcium; LSTM, long short-termmemory; RNN, recurrent

neural network.

of AI algorithms in plaque deposition prediction, detection,
and classification. Statistics indicated that AI algorithms could
provide valuable information for treatment decision-making and
that ML- and DL-based AI algorithms were outstanding in
identifying plaque.

Assess the Severity of Coronary Artery Stenosis
Coronary artery stenosis is a chronic result of long-term
atherosclerosis (AS) accumulation caused by multiple factors
and pathways. As a result of certain inflammation factors,
coronary intima hyperplasias and carotid intima-media and
adventitia thickened and later fibrosis was developed. In
the end, coronary arteries can be stenotic or occluded
(58). Therefore, early detection of coronary artery stenosis
is important.
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FIGURE 3 | Artificial intelligence identifies coronary arteries (A) and segments them (B) accurately, identifies and classifies coronary plaques, and measures the

severity of stenosis (C,D).

TABLE 5 | The diagnostic performance of artificial intelligence in coronary stenosis.

Study Year Methods Sensitivity specificity PPV NPV Accuracy

Kang et al. (33) 2015 SVM 93% 95% NA NA 94%

Chen et al. (59) 2020 DL 94% 63% 94% 59% NA

Arnoldi et al. (60) 2010 Computer-aided 100% 65% 58% 100% 100%

Kelm et al. (61) 2011 Supervised Learning 97.62% 67.14% NA 99.77% NA

Goldenberg et al. (62) 2012 CAST >90% 40%−70% NA > 95% NA

DL, deep learning; SVM, support vector machine; CAD, coronary artery disease; PPV, positive predictive value; NPV, negative predictive value; QCA, quantitative coronary angiography;

CCTA, coronary CT angiography; CAST, computer-aided simple triage; NA, not applicable.

In recent years, AI technology was used to detect coronary
artery stenosis, which can assist and improve diagnostic efficiency
and accuracy (Figure 3D, Table 5). Chen et al. (59) applied
a DL model to CCTA, took DSA as the diagnostic standard,
and compared the detection performance of the DL model
and the reader model at the level of each patient, each vessel,
and each segment through the AUC. From the perspective of
each patient, it could be seen that the diagnostic performance
of the DL model (AUC = 0.78) was better than the reader
model (AUC = 0.74) and that the diagnostic time (0.47min)
was significantly less than the average diagnostic time of reader
model (29.65 ± 2.15min). From the perspective of each vessel
and segment, the diagnostic performance of the reader model
was slightly better than that of the DL model. Kang et al. also
proposed an ML algorithm different from Arnoldi, Kelm, and
Goldenberg, which could detect obstructive lesions (stenosis rate
≥ 50%) and nonobstructive lesions (stenosis rate 25%−50%)

(33, 60–62). In these examinations, they detected lesions of the
left anterior descending artery, the left circumflex artery, and the
right coronary artery in 42 patients, and the results discussed by
three highly qualified specialist physicians were also compared. It
was found that the algorithm performed well in the automatic
detection of obstructive and nonobstructive lesions by CCTA,
with a sensitivity of 93%, a specificity of 95%, and an accuracy
of 94%. In conclusion, AI possesses high accuracy and efficiency
in detecting coronary artery stenosis.

CT-Derived Fractional Flow Reserve
The fractional flow reserve (FFR) is a tool conceived to
assess the hemodynamic relevance of coronary plaques by
measuring pressure differences across coronary stenosis (63).
FFR functionally evaluates stenotic lesions. Nevertheless, the
high cost and invasiveness of FFR are also the focus, which
makes people more inclined to look for another inspection
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TABLE 6 | Application of artificial intelligence in CT-derived fractional flow reserve.

Study Year Algorithm Degree of acc progress

(per-vessel basis)

Sensitivity Specificity R (ML, ICA) PPV NPV AUC

Coenen et al. (64) 2018 FFRML 78% 81% 76% 0.997 70% 85% 0.84

Itu et al. (65) 2016 FFRML 83% 82% 84% 0.729 69% 91% 0.9

Tesche et al. (66) 2018 FFRML NA 79% 94% 0.81 87% 90% 0.89

Tesche et al. (67) 2020 FFRML 78% 82% 71% 0.63 70% 82% 0.84

ICA, invasive coronary angiography; ML, Machine learning; FFR, derived fractional flow reserve; QCA, quantitative coronary angiography; NA, not applicable; PPV, positive predictive

values; NPV, negative predictive values; AUC, area under the curve; FFRML, FFR derived from coronary; CT. angiography based on machine learning algorithm; R, Pearson

correlation coefficient.

method. ML fractional flow reserve-CT (FFR-CT) is an emerging
noninvasive functional examination for a combined anatomical
and hemodynamic assessment of coronary lesions (Table 6). In
the past, it used to take several hours to conduct computational
fluid dynamics (CFD). In contrast, it took only a few minutes
for the ML method, and the FFR-CT evaluation was in high
consistency with traditional FFR examinations (68–70). Coenen
et al. (64) took the FFR of coronary angiography as the reference
standard; they recruited 351 patients and 525 vessels and
compared the diagnostic performance of the FFR of CCTA by
using the fluid dynamics method and ML methods. It was found
that both theML-based AUC (AUC= 0.84) and CFD-based FFR-
CT (AUC = 0.84) were better than the AUC of visual evaluation
(AUC = 0.69, P < 0.001). The diagnostic accuracy of ML-based
FFR-CT increased from 54%−63% to 75%−82%. In addition,
Itu et al. (65) found that the evaluated FFR of the CCTA-based
ML model was almost consistent with the CFD-based results,
while the computational time of ML was reduced by 80 times.
Tesche et al. (66) compared the technical performance of two
methods to detect lesion-specific ischemia, namely, FFR derived
from coronary CT angiography by computational fluid dynamics
(FFRCFD) and FFR derived from coronary CT angiography by
themachine learning algorithm (FFRML). Each lesion and patient
were sensitive to FFRML at 79 and 90% for detecting lesion-
specific ischemia and specific at 94 and 95%. Based on each lesion
and each patient, FFRCFD produced a sensitivity of 79.0 and
89.0% and a specificity of 93.0 and 93.0%, respectively (P = 0.86
and 0.92). Compared with FFRCFD, FFRML had a significantly
shorter processing time (40.5± 6.3 vs. 43.4± 7.1min; P= 0.042).
Incorporating ML algorithms into CCTA not only improved
the accuracy of diagnosis but also facilitated treatment decisions
and outcome prediction. Coronary artery stenosis restricts the
blood supply to the myocardium and might lead to ischemia and
irreversible damage. The stenosis that significantly restricts blood
flow should be treated invasively, whereas those that are minor
should not be treated invasively (71).

However, there is a limitation in the ML algorithm. The
quality of the image and coronary artery calcification would affect
the diagnostic performance of ML-based FFR-CT. Coronary
vessel segmentation is a crucial step in calculating FFR,
and coronary calcification not only influences the accurate
segmentation of vascular lumen but also overestimates the
severity of vascular stenosis (72). Tesche et al. (67) investigated
314 patients (482 vessels in total) who first obtained the CACS,

generated a patient-specific three-dimensional grid using the ML
model, and calculated FFR-CT values throughout the coronary
artery tree, using invasive FFR as a reference. It was reported that,
with the increase in calcification score, the diagnostic accuracy
of FFR-CT also decreased, but ML still had more prominent
diagnostic advantages as compared to CCTA alone (69).

Epicardial Adipose Tissue and Perivascular Adipose

Tissue
Pericardial fat contains pericardial adipose tissue (PAT),
epicardial adipose tissue (EAT), and perivascular adipose tissue
(PVAT). Among them, EAT and PVAT are close to the coronary
artery and act directly on coronary atherosclerosis by the
local release of inflammatory factors (73). Many studies have
demonstrated that EAT and PVAT are independent predictors
of adverse cardiovascular events (74–76). EAT deposits in
the atrioventricular and ventricular sulcus, especially in the
coronary subcutaneous vessel, and it is directly in contact
with the coronary artery and its branches (77). The change
in EAT thickness, therefore, may be associated with coronary
artery disease in people with obesity (78, 79). In conclusion,
the quantitative assessment of EAT contributes significantly to
assessing coronary artery disease risk. However, quantitative
analysis of EAT is obtained by manual measurement, which
is very onerous. Commandeur et al. (80) proposed a fully
automated quantitative tool to rapidly identify the pericardium
and segment the epicardial and thoracic adipose tissues (TAT)
from coronary calcium CT. Its results were more prominent
compared to the improved version of the CNN with slice
classification supervision (81). Commandeur combined two
CNNs; they first segmented the heart and adipose tissues by
a multitask CNN and then combined CNN and Statistical
Shape Model (SSM) to detect the pericardium. The results
showed that the agreement between expert and automatic
quantification was good, with the median EAT volume of 78.03
cm3 [interquartile range (IQR): 57.08–105.79] and 78.64 cm3

(IQR: 54.48–106.58), respectively, and the correlation was 0.926
(P < 0.00001). This model is based on a deep CNN that
improves the clinical guidance of EAT quantification for the
diagnosis of CAD and improves the risk assessment for CAD.
The PVAT can be considered as the adipose tissue around the
blood vessels, and its attenuation changes can be measured by
the fat attenuation index (FAI) (82). FAI reflects the differences
in the peripheral coronary fat decay gradient and allows for
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TABLE 7 | Application of artificial intelligence in epicardial adipose tissue and perivascular adipose tissue.

Study Year Methods DSC R AUC (MACE

prediction)

Median

volume(cm3)(ML)

Median volume

(cm3)(expert)

ICC

Commandeur et al. (80) 2018 CNNs 0.823 0.926 NA 78.03 78.64 NA

Oikonomouet al. (83) 2019 Random forest,

FRP

NA NA 0.88 NA NA 0.938

Lin et al. (87) 2020 CCTA-based

radiomic analysis

NA NA 0.87 88.9 NA NA

CNNs, convolutional neural networks; FRP, fat radiomic profile; DSC, Dice score coefficient; MI, myocardial infarction; PCAT, peri-coronary adipose tissue; AUC, area under the curve;

R, correlation; NA, not applicable; MACE, major adverse cardiac events; AI, Artificial Intelligence; ICC, intra-class correlation coefficient.

direct visualization and quantification of coronary inflammation.
When coronary artery inflammation occurs, PVAT changes its
components to release proinflammatory cytokines and promote
the hardening of the diseased vessel wall (83). Therefore,
PVAT has an important clinical guiding value for CHD risk
stratification and treatment (84). Antoniades et al. (85) proposed
an AI-based image analysis method that captures perivascular
attenuation gradients and reflects changes in PVAT biology
caused by vascular inflammation; this method can improve
the predictive ability of traditional risk stratification. Coronary
artery inflammation can change due to the effects of drugs;
FAI measurements are needed continuously to detect changes
in perivascular adipose tissue composition, which is impossible
(85). Crewe et al. (86) described fibrosis and vascular distribution
based on specific texture patterns in PVAT radiomic profiles; this
reflected the changes in the adipose tissues caused by chronic
coronary inflammation and this algorithm significantly improved
risk prediction of adverse clinical events. By combining FAI and
FRP, Oikonomou et al. (83) detected adverse structural changes
associated with PVAT fibrosis and microvascular remodeling.
The results showed that FRP was not only significantly increased
in patients with acute myocardial infarction (AMI) and that
FRP remained unchanged 6 months after the event, while FAI
decreased significantly after AMI. This indicates that FAI is a
more dynamic measure of inflammatory biomarker and that FRP
can capture more static changes. ML can also distinguish patients
with acute myocardial infarction, patients with chronic CAD, or
patients without CAD. Lin et al. (87) found that patients with
acute myocardial infarction had significant peripheral adipose
tissue radiological phenotype differences in patients with chronic
coronary syndrome or without CHD; ML helps to identify
patients with acute myocardial infarction.

Artificial intelligence can be more timely and can aid in the
rapid analysis of the epicardial adipose tissue and the perivascular
fat tissue with adverse fibrosis and distribution characteristics; AI
can track the trend of coronary inflammation; AI also provides
a more time-saving and more intelligent method for accurate
assessment of dynamic CAD; this would help patients to reduce
the incidence of adverse heart events (Table 7).

Prognostic Evaluation of AI on Coronary Artery

Disease
Early detection and treatment of CAD are essential to avoid
cardiovascular events. In recent years, CCTA, as the main

means of a prognostic examination of CHD (8), has provided
important prognostic information for CAD (88). Unfortunately,
due to the differences in the clinical experience of diagnostic
imaging physicians, there is a certain degree of subjectivity
in the evaluation study and the characteristic information
and details provided by CCTA would probably be missed.
Consequently, the advantages of various AI algorithms are
more obvious. AI can improve decision paths, risk stratification,
and outcome prediction in a more objective, repeatable, and
reasonable manner. These algorithms were learned from large
training datasets andwere then applied to task-specific prediction
and intelligent decision-making of new untrained data (89).
Patel et al. (90) evaluated the prognostic value of FFR-
CT on myocardial ischemia using CCTA-derived parameters.
The results indicated that, compared with patients possessing
abnormal FFR-CT values, the patients with normal FFR-CT
had a lower incidence of myocardial ischemia, less vascular
remodeling, and a significantly lower risk of cardiovascular death
or myocardial infarction.

Johnson et al. (91) collected CCTA data from 6,892 patients
and then compared it with the Coronary Artery Disease
Reporting and Data System (CAD-RADS) scores after evaluating
the prognosis by ML methods. Based on all-cause mortality,
the AUC of ML was 0.77, while that of the CAD-RADS was
0.72. Based on CHD mortality, the AUC of ML was 0.85, while
that of the CAD-RADS was 0.79. The AUC of ROC of ML
was higher than that of the CAD-RADS score. As an automatic
analysis and diagnosis tool, AI can more acutely capture the
prognostic information provided by CCTA and better improve
the prognostic evaluation of CHD.

CHALLENGES AND PROSPECTS

As the main basis for disease diagnosis and treatment, huge
amounts of data support the establishment of the medical image
AI model. In the current status, the medical image AI system
is still in the trial stage in cardiovascular diseases. The data
provided forML andmodelingmust be accurate, while it requires
experienced doctors to label. As a result, relevant data resources
are very scarce. In addition, there are deviations in the diagnostic
standards of CAD in different medical institutions, and it is
impossible to unify the quality and standards of data. Coupled
with the issues such as data sharing and the lack of gold standards,
the combination of AI and medical imaging has been hindered.
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In response to these problems, various medical research centers
and relevant supervision departments should keep close contact
to formulate data specifications and providemore important data
support for the implementation of the AI automated auxiliary
diagnosis system.

The realization of the combination of AI and medical imaging
requires the sharing of data and the collection of these data
needs the provision of basic personal information. Setting
an encrypted entrance could not guarantee that the patient’s
privacy would not be disclosed as anyone might steal the
patient’s information and use it elsewhere. Therefore, the related
functional departments are supposed to clarify the boundaries of
medical ethics and pay close attention to the work of supervision;
the personal information of the patients could be legally and
compliantly managed.

Artificial intelligence has made a series of progress in
CCTA image quality control, auxiliary diagnosis, and prognostic
analysis, but it is still in the primary stage. The application of AI in
CCTAwill bemore extensive and the diagnostic performance will
be further facilitated. AI can further improve its value in auxiliary
diagnosis, clinical prediction, and auxiliary decision-making,
therefore achieving more accurate medical treatment, providing
the patients with better individualized medical services, and
promoting the development of cardiovascular medicine.

CONCLUSION

Artificial intelligence has been used to automate the CCTA
workflow, such as assessing coronary artery calcium, segmenting
automatically, identifying plaques, and calculating the severity of
stenosis. AI will play a greater role in the accurate assessment and
prognosis analysis of CHD. However, before AI is widely used in
clinical practice, there must be adequate measures done to ensure
data security, data standardization, and so on.
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