

Research Paper

Efficacy of EGFR-TKIs with or without angiogenesis inhibitors in advanced non-small-cell lung cancer: A systematic review and meta-analysis

Zhaoxin Chen, Jia Wei, Xiaoting Ma , Jing Yu $^{\bowtie}$

Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.

🖂 Corresponding author: Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, 100050, China. Phone: +86-10-63139326, Fax: +86-10-63139326. Email: yujing026@ccmu.edu.cn

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2019.03.17; Accepted: 2019.10.21; Published: 2020.01.01

Abstract

In the present study, we evaluated the efficacy and safety of epidermal growth factor receptor tyrosine kinases (EGFR-TKIs) combined with or without angiogenesis inhibitors in advanced non-small-cell lung cancer (NSCLC). We searched published randomized controlled trials (RCTs) comparing EGFR-TKIs with and without angiogenesis inhibitors for the treatment of advanced NSCLC. PubMed, EMBASE, PMC, the American Society of Clinical Oncology (ASCO) and the European Society of Medical Oncology (ESMO) databases were searched. The extracted data on progression-free survival (PFS) and overall survival (OS) were measured in terms of hazard ratios (HRs) and corresponding 95% confidence intervals (Cls). In addition, odds ratios (ORs) and corresponding 95% CIs were pooled for objective response rate (ORR) and disease control rate (DCR). Risk ratios (RRs) and corresponding 95% Cls were pooled for risk of adverse events (AEs). EGFR-TKIs combined with angiogenesis inhibitors showed significant improvements in PFS (HR 0.72, 95% CI 0.61–0.84, P <0.0001), ORR (OR 1.51, 95% CI 1.17–1.97, P=0.002) and DCR (OR 1.49, 95% CI 1.24-1.81, P<0.0001) compared with EGFR-TKIs combined with placebo. However, EGFR-TKIs combined with angiogenesis inhibitors failed to improve OS (HR 0.94, 95% CI 0.84–1.05, P = 0.26). In addition, diarrhea, hypertension, thrombocytopenia, neutropenia, fatigue, rash, and dermatitis acneiform were significantly increased in patients treated with angiogenesis inhibitors. Thus, EGFR-TKIs combined with angiogenesis inhibitors were superior to EGFR-TKIs alone in advanced NSCLC due to their effects on PFS, ORR and DCR, but the increased incidence of AEs had an influence on the tolerability of this combination therapy.

Key words: angiogenesis, NSCLC, EGFR-TKI

Background

Lung cancer is the most common incident cancer and the leading cause of cancer death worldwide^[1]. Non-small-cell lung cancer (NSCLC), which accounts for approximately 80% of all lung cancers, has a poor survival rate as it is at an advanced stage when diagnosed in the majority of cases^[2]. The 5-year overall survival (OS) rate for NSCLC is less than 40%^[3]. A clinically significant proportion of patients have activating mutations of the epidermal growth factor receptor (EGFR)^[4]. In these patients, monotherapy with first or second generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) as first-line treatment for EGFR-mutated NSCLC is the standard therapy, and the median progression-free survival (PFS) with this treatment ranges from 9.2-14.7 months^[5-7]. However, patients treated with EGFR-TKIs are likely to acquire resistance and cancer recurrence occurs within 1 year of treatment initiation^[8-9]. To improve outcomes, synergistic combinations may be added to the initial treatment of EGFR-TKIs. Preclinical studies^[10-11] have shown promising results with the combination of anti-EGFR and anti-angiogenesis drugs in NSCLC. A clinical study^[12] compared erlotinib combined with or without sunitinib in 960 patients with refractory advanced NSCLC. The results showed that the median PFS was 3.6 months in the erlotinib plus sunitinib group versus 2.0 months in the erlotinib alone group (P = 0.0023), and the objective response rate (ORR) was 10.6% versus 6.9% (*P* = 0.0471), respectively. In contrast, the study by Spigel D R^[13] showed that the OS, PFS, ORR, and DCR were not different in patients with refractory advanced NSCLC administered erlotinib with or without sorafenib. Thus, the overall efficacy and safety of this combination in NSCLC are still confused. In this study, we performed a meta-analysis to update and summarize the efficacy and safety of EGFR-TKIs combined with angiogenesis inhibitors versus EGFR-TKIs combined with placebo in patients with advanced NSCLC.

Methods

Search strategy

An electronic search of the PubMed, PMC and EMBASE databases as well as the American Society of Clinical Oncology (ASCO) and the European Society of Medical Oncology (ESMO) databases was performed from inception to March 2019. The detailed search strategy is described in Fig. 1. The search

strategy included a combination of the MeSH term "angiogenesis inhibitors" or the keywords "angiogenetic inhibitors," "angiogenic antagonists," "angiogenic "angiostatic inhibitors," agents," agents," "antiangiogenetic "angiogenesis factor inhibitor"; the MeSH term "epidermal growth factor receptor tyrosine kinase inhibitors" or the keywords "epidermal growth factor receptor inhibitors"; the MeSH term "non-small-cell lung cancer" or the keywords "lung cancer". All potentially relevant studies were retrieved, and their references were checked for additional eligible studies.

Definition of EGFR-TKIs and angiogenesis inhibitors

We defined angiogenesis inhibitors as drugs which targeted vascular epidermal growth factor (VEGF) and its receptors, which are the key mediators of angiogenesis, and EGFR-TKIs as drugs directed against epidermal growth factor receptor tyrosine kinase.

Inclusion criteria

Studies which met the following criteria were included: (1) patients must be cytologically or pathologically confirmed as having NSCLC at a clinically advanced stage; (2) randomized controlled trials (RCTs) comparing EGFR-TKIs plus angiogenesis inhibitors with EGFR-TKIs plus placebo were eligible;

> (3) one or more of the following were reported in the trials: overall response rate (ORR) (the sum of complete response [CR] and partial response [PR]), disease control rate (DCR) (the sum of CR, PR and stable disease [SD]), PFS and OS.

Data extraction

Two independent investigators extracted data from the included studies on the basis of the Preferred Reporting Items for Systematic Reviews Meta-Analyses and (PRISMA). When the two investigators disagreed, a third investigator participated in the discussion to resolve the disagreement. Information collected from these trials included the first author, year of publication, number of patients, median age, therapeutic regimen, doses, and outcomes. Clinical data collected from the trials included median PFS and median OS, hazard ratios (HRs) for OS and PFS and their 95% confidence intervals (CIs), DCR and ORR, odds ratios (ORs) for DCR and ORR, and their 95% CIs. The response was evaluated according to the Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1) and classified as a CR, PR, SD, or progressive disease (PD). ORR was defined as CR with PR and DCR was defined as ORR with SD.

Quality assessment

The risk of bias in each study was assessed using the Cochrane Collaboration tool. The following evaluation domains were assessed accordingly: randomization sequence generation, allocation concealment, blinding of participants and study personnel, blinding of outcome assessors, incomplete outcome data, selective reporting, and other biases. The risk of each domain was rated as high risk, unclear risk, or low risk according to the match level between information extracted and evaluation criteria.

Statistical analysis

A statistical analysis was conducted, and forest plots were performed using Review Manager 5.3. ORs and their 95% CIs were calculated for DCR and ORR. HRs were summarized and their corresponding standard errors were computed to analyze the time-to-event data as generic inverse variance outcomes. The inverse variance algorithm and Mantel-Haenszel algorithm were used. Heterogeneity between studies was assessed with Cochrane's X² statistics and the inconsistency statistic (I²). We considered I² < 50% as low level heterogeneity and I²

Table 1.	Characteristics	of the	included	studies
----------	-----------------	--------	----------	---------

> 50% as significant heterogeneity. A fixed-effect model was used when $I^2 < 50\%$ and a random-effect model was used when $I^2 > 50\%$. *P* values < 0.05 were regarded as statistically significant in all included studies. Publication bias was evaluated according to the funnel plot and Begg's and Egger's tests using Review Manager 5.3.5.

Results

Characteristics of the included studies

Figure 1 shows the flow chart of study selection. A total of 27172 relevant studies were identified following a comprehensive search, and 3 conference abstracts were obtained by manual searching of the ESMO database. 23801 articles were excluded as they were duplicates, leaving 3374 articles potentially eligible for inclusion, of which 3358 were eliminated after reading the titles and abstracts. The full texts of the remaining 16 articles were then reviewed, and seven trials^[12-18] involving 2285 patients were finally included in the meta-analysis. The sample size in the included trials varied from 15 to 960. Of these, four studies enrolled patients who were treated with bevacizumab, and three trials enrolled patients who were treated with multiple tyrosine kinase inhibitors. Four trials were conducted in the first-line setting and the other three trials in the second- or third-line setting. Table 1 and Fig. 2 summarize the characteristics and qualities of both the included agents and articles.

Study/ Vear	Country	Ethnicity	Line of	Phase	Regimens	Number of	Median OS (months)	Median PFS (months)	ORR	DCR
David R. Spigel/ 2011	USA	Non-Asian	Second or third	Ш	Sorafenib + erlotinib vs. placebo + erlotinib	112 56	7.62 7.23 (HR 0.89, 95% CI 0.59–1.34, <i>P</i> = 0.290)	3.38 1.94 (HR 0.86, 95% CI 0.60–1.22, <i>P</i> = 0.196)	8.1 10.9 (P = 0.56)	54 38 (P = 0.056)
Giorgio Scagliotti/ 2012	Poland	Non-Asian Asian	Second or third	Ш	Sunitinib + erlotinib vs.placebo + erlotinib	480 480	9 8.5 (HR 0.922, 95% CI 0.797 - 1.067, <i>P</i> = 0.1388)	3.6 2 (HR 0.807, 95% CI 0.695-0.937, P = 0.0023)	10.6 6.9 (<i>P</i> = 0.0471)	42.9 35
H. J. M. Groen/ 2013	USA	Non-Asian Asian	Second or third	Π	Sunitinib + erlotinib vs. placebo+erlotinib	65 67	8.2 7.6 (HR 1.066, 95% CI 0.705-1.612, <i>P</i> = 0.617)	2.8 2 (HR 0.898, 95% CI 0.671-1.203, P = 0.321)	4.6 3.0 (<i>P</i> = 0.624)	NR
Roy S Herbst/ 2011	USA	Non-Asian Asian	Second	Ш	Bevacizumab + erlotinib vs.erlotinib	319 317	9.3 9.2 (HR 0.97, 95% CI 0.80-1.18, <i>P</i> =0.7583)	3.4 1.7 (HR 0.62, 95% CI 0.52-0.75)	6 13	34 46
Takashi Seto/2014, 2018	Japan	Asian	First	Π	Bevacizumab + erlotinib vs.erlotinib	75 77	(HR 0.73, 95% CI 0.32–1.63, P =0.7583)	16 9.7 (HR 0.54, 95% CI 0.36-0.79, <i>P</i> =0 0015)	69 63	98 88
Naoki Furuya/ 2018	USA	Non-Asian	First	III	Bevacizumab + erlotinib vs.erlotinib+ placebo	112 112	NR NR	16.9 13.3 (HR 0.605, 95% CI 0.417- 0.877, <i>P</i> =0 01573)	72.3 66.1	94.6 96.4
Kitagawa C/ 2019	Japan	Asian	First	Π	Bevacizumab+ gefitinib vs. gefitinib	6 9	NR NR	5.4 15.1	50 44	100 100

Abbreviations: OS, overall survival; PFS, progression-free survival; ORR, objective response rate; DCR, disease control rate

Assessment of methodological quality

We critically assessed the methodological quality of the included studies in accordance with the Cochrane Collaboration Risk of Bias Tool. All included trials were rated as low bias risk during randomization, as the authors stated the principles of randomization in detail. Other bias sources were not identified. The graphical results of methodological quality are shown in Fig. 2. The risk of bias items for each included study are presented in Fig. 2.

Overall survival (OS) and progression-free survival (PFS)

Of the seven trials, all included studies reported PFS, and four trials reported OS. Four reported a statistically significant improvement in OS and six trials showed improved PFS. The median OS in the EGFR-TKIs plus angiogenesis inhibitor groups reported in four trials ranged from 7.23 to 9.3 months, and the median PFS ranged from 1.7 to 16.6 months. The pooled results showed that compared with the EGFR-TKIs alone groups, treatment with angiogenesis inhibitors was associated with a significantly prolonged PFS (HR 0.72, 95% CI 0.61-0.84, *P* < 0.0001, Fig. 3b). Significant heterogeneity was detected among the studies as shown in Fig. 3b (P = 0.05, $I^2 =$ 54%); thus, we conducted a sensitivity analysis. We excluded the study by Giorgio Scagliotti that had the maximum relative weight (25.9%) and the study by T. Seto which had the minimum relative weight (10.5%)

Figure 2. Assessment of risk of bias. (a) Risk of bias summary. (b) Risk of bias graph.

shown in Fig. 3b. The survival outcome was similar. In the subgroup analyses, PFS was significantly following improved treatment with both bevacizumab combined with EGFR-TKIs (HR 0.61, 95% CI 0.52–0.70, *P* < 0.00001, Fig. 3b) and multikinase inhibitors combined with EGFR-TKIs (HR 0.83, 95% CI 0.73-0.94, P = 0.003, Fig. 3b) compared to EGFR-TKIs alone. However, both bevacizumab and multikinase inhibitors were unable to prolong OS compared to EGFR-TKIs alone. With regard to the line of treatment, angiogenesis inhibitors failed to increase OS in the first-, second- or third-line treatments. Both first-line (HR 0.57, 95% CI 0.44-0.76, P < 0.0001) and second- or third-line (HR 0.75, 95% CI 0.68-0.83, P < 0.00001) treatments with angiogenesis inhibitors plus EGFR-TKIs increased PFS.

Overall response rate (ORR) and disease control rate (DCR)

All seven trials reported ORR, and six studies reported DCR. The DCR ranged from 34 to 100%, and the ORR ranged from 4.6 to 72.3% in the EGFR-TKIs combined with angiogenesis inhibitors groups. The pooled data showed that angiogenesis inhibitors resulted in superior ORR (OR 1.52, 95% CI 1.17–1.97, P= 0.002, Fig. 6a) and DCR (OR 1.49, 95% CI 1.24–1.81, P < 0.0001, Fig. 6b) compared with non-angiogenesis inhibitors. Subgroup analysis of drug administration indicated that the multikinase inhibitors increased the DCR (RR 1.25, 95% CI 1.08–1.45, P = 0.003, Fig. 7b), while bevacizumab did not. On the contrary,

bevacizumab increased the ORR (RR 1.21, 95% CI 1.05–1.40, P = 0.009, Fig. 8b), while multikinase inhibitors did not.

regard to the line of With treatment, angiogenesis inhibitors increased the DCR in second- or third-line treatment (RR 1.27, 95% CI 1.13–1.43, *P* < 0.0001, Fig. 7a), and there was a tendency to increase DCR in first-line treatment but there was no statistical significance (RR 1.27, 95% CI 1.13–1.43, P = 0.52, Fig. 7a). ORR increased in second- and third-line treatments (RR 1.58, 95% CI 1.16-2.14, P = 0.003, Fig. 8a), but showing no statistical significance in first-line (RR 1.09, 95% CI 0.95–1.26, *P* = 0.2, Fig. 8a).

Safety

Toxicities reported in the included studies are summarized according to the National Cancer Institute Common Toxicity Criteria in Table 2 (only grade ≥ 3 toxicities are presented). In general, grade ≥ 3 AEs were more frequent in patients treated with angiogenesis inhibitors and included hypertension (RR 6.41, 95% CI 3.77-10.91, *P*<0.00001), hemorrhage (RR 2.14, 95% CI 1.07-4.28, *P* = 0.03) and proteinuria (RR 15.18, 95% CI 2.02-113.88, *P*= 0.008) for anti-angiogenic-induced events, and neutropenia (RR 7.60, 95% CI 2.50-23.09, *P* = 0.0003), thrombocytepenia (RR 3.98, 95% CI 1.36-11.63, *P* = 0.01), diarrhea (RR 5.70, 95% CI 3.50-9.30, *P*< 0.00001) and fatigue (RR 2.21, 95% CI 1.40-3.51, *P* = 0.0007) for EGFR-TKIs induced events. In addition, decreased appetite (RR

3.43, 95% CI 1.62–7.26, P = 0.001) and dysgeusia (RR 3.22, 95% CI 1.48–7.02, P = 0.003) were significantly increased in patients treated with angiogenesis inhibitors and EGFR-TKIs. However, anemia (RR 1.32, 95% CI 0.76–2.31, P = 0.32), vomiting (RR 1.90, 95% CI 0.61–5.93, P = 0.27), rash (RR 1.23, 95% CI 0.69–2.22, P = 0.48), thrombosis(RR 1.02, 95% CI 0.26–3.99, P = 0.98), interstitial lung disease(RR 0.72, 95% CI 0.14– 3.64, P = 0.69) and nausea (RR 3.31, 95% CI 1.01–10.88, P = 0.05) in both groups of patients were not significantly different (P > 0.05). The RRs of grade ≥ 3 AEs are summarized in Table 2.

Figure 3. Forest plot and pooled HR and 95% CI for OS (a) and PFS (b): anti-angiogenesis therapy versus non-anti-angiogenesis therapy. Annotation: The pooled HR for OS and PFS showed that the patients receiving anti-angiogenesis therapy demonstrated a significant improvement in PFS. Abbreviations: HR, hazard ratios; OS, overall survival; PFS, progression-free survival; CI, confidence intervals.

2				Hazard Ratio	Hazard	Ratio
(Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI	IV. Fixed	, 95% CI
First line PFS						
Naoki Furuya 2018	-0.503	0.1897	6.6%	0.60 [0.42, 0.88]		
T Seto 2014	-0.6162	0.2069	5.5%	0.54 [0.36, 0.81]	-	
Subtotal (95% CI)	0 df = 4 (D = 0.00); l	- 00/	12.1%	0.57 [0.44, 0.76]	•	
Test for everall effect: 7 =	6, df = 1 ($P = 0.69$); P = 2.07 ($P < 0.0001$)	= 0%				
Test for overall effect. 2 -	- 3.97 (P < 0.0001)					
Second or third lin	e PFS					
David R.Spigel 2011	-0.1508	0.1837	7.0%	0.86 [0.60, 1.23]		_
Giorgio Scagliotti 2012	-0.2144	0.0762	40.8%	0.81 [0.70, 0.94]	=	
H. J. M. Groen 2013	-0.1076	0.1487	10.7%	0.90 [0.67, 1.20]		-
Herbst RS 2011	-0.478	0.0897	29.4%	0.62 [0.52, 0.74]	-	
Subtotal (95% CI)			87.9%	0.75 [0.68, 0.83]	•	
Heterogeneity: Chi ² = 7.4	4, df = 3 (P = 0.06); l ³	$^{2} = 60\%$				
Test for overall effect: Z =	= 5.48 (P < 0.00001)					
Total (95% CI)			100.0%	0.73 [0.66, 0.80]	•	
Heterogeneity: $Chi^2 = 10$	89. $df = 5 (P = 0.05)$:	$l^2 = 54^{\circ}$	100.070	0.10 [0.00, 0.00]	· · · · · · · · · · · · · · · · · · ·	
Test for overall effect: Z =	= 6.52 (P < 0.00001)		0		0.01 0.1 1	10 100
Test for subaroup differen	nces: Chi ² = 3.28. df =	= 1 (P =	0.07), $l^2 =$	69.5%	Angiogenesis inhibitor	Nonangiogenesis inhibitor
h				Hazard Ratio	Hazar	d Ratio
^U Study or Subgroup	log[Hazard Ratio]	SE	Weight	V. Random, 95% C	I IV. Rando	om. 95% Cl
Bevacizumab with	1 EGFR-TKIs PFS					
Bevacizumab with Herbst RS 2011	DEGFR-TKIs PFS -0.478 (0.0897	23.8%	0.62 [0.52, 0.74]		
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018	DEGFR-TKISPFS -0.478 (-0.503 (0.0897 0.1897	23.8% 11.8%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88]	+	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014	EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0.0897 0.1897 0.2069	23.8% 11.8% 10.5%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI)	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0.0897 0.1897 0.2069	23.8% 11.8% 10.5% 46.1 %	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0	n EGFR-TKIS PFS -0.478 (-0.503 (-0.6162 (0: Chi ² = 0.38, df = 2 (0.0897 0.1897 0.2069 (P = 0.8;	23.8% 11.8% 10.5% 46.1% 3): J ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	n EGFR-TKIS PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 (6.63 (P < 0.00001)	0.0897 0.1897 0.2069 (P = 0.83	23.8% 11.8% 10.5% 46.1% 3); I ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 (6.63 (P < 0.00001)	0.0897 0.1897 0.2069 (P = 0.83	23.8% 11.8% 10.5% 46.1% 3); I ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs	0.0897 0.1897 0.2069 (P = 0.83 PFS	23.8% 11.8% 10.5% 46.1% 3); I ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Muttikinase inhibi David R.Spigel 2011	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (0.0897 0.1897 0.2069 (P = 0.83 PFS 0.1837	23.8% 11.8% 10.5% 46.1% 3); I ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23]	÷	_
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorqio Scaliotti 2012	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (0.0897 0.1897 0.2069 (P = 0.83 PFS 0.1837 0.0762	23.8% 11.8% 10.5% 46.1% 3); I ² = 0% 12.3% 25.9%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94]	+	_
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.21544 (-0.1076 (0.0897 0.1897 0.2069 (P = 0.83 PFS 0.1837 0.0762 0.1487	23.8% 11.8% 10.5% 46.1% 3); I ² = 0% 12.3% 25.9% 15.7%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20]	+	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI)	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0.0897 0.1897 0.2069 (P = 0.83 PFS 0.1837 0.0762 0.1487	23.8% 11.8% 10.5% 46.1% 3); I ² = 0% 12.3% 25.9% 15.7% 53.9%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.80 [0.67, 1.20] 0.83 [0.73, 0.94]	+	-
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0	n EGFR-TKIs PFS -0.478 (-0.603 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2	0.0897 0.1897 0.2069 (P = 0.8) PFS 0.1837 0.0762 0.1487 (P = 0.8)	23.8% 11.8% 10.5% 46.1% 3); l ² = 0% 12.3% 25.9% 15.7% 53.9%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94]	÷	-
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R. Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 (6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2 (2 94 (P = 0.003)	0.0897 0.1897 0.2069 (P = 0.8: PFS 0.1837 0.0762 0.1487 (P = 0.8(23.8% 11.8% 10.5% 46.1% 3); I ² = 0% 12.3% 25.9% 15.7% 53.9% D); I ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94]	÷	-
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2 2.94 (P = 0.003)	0.0897 0.1897 0.2069 (P = 0.8: PFS 0.1837 0.0762 0.1487 (P = 0.80	23.8% 11.8% 10.5% 46.1% 3); l ² = 0% 12.3% 25.9% 15.7% 53.9% 0); l ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94]	÷	
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% CI)	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2 2.94 (P = 0.003)	0.0897 0.1897 0.2069 (P = 0.8: PFS 0.1837 0.0762 0.1487 (P = 0.8(23.8% 11.8% 10.5% 46.1% 3); l ² = 0% 12.3% 25.9% 15.7% 53.9%)); l ² = 0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94]	÷	-
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Total (95% Cl) Heterogeneity: Tau ² = 0.0	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 (6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2 (2.94 (P = 0.003) 2: Chi ² = 10.89, df = 5	0.0897 0.1897 0.2069 (P = 0.83 PFS 0.1837 0.0762 0.1487 (P = 0.80 6 (P = 0.0	23.8% 11.8% 10.5% 46.1% 3); l ² = 0% 12.3% 25.9% 15.7% 53.9% 15.7% 53.9% 100.0% 100.0%	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94] 0.72 [0.61, 0.84]	÷	-
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R. Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 (6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2 (2.94 (P = 0.003) 2; Chi ² = 10.89, df = 5 4.08 (P < 0.0001)	0.0897 0.1897 0.2069 (P = 0.8) PFS 0.1837 0.0762 0.1487 (P = 0.8) (P = 0.8)	23.8% 11.8% 10.5% 46.1% 3); l ² = 0% 12.3% 25.9% 15.7% 53.9%)); l ² = 0% 100.0% 05); l ² = 54	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94] 0.72 [0.61, 0.84]	•	- 10 100
Bevacizumab with Herbst RS 2011 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Multikinase inhibi David R. Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	n EGFR-TKIs PFS -0.478 (-0.503 (-0.6162 (0; Chi ² = 0.38, df = 2 6.63 (P < 0.00001) tor with EGFR-TKIs -0.1508 (-0.2144 (-0.1076 (0; Chi ² = 0.45, df = 2 2.94 (P = 0.003) 2; Chi ² = 10.89, df = 5 4.08 (P < 0.0001) ces: Chi ² = 10.06 df = 5	0.0897 0.1897 0.2069 (P = 0.8: PFS 0.1837 0.0762 0.1487 (P = 0.8: (P = 0.8: 6 (P = 0.6) 6 (P = 0.6) 6 (P = 0.6)	23.8% 11.8% 10.5% 46.1% 3); l ² = 0% 12.3% 25.9% 15.7% 53.9%); l ² = 0% 100.0% 100.0% 12; l ² = 54	0.62 [0.52, 0.74] 0.60 [0.42, 0.88] 0.54 [0.36, 0.81] 0.61 [0.52, 0.70] 0.86 [0.60, 1.23] 0.81 [0.70, 0.94] 0.90 [0.67, 1.20] 0.83 [0.73, 0.94] 0.72 [0.61, 0.84] %	0.01 0.1 Angiogenesis inhibitor	1 10 100 Nonangiogenesis inhibitor

Figure 5. Forest plot and pooled HR and 95% Cl for subgroup PFS.

Discussion

Lung cancer is the leading cause of cancer-related death worldwide, and most patients with NSCLC have advanced or metastatic disease at diagnosis. Erlotinib and gefitinib are oral EGFR-TKIs and have been proved to have superior effects in prolonging OS and PFS, especially in patients with EGFR mutations. However, most patients treated with EGFR-TKIs developed acquired resistance^[19-21]. Tumor vessel abnormality and heterogeneity hinder drug delivery and effective cancer therapy. As shown in previous studies^[10,22], angiogenesis inhibitors normalized tumor vasculature which improved tumor perfusion, uptake of anticancer drugs and the efficacy of chemotherapy in neuroblastoma. Preclinical studies^[23-24] have revealed that acquired EGFR-TKIs resistance was significantly associated

with dose. The higher the dose, the lower the incidence of EGFR-TKIs resistance. Furthermore, it was reported that combined VEGFR/EGFR pathway blockade abrogated primary or acquired resistance to EGFR inhibitors in four resistant NSCLC cell models^[10]. Thus, EGFR-TKIs plus angiogenesis inhibitors may delay the appearance of EGFR-TKIs resistance by maintaining a higher dose of EGFR-TKIs. In conclusion, targeting the VEGF and the EGFR signaling pathways may resolve the problem of acquired resistance to EGFR inhibitors^[25].

However, there is still controversy regarding the effects of EGFR-TKIs combined with angiogenesis inhibitors in advanced NSCLC. Facing up to this controversy, we performed this updated meta-analysis to summarize valuable information on the treatment of advanced NSCLC. Our results indicated that the combination of EGFR-TKIs and angiogenesis inhibitors resulted in substantial improvements in PFS, ORR and DCR compared with EGFR-TKIs combined with placebo, but had no effect on OS.

Figure 7. Forest plot and pooled RR and 95% CI for subgroup DCR: anti-angiogenesis therapy versus non-anti-angiogenesis therapy. Abbreviations: RR, risk ratios; CI, confidence intervals; DCR, disease control rate.

Table 2. RR of grade \geq 3 adverse events in patients with advanced NSCLC treated with angiogenesis inhibitors

Grade≥3 adverse	No of trials	Events/total	Control group	RR (95 % CI)	P value	Analysis model
		Treatment group				
Decreased appetite	4	55/723	8/673	3.43 (1.62, 7.26)	0.001	Fixed
Vomiting	3	8/612	4/618	1.90(0.61,5.93)	0.27	Fixed
Anemia	3	30/584	20/532	1.32 (0.76, 2.31)	0.32	Fixed
Diarrhea	5	111/835	18/785	5.70(3.50, 9.30)	< 0.00001	Fixed
Nausea	3	11/612	3/618	3.31 (1.01, 10.88)	0.05	Fixed
Hypertension	4	90/611	13/557	6.41 (3.77, 10.91)	< 0.00001	Fixed
Hemorrhage	4	24/973	11/979	2.14(1.07, 4.28)	0.03	Fixed
Thrombocytopenia	3	16/648	3/596	3.98 (1.36, 11.63)	0.01	Fixed
Neutropenia	2	30/584	3/532	7.60 (2.50, 23.09)	0.0003	Fixed
Fatigue	4	60/723	23/673	2.21 (1.40,3.51)	0.0007	Fixed
Rash	7	191/1148	126/1098	1.23 (0.69,2.22)	0.48	Random
Dysgeusia	4	31/723	8/673	3.22(1.48,7.02)	0.003	Fixed
Proteinuria	3	14/187	0/189	15.18(2.02,113.88)	0.008	Fixed
Thrombosis	2	4/187	4/182	1.02(0.26,3.99)	0.98	Fixed
Interstitial lung disease	2	2/388	3/390	0.72(0.14,3.64)	0.69	Fixed
RR, risk ratios.						

0	Experime	ntal	Control			Risk Ra	tio		Risk Ratio	
^a Study or Subgroup	Events	Total E	vents T	otal	Weight	M-H Fixed	95% CI		M-H Fixed 95% Cl	
Eirst line OPP	Lyonto	TOTAL L	Volito I	orui	Weight					-
		0			4 70/	1 10 10				
Kitagawa C 2019	3	6	4	9	1.7%	1.13 [0.	38, 3.32]			
Naoki Furuya 2018	81	112	74	112	39.4%	1.09 [0.9	92, 1.30]			
T Seto 2014	52	75	49	77	25.8%	1.09 [0.8	37, 1.37]			
Subtotal (95% CI)		193		198	66.9%	1.09 [0.9	5, 1.26]		•	
Total events	136		127							
Heterogeneity: $Chi^2 = 0.0$	0 $df = 2 (P)$	= 1 00) -	$^{2} = 0\%$							
Test for overall effect: 7 -	-1.27 (P - 0)	20)	070							
Test for overall effect. 2 -	- 1.27 (P - 0	5.20)								
Second on third lin										
Second of third in	IE OKK									
David R.Spigel 2011	9	111	6	55	4.3%	0.74 [0.3	28, 1.98]			
Giorgio Scagliotti 2012	51	480	33	480	17.6%	1.55 [1.0)2, 2.35]			
H. J. M. Groen 2013	3	65	2	67	1.0%	1.55 [0.3	27, 8.95]			
Herbst RS 2011	38	319	19	317	10.2%	1.99 [1.	7. 3.371			
Subtotal (95% CI)		975		919	33.1%	1.58 [1.1	6. 2.141		•	
Total events	101		60							
		- 0 201	2 - 00/							
Heterogeneity: Chi ² = 3.0	10, ar = 3 (P)	= 0.39); 1	- = 0%							
l est for overall effect: Z =	= 2.94 (P = ().003)								
Total (95% CI)		1168	1	117	100.0%	1.25 [1.0	9, 1.44]		▼	
Total events	237		187							
Heterogeneity: Chi ² = 8.8	84, df = 6 (P	= 0.18); I	² = 32%							Ļ
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z =	84, df = 6 (P = 3.12 (P = 0	= 0.18); l 0.002)	² = 32%					0.01	0.1 1 10 100	H C
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subgroup differen	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² =	= 0.18); l 0.002) 4.63. df =	² = 32% = 1 (P = 0	.03).	l² = 78.4%			0.01 Non	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor	T C
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup differen	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² = ngiogenesis i	= 0.18); 0.002) 4.63. df = inhibitor	² = 32% = 1 (P = 0 Nonangi).03). ogene	I² = 78.4% sis inhibito	r	Risk	0.01 Non Ratio	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio	T C
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subaroup differen Ar Dstudy or Subgroup	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² = ngiogenesis i Events	= 0.18); 0.002) 4.63. df = nhibitor Total	² = 32% = 1 (P = 0 Nonangi Ex).03). ogene vents	l² = 78.4% esis inhibito To	r tal Weight	Risk M-H. Fiz	0.01 Non Ratio ced. 95% C	I I I 0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio I M-H, Fixed, 95% CI	
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subaroup differen <u>bstudy or Subgroup</u> Bevacizumab with E	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² = ngiogenesis i <u>Events</u> GFR-TKIS OR	= 0.18); F 0.002) 4.63. df = nhibitor Total RR	² = 32% = 1 (P = 0 Nonangi Ey	0.03). ogene vents	l² = 78.4% sis inhibito To	r tal Weight	Risk M-H. Fiz	0.01 Non Ratio (ed. 95% C	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio I M-H. Fixed, 95% Cl	
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different <u>bstudy or Subgroup</u> Bevacizumab with Effects RS 2011	34, df = 6 (P = 3.12 (P = 0 nces: Chi ² = ngiogenesis i <u>Events</u> GFR-TKIs OR 38	= 0.18); i 0.002) 4.63. df = inhibitor Total RR 319	2 = 32% = 1 (P = 0 Nonangi Ev	0.03). ogene vents 19	² = 78.4% sis inhibito <u>To</u> 3	r tal Weight 17 10.2%	Risk <u>M-H. Fi</u> 2 1.99 [0.01 Non Ratio (1.17, 3.37]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio I M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Dest for subgroup Ar Bevacizumab with Effective State Herbst RS 2011 Kitagawa C 2019 Nacki Enuma 2019	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² = nglogenesis i <u>Events</u> GFR-TKIs OR 38 3 3	= 0.18); i 0.002) 4.63. df = inhibitor Total R 319 6 112	² = 32% = 1 (P = 0 Nonangi Ev	0.03). ogene <u>vents</u> 19 4 74	² = 78.4% sis inhibito <u>To</u> 3	r tal Weight 17 10.2% 9 1.7%	Risk <u>M-H. Fix</u> 1.99 [1.13 [0.01 Non Ratio (1.17, 3.37] (0.38, 3.32]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio I M-H. Fixed, 95% CI	
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subgroup Ar <u>Study or Subgroup</u> Bevacizumab with Et Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² = nglogenesis i <u>Events</u> GFR-TKIs OR 38 3 81 52	= 0.18); i 0.002) 4.63. df = inhibitor Total RR 319 6 112 75	² = 32% = 1 (P = 0 Nonangi Ey	0.03). ogene <u>vents</u> 19 4 74	l² = 78.4% sis inhibito To 3	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8%	Risk <u>M-H. Fiz</u> 1.99 [1.13 [1.09 [1.09]	0.01 Non Ratio (d. 95% C (1.17, 3.37] (0.38, 3.32] (0.92, 1.30] (0.87, 1.37]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different bstudy or Subgroup Bevacizumab with Eth Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl)	84, df = 6 (P = 3.12 (P = 0 nces: Chi ² = ngiogenesis i <u>Events</u> GFR-TKIs OR 38 3 81 52	= 0.18); F 0.002) 4.63. df = nhibitor Total tR 319 6 112 75 512	² = 32% = 1 (P = 0 Nonangi Ey	0.03). ogene <u>vents</u> 19 4 74 49	l² = 78.4% sis inhibito To 3 1. 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1%	Risk <u>M-H. Fiz</u> 1.99 [1.13 [1.09 [1.09 [1.21 [0.01 Non Ratio (1.17, 3.37] (0.38, 3.32] (0.92, 1.30] (0.87, 1.37] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z ² Test for subgroup Ar Bevacizumab with Effect Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Total events	64, df = 6 (P = 3.12 (P = 0 nces: Chi ² = ngiogenesis i <u>Events</u> GFR-TKIS OR 38 3 81 52 174	= 0.18); F 0.002) 4.63. df = nhibitor Total R 319 6 112 75 512	² = 32% = 1 (P = 0 Nonangi Ex	0.03). ogene <u>vents</u> 19 4 74 49 146	² = 78.4% esis inhibito To 3 1 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1%	Risk <u>M-H. Fi</u> 1.99 [1.13 [1.09 [1.21 [0.01 Non Ratio (1.17, 3.37] 0.38, 3.32] 0.92, 1.30] 0.87, 1.37] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subgroup Ar Bevacizumab with Eff Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d	H4, df = 6 (P = 3.12 (P = 0 nces: Chi ² = regiogenesis i Events GFR-TKIS OR 38 3 81 52 174 ff = 3 (P = 0.14	= 0.18); I 0.002) 4.63. df = inhibitor Total RR 319 6 112 75 512 4); I ² = 46%	² = 32% = 1 (P = 0 Nonangi Ex	0.03). ogene 2005 19 4 74 49 146	² = 78.4% esis inhibito To 3 1 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1%	Risk <u>M-H. Fi</u> 1.99 [1.13 [1.09 [1.21 [0.01 Non Ratio (ad. 95% C (1.17, 3.37] (0.38, 3.32] (0.92, 1.30] (0.87, 1.37] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio I M-H. Fixed, 95% CI	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = <u>Arr</u> <u>Bevacizumab with Et</u> Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6	H4, df = 6 (P = 3.12 (P = (nces: Chi ² = ngiogenesis i <u>Events</u> GFR-TKIS OR 38 3 81 52 174 ff = 3 (P = 0.14 30 (P = 0.009)	= 0.18); I 0.002) 4.63. df = inhibitor Total 8R 319 6 112 75 512 4); I ² = 46%	² = 32% = 1 (P = 0 Nonangi Ex	0.03). ogene <u>vents</u> 19 4 74 49 146	l ² = 78.4% sis inhibito To 3 1. 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1%	Risk <u>M-H. Fiz</u> 1.99 [1.13 [1.09 [1.21 [0.01 Non Ratio (ad. 95% C (1.17, 3.37] (0.38, 3.32] (0.92, 1.30] (0.87, 1.37] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different Art Bevacizumab with Eff Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor	H4, df = 6 (P = 3.12 (P = (nces: Chi ² =) <u>Events</u> GFR-TKIS OR 38 81 52 174 ff = 3 (P = 0.14 30 (P = 0.009) with EGER-T	= 0.18); I 0.002) 4.63. df = inhibitor Total iR 319 6 112 75 512 4); I ² = 46%	² = 32% = 1 (P = 0 Nonangi Ex	0.03). ogene <u>vents</u> 19 4 74 49 146	² = 78.4% esis inhibito To 3 1. 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 17 25.8% 15 77.1%	Risk <u>M-H. Fiz</u> 1.99 [1.03 [1.09] 1.09 [1.21 [0.01 Non Ratio ced. 95% C [1.17, 3.37] 0.38, 3.32] 0.92, 1.30] 0.92, 1.30] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subgroup Bevacizumab with Effect Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R. Scigel 2011	H4, df = 6 (P = 3.12 (P = (ncces: Chi ² = ngiogenesis i <u>Events</u> GFR-TKIS OR 38 381 52 174 if = 3 (P = 0.14 30 (P = 0.009) with EGFR-T	= 0.18); I 0.002) 4.63. df = inhibitor Total R 319 6 112 75 512 4); I ² = 46% "KIS ORR	² = 32% = 1 (P = 0 Nonangi Ev	0.03). ogene <u>vents</u> 19 4 74 49 146	² = 78.4% esis inhibito To 3 1 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1%	Risk M-H. Fiz 1.99 [1.13 [1.09 [1.09 [1.21 [0.01 Non Ratio (1.17, 3.37] (0.38, 3.32] (0.92, 1.30] (0.87, 1.37] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subgroup Ar Bevacizumab with Effects RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012	H4, df = 6 (P = 3.12 (P = (nces: Chi ² = 1 <u>Events</u> GFR-TKIS OR 38 3 81 52 174 if = 3 (P = 0.14 30 (P = 0.009) • with EGFR-T 9 51	= 0.18); I 0.002) 4.63. df : inhibitor Total R 319 6 112 75 512 4); I ² = 46% (Kis ORR 111 480	² = 32% = 1 (P = 0 Nonangi Es	0.03). ogene (ents) 19 4 74 49 146 6 33	l ² = 78.4% sis inhibito 3 1 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 15 77.1% 15 77.1%	Risk <u>M-H. Fiz</u> 1.99 [1.13 [1.09 [1.21 [0.74 [1.55]	0.01 Non Ratio ccd. 95% C (1.17, 3.37] (0.38, 3.23) (0.92, 1.30] (0.38, 1.37] 1.05, 1.40] (0.28, 1.98] (1.02, 2.35]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% CI	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different Art Bevacizumab with Eff Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013	H4, df = 6 (P = 3.12 (P = (ncces: Chi ² = (<u>Events</u> <u>Sevents</u> 38 3 81 52 174 ff = 3 (P = 0.14 50 (P = 0.009) with EGFR-T 9 51 3	= 0.18); I 0.002) 4.63. df = inhibitor Total R 319 6 112 75 512 4); I ² = 46% (KIs ORR 111 480 65	² = 32% = 1 (P = 0 Nonangi Ev	0.03). ogene (ents 19 4 74 49 146 6 33 2	l ² = 78.4% sisis inhibito Tor 3 1 5 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 15 77.25.8% 15 77.1%	Risk <u>M-H. Fi</u> 1.99 [1.09 [1.09 [1.21 [0.74 [1.55] 1.55 [0.01 Non Ratio (ed. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30] 0.92, 1.92]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	Το
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different Art Bevacizumab with Etherost RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI)	H4, df = 6 (P = 3.12 (P = (ncces: Chi ² = (ncces: Chi ² = (<u>Events</u> GFR-TKIs OR 38 3 81 52 174 f = 3 (P = 0.14 30 (P = 0.009) with EGFR-T 9 51 3	= 0.18); I 0.002) 4.63. df = inhibitor Total R 319 6 112 75 512 4); I ² = 46% KIS ORR 111 480 65 5656	² = 32% = 1 (P = 0 Nonangi Ev	0.03). ogene (ents 19 4 74 49 146 6 33 2	l² = 78.4% sis inhibito 3 3 1 5 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1% 55 4.3% 80 17.6% 57 1.0% 92 22.9%	Risk M-H. Fb 1.99 [1.33 [1.09 [1.09 [1.21 [0.74 [1.55 [1.55 [1.40 [1.40 [0.01 Non Ratio (ed. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30 (0.92, 1.30) (0.87, 1.37] 1.05, 1.40] 0.28, 1.98] 1.02, 2.36] 0.27, 8.96] 0.27, 8.96]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for subgroup Bevacizumab with Ei Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% Cl) Total events	H, df = 6 (P = 3.12 (P = (nces: Chi ² = 1 <u>Events</u> GFR-TKIS OR 38 81 52 174 ff = 3 (P = 0.14 50 (P = 0.009) with EGFR-T 9 51 3 63	= 0.18); I 0.002) 4.63. df = inhibitor <u>Total</u> 8 319 6 112 75 512 4); I ² = 46% 7Kis ORR 111 480 65 656	² = 32% = 1 (P = 0 Nonangi E	0.03). ogene (ents) 19 4 74 49 146 33 2 2 41	2 = 78.4% sisis inhibito Tor 3 3 1 5 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1% 55 4.3% 80 17.6% 67 1.0% 22.2.9%	Risk <u>M-H. Fiz</u> 1.99 [1.13 [1.09 [1.09 [1.21 [1.21 [0.74 [1.55 [1.40 [0.01 Non Ratio (d. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30] 0.87, 1.37] 1.05, 1.40] 0.28, 1.98] 1.02, 2.35] 0.27, 8.95] 0.96, 2.03]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different Study or Subgroup Bevacizumab with Er Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotit 2012 H. J. M. Groen 2013 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1.82, d	H4, df = 6 (P = 3.12 (P = (ncces: Chi ² = 1 <u>Events</u> GFR-TKIS OR 38 3 81 52 174 f = 3 (P = 0.14 3 (P = 0.14 3 (P = 0.009) with EGFR-T 9 51 3 (F = 2 (P = 0.44) (P = 0.009)	$= 0.18); I \\ 0.002) \\ 4.63. df = inhibitor \\ \hline Total \\ R \\ 319 \\ 6 \\ 112 \\ 75 \\ 512 \\ 4); I^2 = 46\% \\ \hline Kls ORR \\ 111 \\ 480 \\ 65 \\ 656 \\ 0); I^2 = 0\% \\$	² = 32% = 1 (P = C Nonangi E	0.03). ogene rents 19 4 74 49 146 6 33 2 2 41	l² = 78.4% sis inhibito 3 3 1 5 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 12 39.4% 15 77.1% 55 4.3% 55 4.3% 55 77.1% 55 2.22.9%	Risk M-H. Fiz 1.99 [1.13 [1.09] 1.09 [1.09] 1.21 [1.55] 1.40 [0.01 Non Ratio ced. 95% C (1.17, 3.37] (0.38, 3.32] (0.92, 1.30] (0.92, 1.30] (0.92, 1.37] 1.05, 1.40]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: $Chi^2 = 8.8$ Test for overall effect: Z = Test for suboroup different Ar Article State Sta	H4, df = 6 (P = 3.12 (P = (ncces: Chi ² = (<u>Events</u> GFR-TKIS OR 38 3 81 52 174 f = 3 (P = 0.04 30 (P = 0.009) • with EGFR-T 9 51 3 f = 2 (P = 0.40 75 (P = 0.08)	= 0.18); I 0.002) 4.63. df = inhibitor Total R 319 6 112 75 512 4); I ² = 46% (KIS ORR 111 480 65 656 0); I ² = 0%	² = 32% = 1 (P = 0 Nonangi Ex	0.03). ogene rents 19 4 74 49 146 6 33 2 41	l ² = 78.4% sis inhibito 3 3 1 5 5	r tal Weight 17 10.2% 9 1.7% 12 39.4% 17 25.8% 15 77.1% 55 4.3% 80 17.6% 55 1.0% 22 22.9%	Risk <u>M-H. Fb</u> 1.99 [1.08 [1.09 [1.21 [0.74 [1.55 [1.55 [1.40 [0.01 Non Ratio (d. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30] 0.87, 1.37] 1.05, 1.40] 0.28, 1.98] 1.02, 2.35] 0.96, 2.03]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different Art Bevacizumab with Effect Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.82, d Test for overall effect: Z = 1.7 Total (95% CI)	H4, df = 6 (P = 3.12 (P = (ncces: Chi ² = (<u>Events</u> GFR-TKIS OR 38 381 52 174 if = 3 (P = 0.14 30 (P = 0.009) with EGFR-TI 3 63 if = 2 (P = 0.40 75 (P = 0.08)	= 0.18); I 0.002) 4.63. df = inhibitor Total R 319 6 112 75 512 4); I ² = 46% (KIS ORR 1111 480 65 655 0); I ² = 0% 1168	² = 32% = 1 (P = 0 Nonangi Es	0.03). ogene 2015 19 4 74 49 146 6 33 2 41	2 = 78.4% sisis inhibito Tor 3 3 1 5 5 4 4 4 4 6 6	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1% 55 4.3% 80 17.6% 67 1.0% 2 22.9%	Risk <u>M-H. Fi</u> 1.99 [1.03] 1.09 [1.21 [0.74 [1.55] 1.40 [1.40]	0.01 Non Ratio (ed. 95% C (1.17, 3.37] 0.38, 3.32] 0.38, 3.32] 0.38, 1.37] 1.05, 1.40] (0.28, 1.98] (1.02, 2.35] (0.27, 8.95] 0.96, 2.03]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: Chi ² = 8.8 Test for overall effect: Z = Test for suboroup different Study or Subgroup Bevacizumab with Er Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 5.52, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1.82, d Test for overal effect: Z = 1.7 Total (95% Cl)	H4, df = 6 (P = 3.12 (P = () ncces: Chi ² = model (P = 1) (P	= 0.18); I 0.002) 4.63. df = inhibitor <u>Total</u> 8 319 6 112 75 512 4); I ² = 46% (Kis ORR 111 480 65 656 0); I ² = 0% 1168	² = 32% = 1 (P = 0 Nonangi E	0.03). ogene (ents 19 4 74 49 146 6 33 2 41 41	l ² = 78.4% sisis inhibito Tor 3 3 1 5 5 4 4 4 4 4 60	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1% 55 4.3% 80 17.6% 67 1.0% 92 22.9%	Risk <u>M-H. Fiz</u> 1.99 [1.13 [1.09 [1.09 [1.21 [1.21 [0.74 [1.55 [1.40 [0.01 Non Ratio (ed. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30] 0.92, 1.30] 0.087, 1.37] 1.05, 1.40] 0.28, 1.98] 1.02, 2.35] 0.96, 2.03]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	To
Heterogeneity: $Chi^2 = 8.8$ Test for overall effect: Z = Test for suboroup different Ar Bevacizumab with Effective Ar Bevacizumab with Effective Ar Bevacizumab with Effective Ar Seto 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 5.52$, d Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 1.82$, d Test for overall effect: Z = 1.7 Total (95% CI) Total events Heterogeneity: $Chi^2 = 8.84$, d	H4, df = 6 (P = 3.12 (P = () ncces: Chi ² = () Events: Chi ² = () GFR-TKIS OR 38 3 81 52 174 ff = 3 (P = 0.14 30 (P = 0.009) with EGFR-T 9 51 3 (F = 2 (P = 0.40 75 (P = 0.08) ff = 6 (P = 0.18	= 0.18); $ ^{2}$ = 0.18); $ $	² = 32% = 1 (P = 0 Nonangi Es	0.03). ogene 19 4 74 49 146 6 33 2 41 187	l ² = 78.4% ssis inhibito 3 3 1 5 5 5 4 4 4 6 6	r tal Weight 17 10.2% 9 1.7% 12 39.4% 12 39.4% 15 77.1% 55 4.3% 80 17.6% 55 1.0% 15 77.1% 15 77.1% 15 71.0% 16 10.0%	Risk <u>M-H. Fb</u> 1.99 [1.08 [1.09 [1.21 [0.74 [1.55] 1.55 [1.40 [0.01 Non Ratio (ad. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30 (0.87, 1.37] 1.05, 1.40] 0.28, 1.98] 1.02, 2.35] 0.96, 2.03] 1.09, 1.44]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	
Heterogeneity: $Chi^2 = 8.8$ Test for overall effect: Z = Test for suboroup different Study or Subgroup Bevacizumab with Effect Herbst RS 2011 Kitagawa C 2019 Naoki Furuya 2018 T Seto 2014 Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 5.52$, d Test for overall effect: Z = 2.6 Multikinase inhibitor David R.Spigel 2011 Giorgio Scagliotti 2012 H. J. M. Groen 2013 Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 1.82$, d Test for overall effect: Z = 1.7 Total (95% CI) Total events Heterogeneity: $Chi^2 = 8.84$, d Test for overall effect: Z = 3.1	H4, df = 6 (P = 3.12 (P = () ncces: Chi ² = () <u>Fvents</u> GFR-TKIs OR 38 3 81 52 174 f = 3 (P = 0.14 30 (P = 0.009) with EGFR-T 3 f = 2 (P = 0.44 75 (P = 0.009) (P = 0.009) f = 6 (P = 0.44 75 (P = 0.002) f = 6 (P = 0.44) 237 f = 6 (P = 0.44) 247 f = 6 (P = 0.	= 0.18); I 0.002 4.63. df = inhibitor Total R 319 6 112 75 512 4); I ² = 46% (KIS ORR 111 480 65 655 655 (S); I ² = 0% 1168 3); I ² = 32%	² = 32% = 1 (P = 0 Nonangi Ev	0.03). ogenes 19 4 74 49 146 6 333 2 41 187	l ² = 78.4% sis inhibito 3 3 1 5 5 4 4 4 4 1 1 1	r tal Weight 17 10.2% 9 1.7% 12 39.4% 77 25.8% 15 77.1% 55 4.3% 80 17.6% 57 1.0% 2 22.9% 17 100.0%	Risk <u>M-H. Fb</u> 1.99 [1.03 [1.09 [1.21 [0.74 [1.55 [1.40 [1.25 [0.01 Non Ratio (d. 95% C (1.17, 3.37] 0.38, 3.32] 0.92, 1.30 (0.87, 1.37] 1.05, 1.40] 0.28, 1.98] 1.02, 2.36] 0.27, 8.96] 0.96, 2.03]	0.1 1 10 100 angiogenesis inhibitor Angiogenesis inhibitor Risk Ratio M-H. Fixed, 95% Cl	TO TO

Figure 8. Forest plot and pooled RR and 95% CI for subgroup ORR: anti-angiogenesis therapy versus non-anti-angiogenesis therapy. Abbreviations: RR, risk ratios; CI, confidence intervals; ORR, overall response rate.

A retrospective study^[26] reported that an EGFR-TKI combined with bevacizumab achieved a median OS of 13.5 months and a median PFS of 4.1 months in 24 EGFR-mutant NSCLC patients who had acquired resistance to EGFR-TKIs, especially in T790M-negative patients. Herbst R S^[16] compared 319 patients treated with bevacizumab plus erlotinib and 317 patients treated with placebo plus erlotinib. No difference in median OS was observed between the two groups. In the study by Giorgio Scagliotti^[12], the median OS was 9.0 months in the bevacizumab plus erlotinib group and 8.5 months in the placebo plus erlotinib group, respectively (P = 0.1388). Furthermore, the median PFS was 3.0 months versus 2.6 months (P = 0.0023). Our results indicated that PFS improved in the EGFR-TKIs plus angiogenesis inhibitor groups; however, there was no OS benefit. This was consistent with the aforementioned data. In the study designed by Broglio K R^[27], the researchers divided OS into PFS and survival post-progression (SPP). The study showed that the probability of detecting a statistically significant difference in OS decreased dramatically when median SPP was more than 2 months. In addition, the study suggested that the longer the SPP, the less well the PFS-HR reflected the OS-HR. In this meta-analysis, only 4 of the included 7 RCTs provided a specific median OS and median PFS (in months). Median SPPs were more than 2 months in all four studies. For example, the least median SPP was 4.24 months in the study designed by David R. Spigel^[13]. However, lack of statistical significance in OS could not fully imply the real benefit in OS, especially in this meta-analysis with a long median SPP. On the other hand, the stabilization or even shrinkage of tumor magnitude did affect the PFS but did not always affect the OS, especially in patients with a smaller tumor burden. It has been shown that, for this type of patient, even if the tumor was reduced and achieved SD, the benefit of PFS could not be converted into OS benefit^[28]. Besides, even if the targeted therapy combinations achieved PFS benefit, they might change the

biological characteristics of the tumor, which may undergo selective pressure, thus offsetting the treatment effect of the early stages and causing no improvement in OS^[29].

In all 7 RCTs included, the ORR ranged from 4.6% to 72.3% in the EGFR-TKIs plus angiogenesis inhibitors groups. With regard to the line of treatment, there was a tendency for increased ORR and DCR in first-line treatment but this tendency was not statistically significant. However, the ORR and DCR were significantly increased in second- and third-line treatments. These results could also be explained by the theory of selective pressure. As mentioned above, first-line treatment may change the biological characteristics of the tumor, which then undergoes selective pressure finally causing escape pathways for tumor^[30]. In fact, a large number of mechanisms of acquired resistance have been discovered in tumor-cell clones and have evolved and proliferated under the selective pressure of initially effective treatment^[31]. Under these circumstances, EGFR-TKIs combined with angiogenesis inhibitors could increase the ORR and DCR much better than EGFR-TKIs alone in second- and third-line treatment due to the blocking of multiple pathways and circumventing some mechanisms of resistance. EGFR-TKIs combined with bevacizumab can increase ORR, while EGFR-TKIs combined the with multikinase inhibitors tend to increase the ORR but the difference was not statistically significant (P =0.08). The EGFR-TKIs combined with multikinase inhibitors failed to increase the ORR. This may have been due to the small sample size of 1258 patients from only 3 RCTs. The DCR was increased following treatment with EGFR-TKIs combined with multikinase inhibitors, but not with EGFR-TKIs combined with bevacizumab. This might have been due to the multikinase inhibitors inhibiting not only VEGFR-1, -2, and -3, but also other signal pathways associated with proliferation, invasion and metastasis of the tumor such as platelet-derived growth factor receptor (PDGFR), stem-cell factor receptor (KIT), FMS-like tyrosine kinase 3 (FLT3), and colony-stimulating factor 1 receptor (CSF-1R), while bevacizumab inhibits only VEGF^[32-34].

In this meta-analysis, rash (16.6%), hypertension (14.7%) and diarrhea (13.3%) were the most common AEs in the combination group, while rash (11.5%), anemia (3.8%) and fatigue (3.4%) were common in the EGFR-TKI alone group. Diarrhea and skin toxicity are the most common AEs of EGFR-TKIs^[35], while hypertension, proteinuria, hemorrhage and arterial thromboembolic events are the most common AEs in patients treated with angiogenesis inhibitors. As previously mentioned, anemia, vomiting, rash,

thrombosis, interstitial lung disease and nausea in both groups of patients were not significantly different (P > 0.05). However, grade ≥ 3 AEs were more frequent in patients treated with angiogenesis inhibitors and included hypertension, hemorrhage and proteinuria for anti-angiogenic-induced events, and neutropenia, thrombocytopenia, diarrhea and fatigue for EGFR-TKIs induced events. In addition, decreased appetite and dysgeusia were significantly increased in patients treated with EGFR-TKIs combined with angiogenesis inhibitors. Adverse events are one of the most relevant factors on the curative effect and survival. As previously mentioned, grade \geq 3 AEs were more frequent in patients treated with angiogenesis inhibitors. Therefore, effective management of AEs is an important aspect of the overall treatment strategy for patients with advanced NSCLC, with the goal of maximizing therapy exposure, and thus achieving optimal clinical benefit.

There are many limitations in this meta-analysis. Firstly, only seven RCTs were included, and there were no subgroups related to ethnicity, EGFR mutation type or pathological classification. The influence of EGFR mutation or EGFR expression status could not be assessed. EGFR expression status was reported in a small number of patients. Secondly, the differences between statistical quality and follow-up time resulted in heterogeneity. Finally, this was a trial-level meta-analysis based on studies and not on individual patient data. Confounding variables such as patient co-morbidities, extent of disease, and differences in other possible prognostic factors could not be incorporated into this analysis. Therefore, future research should focus on high quality studies and clinical features in patients comprehensively evaluated, thus resulting in more standardized research and more accurate conclusions.

Conclusions

EGFR-TKIs combined with anti-angiogenic treatment were better than EGFR-TKIs alone in terms of PFS, ORR and DCR in patients with advanced NSCLC. The benefit of combining EGFR-TKIs with angiogenesis inhibitors must be balanced by increased toxicity. Additional studies on this combination with respect to potentially predictive biomarkers are warranted.

Acknowledgments

This work was supported by The Capital Health Research and Development of Special (No.2018-2-1113), National Natural Science Foundation of China (Grant No.81774221), Basic-Clinical Cooperation Program from Capital Medical University (No.17JL 14), Research Foundation of Beijing Friendship Hospital, Capital Medical University (No.yyqdkt2016-4) and Beijing Municipal 215 High-level Health Person Foundation Project (No.2014-3-004).

Author's contributions

ZXC was the first author of the article. JW was the equal contributor of the article. JY was the corresponding author of the article. ZXC, JY, MXT and JW contributed to the conception and design this study. ZXC and JY carried out the development of the methodology. ZXC and JW analyzed and interpreted the data. ZXC, JY, and JW wrote the manuscript and approved the final submission of the study. All authors read and approved the final manuscript.

Competing Interests

The authors have declared that no competing interest exists.

References

- Edwards BK, Noone AM, Mariotto AB, et al. Annual Report to the Nation on the status of cancer,1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer.2014; 120: 1290-1314.
- Margaritora S, Cesario A, Cusumano G, et al. Pneumonectomy with and without induction chemo-radiotherapy for non-small cell lung cancer: short and long-term results from a single centre. Eur Rev Med Pharmacol Sci. 2013;17:29-40.
- Yao Y, Fan Y, Wu J, et al. Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis. Biochem Biophys Res Commun. 2012; 423:613-619.
- Fillon M. Immune checkpoint inhibitors are superior to docetaxel as second-line therapy for patients with non-small cell lung carcinoma. CA Cancer J Clin.2016;66:115-32.
- Chen G , Feng J , Zhou C , et al. Quality of life (QoL) analyses from OPTIMAL (CTONG-0802), a phase III, randomized, open-label study of first-line erlotinib versus chemotherapy in patients with advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). Annals of Oncology.2013;24 :1615-1622.
- Wu Y L, Cheng Y, Zhou X, et al.Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncology. 2017;18:1454-1466.
- Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncology.2010;11:104-105.
- Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013; 31: 3327–34.
- Faehling M, Achenbach J, Staib P, et al. Erlotinib in routine clinical practice for first-line maintenance therapy in patients with advanced non-small cell lung cancer (NSCLC). Journal of Cancer Research & Clinical Oncology.2018; 27:1-9.
- Naumov GN, Nilsson MB, Cascone T, et al. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin Cancer Res. 2009; 15: 3484–94.
- Wu W, Onn A, Isobe T, et al. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Molecular Cancer Therapeutics. 2007; 6:471-483.
- Scagliotti G V, Krzakowski M, Szczesna A, et al. Sunitinib Plus Erlotinib Versus Placebo Plus Erlotinib in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer: A Phase III Trial. Journal of Clinical Oncology. 2012; 30:2070-2078.
- Spigel D R, Rd B H, Greco F A, et al. Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology. 2011;29:2582.
- Naoki Furuya, Tatsuro Fukuhara, Haruhiro Saito, et al. phase III study comparing bevacizumab plus erlotinib to erlotinib in patients with untreated non-small cell lung cancer harboring activating EGFR mutations: NEJ026. American Society of Clinical Oncology. 2018.

- Groen H J M, Socinski M A, Grossi F, et al. A randomized, double-blind, phase II study of erlotinib with or without sunitinib for the second-line treatment of metastatic non-small-cell lung cancer (NSCLC). Annals of Oncology Official Journal of the European Society for Medical Oncology. 2013;24:2382-2389.
- Herbst R S, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet. 2011; 377:1846-1854.
- Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncology. 2014; 15:1236-1244.
- Kitagawa C, Mori M, Ichiki M, et al. Gefitinib Plus Bevacizumab vs. Gefitinib Alone for EGFR Mutant Non-squamous Non-small Cell Lung Cancer. In Vivo.2019; 33:477-482.
- Yoshida T, Zhang G, Smith M A, et al. Tyrosine Phosphoproteomics Identifies Both Codrivers and Cotargeting Strategies for T790M-Related EGFR-TKI Resistance in Non-Small Cell Lung Cancer. Clinical Cancer Research. 2015; 20:4059-4074.
- Remon J, Morán T, Majem M, et al. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer Treat Rev.2014;40:93-101.
- Zhou C, Yao LD. Strategies to Improve Outcomes of Patients with EGRF-Mutant Non-Small Cell Lung Cancer: Review of the Literature. J Thorac Oncol.2016;11:174-86.
- Pries A R, Cornelissen A J M, Sloot A A, et al. Structural Adaptation and Heterogeneity of Normal and Tumor Microvascular Networks. Plos Computational Biology. 2009;5:e1000394.
- Furugaki K, Iwai T, Moriya Y, et al. Loss of an EGFR-amplified chromosome 7 as a novel mechanism of acquired resistance to EGFR-TKIs in EGFR-mutated NSCLC cells. Lung Cancer.2014;83: 44-50.
- Hayakawa H, Ichihara E, Ohashi K, et al. Lower gefitinib dose led to earlier resistance acquisition before emergence of T790M mutation in epidermal growth factor receptor-mutated lung cancer model. Cancer Sci.2013; 104 :1440-46.
- Li F, Zhu T, Cao B, et al. Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance. European Journal of Cancer.2017; 84:184-192.
- Otsuka K, Hata A, Takeshita J, et al. EGFR-TKI rechallenge with bevacizumab in EGFR-mutant non-small cell lung cancer. Cancer Chemother Pharmacol.2015;76:835-41.
- Broglio K R, Berry D A. Detecting an Overall Survival Benefit that Is Derived From Progression-Free Survival. Journal of the National Cancer Institute.2009; 101:1642.
- He L, Teng Y, Jin B, et al. Initial partial response and stable disease according to RECIST indicate similar survival for chemotherapeutical patients with advanced non-small cell lung cancer. BMC Cancer. 2010; 10:681.
- Lopez J S , Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nature Reviews Clinical Oncology. 2017; 14:57-66.
- Adiseshaiah PP, Crist RM, Hook SS, et al. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nature reviews Clinical oncology. 2016;13:750-65.
- Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol. 2016;13:335-47.
- Demetri G D, Reichardt P, Kang Y K, et al.Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381 :295-302.
- 33. Burstein H J, Elias A D, Rugo H S, et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. Journal of Clinical Oncology.2008, 26:1810-1816.
- Shojaei F. Anti-angiogenesis therapy in cancer: Current challenges and future perspectives. Cancer Letters. 2012;320:130-137.
- 35. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell Lung cancer(EURTAC) :a multicentre, open-label,randomised phase 3 trial. Lancet Oncol. 2012;13:239-46.