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Abstract: Opiate abuse and HIV-1 have been described as interrelated epidemics, and even in the advent of combined 

anti-retroviral therapy, the additional abuse of opiates appears to result in greater neurologic and cognitive deficits. The 

central nervous system (CNS) is particularly vulnerable to interactive opiate-HIV-1 effects, in part because of the unique 

responses of microglia and astroglia. Although neurons are principally responsible for behavior and cognition, HIV-1 

infection and replication in the brain is largely limited to microglia, while astroglia and perhaps glial progenitors can be 

latently infected. Thus, neuronal dysfunction and injury result from cellular and viral toxins originating from HIV-1 

infected/exposed glia. Importantly, subsets of glial cells including oligodendrocytes, as well as neurons, express �-opioid 

receptors and therefore can be direct targets for heroin and morphine (the major metabolite of heroin in the CNS), which 

preferentially activate �-opioid receptors. This review highlights findings that neuroAIDS is a glially driven disease, and 

that opiate abuse may act at multiple glial-cell types to further compromise neuron function and survival. The ongoing, 

reactive cross-talk between opiate drug and HIV-1 co-exposed microglia and astroglia appears to exacerbate critical 

proinflammatory and excitotoxic events leading to neuron dysfunction, injury, and potentially death. Opiates enhance 

synaptodendritic damage and a loss of synaptic connectivity, which is viewed as the substrate of cognitive deficits. We 

especially emphasize that opioid signaling and interactions with HIV-1 are contextual, differing among cell types, and 

even within subsets of the same cell type. For example, astroglia even within a single brain region are heterogeneous in 

their expression of �-, �-, and �-opioid receptors, as well as CXCR4 and CCR5, and Toll-like receptors. Thus, defining the 

distinct targets engaged by opiates in each cell type, and among brain regions, is critical to an understanding of how opiate 

abuse exacerbates neuroAIDS. 
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INTRODUCTION 

 There are compelling reasons to investigate opioid and 
HIV-1 interactions and their role in accelerated 
neuropathogenesis. Studies in HIV-1-infected opiate abusers 
show severe neuropathology compared to infected non-drug 
users [1-4], with selective increases in microgliosis [2, 4, 5]. 
In this cohort, multinucleated giant cells and HIV-1 p24 
immunoreactive glia were found over 3-fold more frequently 
in injection drug users than in non-drug using HIV-1-
infected individuals [1]. These initial findings were 
supported by subsequent histopathological confirmation [2, 
3] indicating that opioid use can exacerbate the central 
nervous system (CNS) complications of HIV-1 infection. 
Despite some initial controversies discussed below, current 
studies now describe diminished cognitive function in HIV-
1-infected individuals who preferentially abuse opiates even 
in patients who are receiving combined antiretroviral therapy 
(cART) therapy [6-8]. Prolonged heroin use exaggerates 
deficits in recall and working memory beyond impairments 
seen with HIV-associated neurocognitive disorders (HAND) 
(for definitions see [9-11]) alone [8]. Earlier controversies 
questioning the extent that opiate drug use worsens simian 
immunodeficiency virus  (SIV)/simian-human chimeric  
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immunodeficiency virus (SHIV) infection and neuropatho-
genesis may partially relate to the fact that some of the 
SIV/SHIV strains employed were not especially neuro-
trophic and that many of the studies failed to examine CNS 
pathology beyond CSF viral loads. An authoritative review 
covering opioid-SIV interactions appeared recently [12]. 

 In the present review, the term “opiate” is used to refer to 
alkaloids derived from the opium poppy Papaver 
somniferum and includes opium and heroin [13]. Opiates act 
by mimicking endogenous “opioid” ligands and bind 
“opioid” receptors [14-20]. In the case of opiate drugs with 
abuse liability, they principally act by triggering the �-opioid 
receptor (MOR) [13], and to a lesser extent �- (DOR) and �- 
(KOR) opioid receptors. Heroin is quickly deacetylated to 
morphine in the CNS and morphine is the main bioactive 
product of heroin in the brain [21, 22]. 

 HIV-1 enters the brain early in the disease and 
establishes latent reservoirs in perivascular macrophages 
prior to the onset of HIV encephalitis (HIVE) [23]. 
Interestingly, preferential opiate abuse may selectively affect 
the turnover of the perivascular macrophage pool [4] and/or 
release cells chronically infected with HIV-1 from latency as 
assessed by increased LTR transactivation in a 
neuroblastoma cell line [24]. Opiates increase viral loads and 
hasten the progression and neuropathology in SIV models 
[25-29] (reviewed in [12]). Novel findings in SIV models 
also indicate that chronic opiate exposure can shape viral 
evolution [30-32]. 
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 Post-cART era studies find diminished cognitive function 
in HIV-1-infected individuals who preferentially abused 
heroin that is partially attributable to opioid abuse [6-8]. A 
recent study, examining the relationship of substance use 
history to neurocognitive impairment in HAND, indicated 
that “lifetime heroin dosage” correlated significantly with 
“poor recall and working memory” [8]. Since the 
participants in this study were currently abstaining from drug 
use, the findings indicate that heroin use can potentially 
result in lasting deficits to cognitive function in HIV-1-
infected individuals [8]. A separate consideration is 
polysubstance abuse and the concept that opiate drug use 
interacts uniquely with other abuse substances to exacerbate 
HAND. For example, a rare fulminant encephalopathy with 
extensive basal ganglia involvement is associated with 
combined cocaine and heroin, i.e., “speedball”, use in a 
small subset of HIV-1-infected individuals [33]. Heroin, by 
virtue of immune suppression and increased HIV-1 
replication, may worsen the inherent neurotoxic effects of 
cocaine and vice versa in neuroAIDS [33]. Nonetheless, 
some clinical studies have reported minimal or no 
neurocognitive differences between HIV-1-infected and 
uninfected drug abusers [34-36]. Clinical inconsistencies 
may be partially attributable to our lack of understanding of 
the mechanisms underlying drug and HIV-1 interactions and 
the spectrum of resultant comorbid manifestations [37-39]. 
Genetic risks for opiate abuse [40] or neuroAIDS, such as 
familial predisposition to dementia [41], MOR 
polymorphisms [42-44] and/or epigenetic changes in MOR 
[45], as well as polymorphisms in comorbid factors such as 
CCR5 [46-48], CCL2/MCP-1 [49], apolipoprotein � (ApoE) 
allelic variations [50] (the ApoE4 allele has been linked to 
HIV-1 dementia and neuropathy [51, 52]) and prodynorphin 
[53-58] may also contribute to the complexity. In addition, 
street drug impurities [38], variable pharmacokinetics [59] 
and usage/dosage regimen [38], as well as the timing and 
duration of opiate exposure during the course of HIV-1 
infection [39, 60], also are likely to determine the nature and 
severity of the comorbidity. 

THE CNS IS PREFERENTIALLY SUSCEPTIBLE TO 

OPIATE DRUG-HIV-1 INTERACTIONS 

 The heightened vulnerability to opiate drug actions in 
HIV-1-infected individuals [39, 61-65] results from a 
coordinated and exaggerated response of glia, and especially 
astroglia. Not only does morphine directly affect the 
response of neurons [66, 67] (including human neurons [50, 
68, 69]), but opiates can directly affect MOR-expressing 
astroglia [70-79], microglia [61, 66, 80-82], oligodendroglia 
[83], and glial precursors [84, 85]. Morphine’s unique 
actions in HIV-1-exposed astroglia, in particular, appear to 
drive spiraling, intercellular feedback loops with microglia 
and perivascular macrophages that increase and sustain 
inflammation [39, 71]. In fact, unlike other HIV-1-infected 
"end organs" [target organs], which also contain subsets of 
MOR-expressing resident and newly recruited macrophages, 
the brain differs in the unique and exaggerated response of 
astroglia to opioids [39]. This is especially apparent in 
striatal astrocytes, which show far more pronounced 
morphine-HIV-1 protein-induced cytokine production [70, 
72] compared to astrocytes isolated from the cerebral cortex, 
cerebellum, or spinal cord [86], and may contribute to the 

enhanced neuropathology seen in regions of the basal 
ganglia. 

NEUROTOXICITY WITH CHRONIC OPIATE 

EXPOSURE 

 With more sensitive and sophisticated approaches for 
assessing neuronal injury, emerging evidence suggests that 
sustained morphine exposure may be intrinsically 
neurotoxic. While there has been sporadic experimental 
evidence especially using cell culture models that opiates can 
be cytotoxic to neurons, as well as other cell types, only a 
few clinical studies reported modest astrogliosis in opiate 
abusers [87]. Rarely, severe astrogliosis is reported with 
heroin abuse [87-89] or in individuals inhaling volatilized 
heroin vapor [89, 90]. By contrast, in another study, 
dopaminergic function, as assessed by tyrosine hydroxylase 
(TH) terminals, was significantly reduced in the nucleus 
accumbens; while an index of serotonergic (5-
hydroxyindoleacetic acid) function and TH was variably 

affected in the putamen and caudate nucleus [91]. Reports of 
increased perivascular infiltrates of lymphocytes and 
macrophages were also noted [92]. However, the nondescript 
nature of the gliosis in the above instances was potentially 
attributable to the physical and psychological "side effects" 
of addiction, including poor nutrition, poor health and 
lack/avoidance of medical care, and/or a marginal life-style 
[89, 90]. More recently, hyperphosphorylated tau was 
described in hippocampal neurons of a carefully 
characterized cohort of preferential opiate abusers [93]. In 
this cohort, the authors were careful to control for risk 
factors such as age and neurodegenerative or infectious 
diseases that could confound the interpretation of the 
deleterious effects of chronic opiate abuse per se [93]. 
Similar neuropathology characteristic of the aged brain 
involving tau hyperphosphorylation and increased amyloid 
and amyloid precursor disposition was seen in opiate abusers 
less than 40 years of age [94]. 

METHODS TO MEASURE NEUROTOXICITY 

 Cell culture combined with computer-guided, time-lapse 
microscopy enables dramatic increases in throughput (see 
[95-97]) using well-established repeated measures designs to 
examine dynamic changes in the same neurons over time 
[98-104]. For example, this strategy reveals subtle, but 
significant, neurodegenerative effects after 60 h of sustained 
morphine exposure [95] that are even more evident after 72 h 
[60]. These otherwise subtle morphine-induced neuron 
losses and synaptodendritic injury (in preparation) were less 
apparent when examining average changes in populations of 
neurons. Depending on the outcome measure, the 
heterogeneity within the same class of neuron from a 
particular brain region [e.g., see 105] can preclude studying 
average changes in populations of neurons. This is 
particularly true for examining subcellular changes in the 
genesis and degeneration of individual synapses, which by 
necessity rely on repeated-measure design strategies [98-
104]. This approach also enables meaningful analysis of 
small numbers of cells (e.g., rare samples of human neurons) 
or to discriminate among subsets of neurons (e.g., 
differentiating transfected versus non-transfected neurons in 
the same culture dish [106]). 



Opiate Drugs and NeuroAIDS Current HIV Research, 2012, Vol. 10, No. 5    437 

 The advantage of using repeated measures time-lapse 
microscopy is that individual neurons (within a treatment 
group) are compared to themselves prior to and during 
treatment (these designs are a “block randomized” or 
“repeated measure” design). This eliminates intersubject 
variability and differences each time new cell cultures are 
established, and is fundamentally more sensitive than 
examining cell populations. It is a common approach in 
electrophysiological studies and has been used to study 
neuron differentiation and death [e.g., see 101, 107]. The 
assay permits the use of repeated measures ANOVA, rather 
than regular multi-way ANOVA, and provides far greater 
statistical power with a small number of experiments [95, 97, 
108, 109]. Moreover, although the strategy is used to assay 
neuronal cell death, it is equally valuable in structural and 
functional assessments of non-lethal synaptodendritic 
alterations in neurons and glia. It is important to note, in a 
repeated measure analysis, significance is not reflected in the 
error bars, which do not correspond to the error term used in 
the statistical analyses. Statistically, the response of an 
individual neuron can be correlated to itself over time, and 
the repeated measures design extracts the individual 
variation in the same neurons over time from the error term, 
increasing the power to detect treatment differences [110]. 

NEUROAIDS IS GLIALLY-MEDIATED 

 HIV-1 infection in the brain is almost exclusively limited to 
microglia, latently infected astroglia [111], and astroglial 
progenitors [112]. Neuron injury or death is mainly through 
bystander effects as neurons, which lack the CD4 receptor, are 
not infected by the virus. Moreover, although endothelial cells 
and perivascular macrophages can become infected with HIV-1, 
intervening glia (especially astroglia) are typically present 
between infected endothelia or perivascular macrophages and 
neurons. By virtue of harboring HIV-1 or through aggressive 
attempts to control the infection, glia become the sources of 
toxins, which cause bystander effects on neurons. Thus, 
neuronal injury in HIV-1-infected individuals is caused by 
intercellular (glia-to-neuron) transfer of neurotoxic signals [38, 
113-117]. 

SUBLETHAL NEURON CHANGES UNDERLIE HIV-

ASSOCIATED NEUROCOGNITIVE DISORDERS 

 The dendritic arborizations and synaptic connectivity of 
neurons are reduced in neuroAIDS [118] and the losses in 
connectivity are the likely substrates of behavioral and 
cognitive impairment in HAND [119-123]. Similarly, 
dendritic pruning and synaptic culling have been suggested 
as underlying comorbid opiate drug-HIV-1 interactive 
deficits in CNS function [2, 124]. Our recently published 
[124] and unpublished data suggest that synaptodendritic 
injury is highly correlated with (and likely underlies) the 
exaggerated neurobehavioral defects seen in opioid abuse-
HIV-1 comorbidity. Although cumulative and sustained 
sublethal injury may ultimately result in reduced survival 
[124], the signaling events underlying opiate and HIV-1-
induced sublethal injury may differ qualitatively from those 
regulating death, are potentially reversible, and more 
amenable to treatment and recovery. 

 

 If neuronal injury is associated with synaptodendritic 
injury, then why is neuron death typically described as an 
endpoint? Initial histopathological observations displayed 
evidence of neuronal and glial cell death at the end stages of 
neuroAIDS, especially in the pre-cART era. Early in vitro 
studies attempted to model the lethal changes. As noted, 
however, subsequent evidence increasingly supports the 
notion that neurobehavioral deficits are accompanied by 
sublethal synaptodendritic injury and a loss of neural 
circuitry [119-123]. While cumulative sublethal neuron 
injury may lead to neuronal death, ongoing studies from 
multiple laboratories clearly indicate that the extent of the 
damage is directly related to the concentration/dosage of 
HIV-1 proteins or HIV-1 titer. In fact, our published and 

unpublished findings indicate that synaptodendritic injury 
may be evident following exposure to concentrations of 
HIV-1 Tat that are 2-3 orders of magnitude less than 
required to induce rapid death of neurons (within 24-72 h) 
[60, 67, 95, 96, 106, 108, 109]. Lastly, even at high 
concentrations of HIV-1 proteins, sustained synaptodendritic 
injury precedes neuron death. We propose that as the 
concentrations of HIV-1 virions and HIV-1 Tat and gp120 
proteins are reduced to levels normally seen in the HIV-1-
infected CNS, the predominant neuronal alterations will be 
synaptic culling and pathophysiological changes in 
dendrites, without precipitous neuron death. Importantly, the 
sublethal changes are likely to be reversible and therefore 
highly amenable to therapeutic intervention. 

SYNAPTODENDRITIC ORIGINS OF EXCITOTOXIC 
INJURY, METABOLIC COMPROMISE, AND [Ca

2+
]i 

OVERLOAD 

 HIV-1 gp120 and Tat overactivate glutamate receptors 
and are excitotoxic [125]. Tat [126-130] and gp120 [131-
136] have been proposed to activate NMDA receptors 
(NMDARs) through direct and indirect mechanisms. In 
addition to the activation of NMDARs by Tat [126, 137], the 
virotoxin also interrupts mitochondrial function [138], ATP 
production [50, 139], and can cause focal, transient (“hit and 
run” [140]) disruptions to neuronal homeostasis through 
mechanisms responsible for dendrotoxicity and synaptic 
losses [140-142]. These may be compartmentalized to 
dendrites, axons, or perhaps specific synapses [143, 144]. 
Focal swelling [145] is accompanied by a disruption of ion 
homeostasis and ATP production [138, 146] causing a 
failure of neuritic transport [147-149]. Autophagosomes 
form at sites with collapsed cytoskeletal proteins and 
dendritic swelling [150], as do focal elevations in cleaved 
caspase-3 [151], respectively, suggesting roles for autophagy 
and “synaptic apoptosis” [152, 153]. Thus, Tat [154-156], 
gp120 [157, 158], and/or opiates [159] may trigger 
synaptodendritic injury through localized contributions from 
caspases, autophagic, and/or the ER-stress/unfolded protein 
response (UPR) effectors. 

OPIOID EXPOSURE IS LIKELY TO EXACERBATE 
THE EXCITOTOXIC EFFECTS OF HIV-1 AT THE 

LEVEL OF THE SYNAPSE 

 Endogenous opioids [95, 160, 161], as well as opiate 
drugs with abuse liability [162-167], have long-been known  
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to reduce both the complexity of dendrites and the density of 
dendritic spines in a variety of brain regions. Interrelated 
studies describe how morphine can cull spines in pyramidal 
neurons from the cerebral cortex through a series of events 
involving NeuroD, microRNA-190, and Ca

2+
/calmodulin-

dependent kinase II (CaMKII) [103, 168-170]. The ability of 
opiate drugs to reduce synaptic interconnections is highly 
selective. MOR-dependent reductions in dendritic spines 
display "agonist selective" responses.  The "biased agonism" 
[102, 103] is reliant on the differential coupling of MOR to 
G�, G��, and/or �-arrestin by different MOR agonists. For 
example, morphine readily causes spine retractions, while 
fentanyl, a MOR agonist with much higher selectivity for 
MOR than morphine, fails to reduce spine numbers [170]. 

 Morphine may potentially act through several MOR-
dependent mechanisms to potentiate the excitotoxic effects 
of HIV-1; each will be explored below. Initially, morphine 
via G�� increases the activity of G-protein-gated inwardly 
rectifying K

+
 (GIRK/Kir3) channels making the neuron less 

excitable [171]. However, with chronic activation 
accompanied by tolerance (and dependence), MORs 
uncouple from the inwardly rectifying K

+
 channels [16], 

resulting in increased neuron excitability despite the 
sustained presence of opioid drugs. Morphine may also 
indirectly increase neuron excitability through actions in 
astroglia. Morphine can augment [Ca

2+
]i via G�� [172, 173] 

(or perhaps uniquely via Gq/11-� in astroglia [76]) to drive 
increases in phospholipase C (PLC), further increasing 
excitation. The resultant IP3-dependent increases in [Ca

2+
]i 

potentiate Ca
2+

-induced Ca
2+

 release (or regenerative Ca
2+

) 
via ryanodine receptors in astroglia [76]. HIV-1 Tat can 
similarly increase [Ca

2+
]i in astroglia [174] and restrict 

glutamate uptake [95], but is also a potent activator of NF-
�B [70, 175] resulting in cytokine and chemokine release by 
astroglia [70-72, 176, 177]. In combination, morphine can 
potentiate Tat-induced increases in astroglial [Ca

2+
]i [72], 

reactive oxygen species (ROS) production [95], and IL-6, 
RANTES, and MCP-1 release [72], while causing 
subadditive restrictions in glutamate uptake [95]. Gp120 can 
also increase [Ca

2+
]i [86, 178-180], alter cytokine expression 

[181], and limit glutamate uptake by astroglia [60, 179, 180, 
182, 183], and likely interacts with opiate drugs through one 
or more of these mechanisms to increase neuron injury [60, 
69]. By attenuating the presynaptic activity of inhibitory 
GABAergic interneurons, morphine can disinhibit 
postsynaptic target neurons thereby decreasing their 
excitotoxic threshold [184]. Morphine can cause significant 
increases in glutamate release by microglia [80], beyond that 
seen with Tat treatment alone [80]. Lastly, we speculate that 
the excessive astroglial response further exaggerates the 
intrinsic microglial response to HIV-1 [71], creating an 
opioid-driven, astroglial-to-microglial escalating feedback 
loop, which increases neuron injury [39, 61, 63, 80]. 

 In cerebral cortical neurons, morphine decreases NeuroD 
phosphorylation, which increases CaMKII phosphorylation 
and maintains excitatory dendritic spines [170]. CaMKII is 
an important target in neuroAIDS [185] and potentially 
pivotal in convergent opiate drug and HIV-1 interactions. 
The loss of spines impedes glutamate signals through  
 

�-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid 
(AMPA) receptor (AMPAR) and NMDAR subtypes [102-
104]. Excitotoxic injury reportedly originates from 
“extrasynaptic” NMDARs or via deleterious NMDAR 
subunit conformations [186, 187]. Alternatively, “synaptic” 
NMDAR signaling at excitatory PSD-95

+
 dendritic spines is 

reportedly neuroprotective [188, 188-190, 190, 191], and 
associated with specific subunit configurations, including 
NR3A [192] and NR2A [186] (through activation of 
phosphoinositide 3-kinase (PI3K)/Akt (protein kinase B or 
PKB), extracellular signal-regulated kinase (ERK), glycogen 
synthase kinase 3�, and/or FOXO [193-197]). Assuming 
chronic morphine exposure affects striatal neurons similarly, 
reductions in "favorable" spines are likely to be detrimental 
especially when confronted by an excitotoxic Tat or gp120 
challenge (Fig. 1). This may reveal a potential mechanism by 
which opiate drugs would aggravate the negative 
consequences of HIV-1 in medium spiny neurons. 

 Besides direct actions on the medium spiny neurons 
themselves, opioids can act by synergistically disrupting the 
function of MOR-expressing astroglia [70-72] and/or 
microglia [61, 80, 81]. In addition, morphine can excite 
dopamine neurons projecting from the ventral tegmental area 
(VTA) to striatal spiny neurons by hyperpolarizing 
inhibitory �-aminobutyric acid (GABA)- expressing 
interneurons in the VTA [184]. Dopaminergic afferents into 
striatum from substantia nigra and VTA are markedly altered 
in neuroAIDS [65, 198-205], and are important targets for 
substance abuse [65, 200, 201, 206, 207]. Following chronic 
morphine exposure, GABA transporter function is disrupted 
leading to hyperexcitability of GABAergic neurons upon 
precipitated morphine withdrawal [208]. Assuming aspects 
of these findings can be generalized to striatal function, this 
would suggest that chronic opiate exposure causes sufficient 
maladaptive changes in both GABAergic and glutamatergic 
responsiveness (both presynaptically [209] and 
postsynaptically) to result in maladaptive neuron injury 
when confronted with HIV-1 Tat or gp120 [115, 124-126, 
210]. 

 Gp120 derived from CCR5 (R5)- or CXCR4 (X4)- tropic 
HIV-1 strains preferentially use CCR5 or CXCR4, 
respectively, as co-receptors for viral entry; dual-tropic 
strains can use either receptor. All strains are neurotoxic, but 
activate their receptors in specific ways that can induce 
effects similar to and/or different from those of the natural 
ligand [117]. This biased agonism can change the 
downstream signaling from beneficial or neutral to 
neurotoxic. For example, in the study cited above gp120 
binding to CCR5 produces a neurotoxic response through 
activation of p38 MAPK even though CCR5’s natural �-
chemokine ligands are neuroprotective. In comparison, 
CXCR4 activation by either gp120 or stromal cell-derived 
factor-1 (SDF-1 or CXCL12) leads to neuronal death. Others 
have reported that at a lower chemokine concentration the 
effects of SDF-1 and X4-tropic gp120 diverge, with SDF-1 
phosphorylating both pro-survival (p-Akt) and pro-apoptotic 
c-Jun-terminal kinase (p-JNK) signals, whereas gp120 
selectively activates pro-apoptotic signaling [211]. Strain 
differences have also been revealed in the production of 
brain-derived neurotrophic factor, which is suppressed by 
X4-tropic gp120 and enhanced by R5-tropic gp120 [212]. 
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 We found fundamental differences in the interaction of 
morphine with X4- compared to R5-tropic strains of HIV-1 
in an infectious model of hepatitis C virus [213]. Prompted 
by these findings, we questioned whether morphine would 
interact with HIV-1 gp120 to cause neurotoxicity in a strain-
dependent manner [60]. Interestingly, we found that morphine 
had no interactive cytotoxic effects with R5-tropic gp120ADA, 

while morphine caused a highly reproducible transient and 
coordinated acceleration of X4-tropic gp120IIIB neurotoxicity. 
By contrast, there was a sustained additive neurotoxicity with 
combined exposure to morphine and bitropic gp120MN [60]. 
While it is tempting to conclude that the coincident activation of 
both X4 and R5 co-receptors by gp120 imparts greater toxicity, 
it is equally reasonable to assume that gp120 displays agonist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Golgi-impregnations of striatal neurons and dendrites from control Tat(-) (A-D) and Tat(+) (E-H) transgenic mice at 7 days 

following combined morphine exposure and Tat induction. The medium spiny neurons from Tat(-) mice are morphologically normal (A, B), 

and possess normal complements of spines on proximal (C) and distal (D) dendritic segments. By contrast, combined morphine exposure and 

Tat induction caused severe deficits in spine numbers and synaptodendritic injury (E-H), including severe dendritic varicosities and 

degeneration (F-H), that was worse than with morphine exposure or Tat induction alone (see reference [82] for detailed explanation); scale 

bar in A = 20 �m; the scale bars in B, C, E = 10 �m; C, D, F, G, H are the same magnification (note, figures E-H above correspond to 

figures R-U in ref [124]). Electron micrographs showing an abnormal oligodendrocyte (I) and myelin (J), and a degenerating dendrite in the 

striata of HIV-1 transgenic mice following 7 days of continuous Tat induction and co-exposure to morphine (I-K). An oligodendrocyte with 

abnormally dense cytoplasm with excessive vacuoles and condensed nucleoplasm (*) in close association with several myelinated axons (I); 

scale bar = 2 �m. Axons (**) that appear to be hypermyelinated compared to nearby axons of similar diameter (a) are quite common in the 

striata of Tat transgenic mice (J). Normally, myelin thickness is directly proportional to the diameter of the axon and is constant for axons of 

a particular diameter (J); the relationship is referred to as the g-ratio [306]. An electron dense dendrite (arrowheads) with a single presynaptic 

contact (*) appears to be degenerating (K); in all the above instances (E-K) morphine was continuously administered via a time-release 

pelleted implant (5 mg per day) (see [82]). (A-H): Reprinted from reference [124]; Copyright (2010), with permission from Elsevier and the 

American Society for Investigative Pathology. 
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selective or biased agonism properties and that gp120 from each 
HIV-1 variant has a somewhat different effect. Lastly, 
although additional study is needed, in instances where 
morphine and gp120 co-exposure fails to show toxic 
interactions, a sound assumption may be that they are acting 
through a similar mechanism. This seems especially plausible 
considering the potential for interactions between MOR and 
CXCR4 or CCR5. 

 How opioids might directly (or indirectly through actions on 
glia) worsen the neurotoxic effects of gp120? One possibility is 
through overlapping actions at K

+
 channels. CXCR4-driven 

G�q increases outwardly directed K
+
 currents [214]. Since 

chronic opioid exposure can lead to a loss in MOR coupling to 
inwardly directed K

+
 currents in neurons [16], and through 

mechanisms that may be partially dependent on glia [16], an 
exaggerated bias toward the outward movement of K

+
 may 

partially explain the interactive neurotoxicity seen with chronic 
opioid and gp120MN co-exposure [60]. Gp120 appears to induce 
apoptosis in most neuron types studied through a caspase-3-
dependent process [109, 115, 214-219]. How outwardly 
directed K

+
 activates caspase-3 is less certain [214], but is likely 

to contribute to gp120-induced imbalances in CXCR4 or CCR5 
signaling in neurons through reduced ERK activation [211, 220-
222] with accompanying overactivation of p38 [69, 108, 117, 
223], JNK [108, 220, 224], and/or other MAPKs. More 
recently, Haughey et al. [225] described gp120-induced 
clustering of NMDARs in the dendrites of hippocampal neurons 
and subsequent declines in the excitotoxic threshold through 
facilitated increases in [Ca

2+
]i. The effects of gp120 on 

membrane clustering were partially blocked by the irreversible 
antagonist of CXCR4, plerixafor hydrochloride or AMD3100, 
indicating the involvement of CXCR4 signaling in NMDAR 
clustering [225]. Considering the known interaction(s) between 
MOR and CXCR4 [226-228], as well as maladaptive DOR-
CXCR4 interactions unmasked in MOR knockout glia [229], 
the convergent effects represent a potential site where opiate 
drugs and gp120 interface in neuroAIDS [60, 230-232]. 

 Meucci and co-workers propose that the ferritin heavy 
chain subunit can influence opiate drug toxicity by negatively 
regulating CXCR4 signals via Akt (PKB) [231, 232]. They go 
on to offer that otherwise neuroprotective CXCL12/SDF-1-
CXCR4 homeostatic mechanisms normally present can be 
disrupted by increased ferritin heavy chain subunit expression 
[231]. This has considerable implications for X4-tropic gp120 
and morphine neurotoxic interactions [60], implying that the 
degree of neurotoxicity may be “tunable” or modifiable by 
environmental or metabolic factors affecting the expression or 
trafficking of the ferritin heavy chain subunit. In addition, this 
may also be of considerable importance for opiate and X4-
tropic gp120 interactive toxicity in oligodendroglia (Zou and 
Knapp, unpublished), since oligodendroglia are exquisitely 
dependent on ferritin heavy chain subunit expression for iron 
regulation, myelination, and their survival [233-235]. 

OPIOID DRUGS EXACERBATE HIV-1-INDUCED 
NEURON DEATH THROUGH ACTIONS IN MOR-

EXPRESSING GLIA 

 In considering the convergence of HIV-1 and drug abuse, 
we proposed several years ago that critical interfacing of 
abused substances with HIV-1 occurs in glia [39]. More 
recent examination of opiate drug interactions with HIV-1 

Tat protein provides further support for this concept and 
additionally suggests that the deleterious effects of opiates 
are principally mediated through direct actions at MOR-
expressing astroglia and microglia (Fig. 2) [95]. The near 
exclusive role of glia infers that the principal site(s) of opiate 
actions that exacerbate neuroAIDS occur directly on glia and 
not neurons. This crucial observation implies that key 
neurotoxic signals originate from opioid receptor-expressing 
glia. Lastly, despite the involvement of glia in interactive 
striatal neuron death [60, 95], it remains uncertain whether 
opiates and HIV-1 can directly affect more subtle forms of 
synaptodendritic injury. For example, morphine can directly 
affect spine reductions in cerebral cortical neurons [102, 103, 
169, 236]; however, it is uncertain the extent to which 
morphine would similarly influence spine reductions in 
medium spiny neurons in the striatum or in pyramidal 
neurons within the CA1 region of the hippocampus. 
Defining the neural cell targets and aberrant glial-to-neuron 
signals (and vice versa) that mediate neuronal dysfunction 
and death are central toward understanding the pathogenesis 
of neuroAIDS in the context of opiate abuse. 

 Opioid signaling is highly contextual and fundamentally 
different in each cell type [237-239]. For this reason, 
defining the distinct and cell specific targets that are engaged 
by opiates to trigger CNS inflammation and neuronal injury 
is critical toward understanding how opiate abuse worsens 
the disease. A contributing factor in differential opioid 
signaling may be the vast amount of alternative splicing of 
MOR [239], and the variant splicing differences in different 
cell types is a largely unexplored area [45]. Given that 
subpopulations of astroglia and microglia (Fig. 3), as well as 
neurons can express MOR, future evaluation of the MOR 
variant expression profile in these individual cell types is of 
great importance. Furthermore, defining differential 
signaling cascades associated with each MOR variant, and 
determining whether HIV-1 affects expression or 
preferentially interacts with particular MOR variants in 
humans (Fig. 3), may shed additional light on the 
intracellular pathways in glia that trigger glia-mediated 
neurotoxicity in HIV-1-infected opiate abusers. 

HOW MIGHT OPIATE-EXPOSED GLIA MEDIATE 

BYSTANDER TOXICITY IN NEURONS? 

Critical Importance of Neurotoxic Intercellular Signals 

 If, as noted above, HIV-1 is a glia-specific disease and 
opiate drug abuse imparts significant neurotoxicity through 
actions in MOR-expressing astroglia and microglia, then 
identifying the specific, bidirectional intercellular glia-
neuron signaling events driving bystander neuron injury and 
death is of critical importance for understanding the 
pathogenesis. What is the nature of the intercellular signals 
that might be affected by opiates? Many glially derived 
signals that are likely to affect neuron injury or the 
maintenance of synapses have been identified [39, 60, 95, 
96, 151, 240-243]. Several factors have been assumed to be 
involved in opiate drug toxicity because they are known to 
be modified by opiate abuse and because of their established 
importance in experimental models or clinical studies of 
HIV-1 neuropathology, but without direct testing for an 
interaction. Prime examples of these are excessive 
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extracellular glutamate, extracellular ROS, and reactive 
nitrogen species, long proposed as "known suspects" in HIV-
1 neuropathogenesis [115, 116, 244-247]. When we directly 
tested whether these “presumed” interactions were in fact 
operative in HIV-1 Tat and opiate-mediated neurotoxicity, 
all appear to be complicit to varying degrees, but none 
actually drive the interactive pathogenesis. 

 Glutamate. Glutamate has long been thought to 
contribute to the generalized excitotoxicity attributed to 
HIV-1-induced neuron injury and/or death. These effects are 
not limited to a particular viral protein since HIV-1 gp120, 
Tat, and intact virions can all contribute to excess glutamate 
in the extracellular milieu and hyperexcitability in neurons. 
Gp120 and intact virions restrict glutamate uptake by 
astroglia through inhibition of excitatory amino acid 
transporter 2 (EAAT2) [183]. EAAT1 is altered by HIVE 
and may respond to cART-induced reductions in encephalitis 
[248, 249]. The activation of the Na

+
/H

+
 exchanger is 

another potential target for HIV-1 [250]. 

 Exposure to either morphine or HIV-1 Tat by itself 
inhibits buffering of a glutamate challenge, and this occurs 
largely through effects on astrocytes [60, 95]. Although 
combined Tat and morphine tended to further reduce 
glutamate-buffering ability, the interaction was not 
significant [95]. Therefore, reduced glutamate buffering did 
not correlate with increases in neuron death due to morphine 
and Tat co-exposure. Gp120 and morphine similarly failed to 
block glutamate uptake in an additive manner, although 
either treatment by itself did prevent enriched astroglial 
cultures from responding appropriately to a glutamate 
challenge [60]. 

 In all of the above studies, excess glutamate was applied 
to cultures enriched in astroglia (90.2 ± 0.4%) and microglia 
(8.8 ± 0.6%). Under normal physiologic conditions, EAAT1 
and EAAT2 are predominantly expressed by astroglia and 
minimally expressed by microglia [251, 252]. However, 
specific proinflammatory triggers, including infection with 
SIVmac251 in non-human primates, can increase the 

expression of EAAT1 and EAAT2 in macrophages or 
microglia [253]. Interestingly, the particular inflammatory 
mediators involved can differ among species including 
humans and mice (reviewed in [251]), and effects in murine 
microglia may not be generalizable to humans. Since 
astroglia outnumber microglia about 10:1 in our striatal 
mixed-glial cultures [95], astroglia were assumed to be the 
principal cell type involved. Moreover, since there were no 
net increases in extracellular glutamate in the presence of the 
EAAT1-5 inhibitor, DL-threo-b-benzyloxyaspartate (DL-
TBOA), or the EAAT1-3 inhibitor, (2S, 3S)-3-[3-[4 
(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-
TBOA), it is assumed that the inability of glia to deplete the 
glutamate increases caused by Tat ± morphine exposure was 
due to restricted uptake [95]. Despite our efforts to 
distinguish between reduced uptake and enhanced release, 
the assay may be relatively insensitive to transient and subtle 
alterations in glutamate release [254]. For example, under 
appropriate conditions, the activation of CXCR4 can cause 
glutamate release from astroglia [254]. Moreover, this assay 
is obviously unable to discriminate synaptically versus 
extrasynaptically directed glutamate release. 

 Regarding disrupted astroglial function, a compelling 
question regards the consequences of opiate abuse and HIV-
1 on the function of the “tripartite synapse” and “gliotrans-
mission”. Evidence is clear that astroglia affect synaptic 
transmission and plasticity [255-258]. Glutamate and D-
serine released from astrocytes at the synapse are essential 
for synaptic plasticity [259], as defined by changes in long-
term potentiation in hippocampal neurons (reviewed in 
[256]). By restricting EAATs that remove extracellular 
glutamate [60, 95], HIV-1 proteins and opiates are likely to 
affect gliotransmission indirectly, as well as permit excess 
glutamate to accumulate at extrasynaptic sites. Moreover, 
chronic morphine exposure significantly depresses EAAT2 
expression in the striatum and hippocampus [260], and 
EAAT1 and EAAT2 expression in the spinal cord [261], 
while opiate withdrawal dramatically increases EAAT2 
transcripts in the striatum [260]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Morphine and HIV-1 Tat-induced interactive neurotoxicity is mediated by MOR-expressing glia. Synergistic HIV-1 Tat and 

morphine neurotoxicity was only evident when MOR-deficient striatal neurons were co-cultured with wild-type glia (**P < 0.01 versus all 

other groups, red line) (A), but not when wild-type neurons were co-cultured with MOR-deficient glia (B, red line). Co-cultures consisted of 

neurons and glia (~10:1 ratio of astroglia:microglia) derived from the striata of wild-type or MOR knockout mice. Note that HIV-1 Tat alone 

was neurotoxic to striatal neurons irrespective of MOR genotype (*P < 0.05 vs untreated controls, double lines) (see [95] for further 

explanation). Reprinted with permission from reference [95]; Copyright 2011 Oxford University Press. 
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 While the net consequences of opiate drug and HIV-1-
induced alterations in the response of astroglia to 
extracellular glutamate may be largely attributable to 
EAAT1 and EAAT2 function, the glial response may not be 
limited to altered EAAT function and appears to differ 
among glial types. By contrast to observations in cultures 

containing a large proportion of astrocytes, in cultures of 
isolated microglia, HIV-1 Tat exposure markedly increases 
glutamate secretion, while morphine co-exposure can 
significantly increase glutamate secretion above levels seen 
with Tat alone through actions involving the xc

-
 cystine-

glutamate antiporter [80]. Lastly, as noted, EAAT1 and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). MOR immunofluorescence in human astrocytes and microglia. MOR and GFAP co-localization in subsets of primary human 

astrocytes (A). Astrocytes (catalog number 1800) were obtained from ScienCell Research Laboratories and cultured for 7-10 days according 

to the manufacturer's instructions. Iba-1 (B) and MOR (C) immunofluorescence in subpopulations of primary human microglia (ScienCell; 

catalog number 1900-f1) cultured as described for astrocytes. Cells were fixed with 3.7% paraformaldehyde, permeabilized with 0.5% Triton 

X-100, immuno-labeled, nuclei were stained with DAPI (blue), and images were enhanced by differential interference contrast (DIC) 

optics. Primary antibodies used were MOR (epitope within amino acids 1-15 of the N-terminus of human MOR) (Novus Biologicals, catalog 

number NBP1-31180), GFAP (Millipore, catalog number MAB360), and Iba-1 (Wako, catalog number 019-19741); all at a 1:200 dilution. 

Images were acquired using a Zeiss LSM 700 laser scanning confocal microscope at 63x (1.42 NA) magnification and ZEN 2010 software 

(Carl Zeiss Inc, Thornwood, NY), and edited using ZEN 2009 Light Edition (Zeiss) and Adobe Photoshop CS3 Extended 10.0 software 

(Adobe Systems, Inc.). 
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EAAT2 are minimally functional in resting microglia, but 
are inducible with immune activation [251]. The extent that 
more protracted exposure to opiates or HIV-1 proteins 
upregulates or fails to upregulate EAAT1 and EAAT2 
expression in microglia is uncertain but a potentially 
important consideration. 

 Cytokines and chemokines. The role of cytokines, and 
especially chemokines, in intercellular signaling from 
infected microglia to neurons in neuroAIDS is well 
established and has been extensively reviewed elsewhere 
[20, 115, 262-271]. Based on these and other findings within 
the CNS, we tested whether opioids might affect the release 
of pro-inflammatory cytokines and chemokines by astroglia 
and microglia exposed to HIV-1 proteins. The findings 
indicated that opioids could accelerate and enhance the 
release of cytokines and chemokines caused by HIV-1 Tat 
[71, 72, 124], as well as gp120 exposure in some instances 
[86, 181, 272]. Much of this data has been reviewed 
previously [13, 39]. 

 Elevated levels of fractalkine/CX3CR1 have been found 
in the brains and CSF of patients with HIVE, and have been 

localized to both neurons and astroglia [273, 274]. These and 
other findings suggest that elevations in fractalkine by 
neurons facilitate interactions with CNS immune cells and it 
was demonstrated that moderate levels of exogenously 
administered fractalkine were able to protect against Tat or 
gp120 mediated neurotoxicity [222, 274, 275]. We recently 
reported that exogenous fractalkine/CX3CL1 can be 
neuroprotective against the deleterious effects of morphine 
and HIV-1 Tat co-exposure [96]. Collectively, the above 
findings suggest a potential therapeutic course for fractalkine 
in neuroAIDS. Although the cellular mechanisms underlying 
the observed neuroprotection are not certain, findings that 
exogenous fractalkine reduces microglial motility and fails 
to protect neurons co-cultured with Cx3cr1

-/-
 mixed glia 

suggest that fractalkine acts by interfering with toxic 
microglial-neuron interactions. In addition to its blockade of 
Tat and morphine mediated neurotoxicity, fractalkine and its 
receptor have more direct interactions with gp120 [222]. 
CX3CR1 acts as a co-receptor for viral entry [276], and thus 
fractalkine is able to displace gp120 on the fractalkine 
receptor to prevent microglial activation. Additionally, 
CX3CL1-CX3CR1 interactions can attenuate gp120-mediated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Astroglia isolated from the cerebral cortex (A), cerebellum (B), and spinal cord (C) display significant regional differences in the 

pattern of cytokine release in response to HIV-1 Tat in vitro (A-C). Interestingly, the pattern of cytokine release in response to Tat paralleled 

the incidence of HIV-1-related neuropathology in the brain and spinal cord (see reference [86]). Striatal astrocytes, analyzed as part of 

another study, show a far more dramatic interaction between HIV-1 Tat and morphine [72]. Cytokines and chemokines were analyzed 

simultaneously by multiplex suspension array assays [86]; legend provided in (D). Overall responses to HIV-1 Tat, gp120 and morphine 

across brain regions are summarized (E) (see text and reference [86] for further explanation). Reprinted with permission from reference [86]. 

Copyright 2010 American Chemical Society. 
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neurotoxicity by preventing microglial activation and 
upregulation of pro-survival factors such as p-Akt [222]. 

 Glial heterogeneity. Astroglia and microglia are 
phenotypically diverse in terms of their expression of opioid 
system peptides and receptors. Subsets of astrocytes can 

express MOR, DOR, and/or KOR [73, 75, 76, 81, 277, 278], 
as well as the proenkephalin opioid gene and proenkephalin-
derived peptides, including Met-enkephalin, Leu-enkephalin, 
and partially processed enkephalin precursors [79, 279-284]. 
The heterogeneity within astroglia is not limited to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Opiate drugs exacerbate HIV-1 neuropathogenesis through direct actions on glia, especially microglia and astroglia, in addition to 

affecting neurons. In the CNS, HIV-1 infects microglia, and to a lesser extent astroglia, causing the production of reactive oxygen and nitrogen 

species (ROS and RNS, respectively), pro-inflammatory cytokines, and the release of HIV-1 proteins such as gp120 and Tat, which promote 

inflammation and cytotoxicity in bystander neurons and glia. Chronic opiate abuse by itself can cause some neuropathology (e.g., see [93]); 

however, in HIV-1-infected individuals opiates can potentiate many of the pathophysiological effects of the disease—especially in the central 

nervous system. Multiple neuronal and glial types can express the �-opioid receptor (MOR). Many of the neurodegenerative effects of opioid-

driven synergy arise through direct actions on microglia and astroglia. In fact, evidence suggests that reverberating inflammatory/cytotoxic 

positive feedback signaling between HIV-1-infected microglia and astroglia is exacerbated by opiate exposure—revealing novel targets for 

therapeutic intervention in opioid drug abuse and HIV-1 comorbidity. Abbreviations: �-chemokine “C-X-C” receptor 4 (CXCR4); altered or 

changed (�); 	-chemokine “C-C” receptor 5 (CCR5); blood-brain barrier (BBB); decreased (�); fractalkine (CX3CL1); fractalkine receptor 

(CX3CR1); increased (�); interferon-
 (IFN-
); interleukin-6 (IL-6); intracellular Ca
2+

 concentration ([Ca
2+

]i); intracellular sodium concentration 

([Na
+
]i); monocyte chemoattractant protein-1 (MCP-1 [or CCL2]); peripheral blood mononuclear cells (PBMCs); regulated upon activation, 

normal T-cell expressed, and secreted (RANTES [or CCL5]); Toll-like receptor (TLR). Fractalkine released by neurons (and astroglia) can be 

neuroprotective by limiting the neurotoxic actions of microglia (blue “�”); red arrows suggest pro-inflammatory/cytotoxic interactions. Modified 

and reprinted from reference [307], Copyright (2006), with permission from Springer. 
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opioid system, as other neurochemical systems similarly 
show a high degree of phenotypic diversity [285-289], a 
degree that is perhaps only rivaled by neurons. Glial 
heterogeneity exists even within a single brain region. For 
example, astroglia in the striatum vary individually in their 
expression of MOR, DOR, and KOR [73]. Heterogeneity in 
the expression of endothelin-1, and �1-adrenergic and 
muscarinic [290] receptors is present among astroglia in 
other brain regions. Astroglia also display significant 
regional differences in their functional response to HIV-1 
Tat and gp120 (Fig. 4). 

 Unlike neurons, astroglial characteristics appear 
modifiable by adjacent neurons and perhaps other regional 
and extrinsic cues within the extracellular milieu [287, 291, 
292] (Fig. 5). For instance, intrastriatal injection of Tat 
significantly increases the number of MOR immunoreactive 
astroglia at 48 h post-injection [72], while the proportion of 
MOR immunoreactive neurons remains unchanged (Hauser, 
unpublished). The diversity and plasticity of receptor 
expression by astrocytes is not limited to neurotransmitter 
receptors. Pattern-recognition receptors (PRRs), which 
recognize conserved microbial molecular motifs and are 
critical components of the innate immune system, show 
considerable diversity in astroglia. PRRs expressed by 
astrocytes include multiple members of the Toll-like receptor 
(TLR) family including TLR2, TLR3, TLR4, and TLR9 
[106, 293]. Importantly, exposure to HIV-1 and/or opiates 
can alter the expression of TLR2 and TLR9, which are 
important in the host defense response to HIV-1. Chronic 
opiate exposure may predispose the CNS to HIV-1 infection 
by suppressing the innate immune response and by inhibiting 
TLR9 expression by astrocytes [293]. Morphine suppresses 
the response of alveolar macrophages against Streptococcus 
pneumoniae pathogenicity by altering TLR9-dependent NF-
�B signaling [294]. Morphine reportedly can induce 
apoptosis in neurons via TLR2 [295]. Recently, morphine 
has been proposed to increase nociception and inflammation 
through a non-canonical mechanism involving direct 
interactions with TLR4 in glia [296, 297], although the 
detailed molecular mechanisms underlying the interactions 
remain to be elucidated. Collectively, the above results 
suggest that opiate drugs can affect the innate immune 
response through MOR-dependent alterations in one or more 
TLR signaling pathways and perhaps via novel MOR-
independent actions at TLR4. 

 Oligodendroglia and demyelination. Oligodendroglia 
within the striatum are highly sensitive to the effects of 
morphine in HIV-1 Tat transgenic mice [83]. Striatal 
oligodendrocytes are the only cell type in the Tat transgenic 
mice to die, albeit at very low (~1.5%) rates, within 2 to 7 d 
of combined morphine exposure and Tat induction [83] (Fig. 
1). Besides cell death per se, there is considerable evidence 
of cellular degeneration in Golgi silver-impregnated 
oligodendroglia, and a reduction in the number and extent of 
myelinating processes in a subset of cells [83]. The effects of 
Tat and morphine on oligodendrocytes are likely to be direct. 
Unlike astrocytes, oligodendrocytes can express NMDARs 
[298-300], a molecular target of HIV-1 Tat in neurons [126, 
130, 137]. Furthermore, oligodendrocytes can express MOR 
and KOR [277, 279, 301], and immature oligodendrocytes 
appear to be particularly sensitive to the effects of MOR and 
KOR activation [302-305]. Perinatal exposure to 

buprenorphine, a partial MOR agonist and partial KOR 
antagonist, results in aberrant myelin g-ratios [303], 
indicating an inappropriate relationship between myelin 
thickness:axon diameter and inferring that intercellular 
neuron-to-oligodendroglia signaling is disrupted [306]. 
Taken together, the above findings suggest that 
oligodendrocytes are preferentially vulnerable to HIV-1 and 
opiate drug interactions [83] and this may be an additional 
mechanism by which opiate-HIV-1 interactions in glia result 
in neuronal dysfunction and injury (Fig. 5). 
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