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Simple Summary: This review depicts the principal mechanisms involved in the process of stromal
desmoplasia characterizing pancreatic ductal adenocarcinoma (PDAC). The aim of this review is to
point out the role of the dense extracellular matrix in worsening PDAC responsiveness to conventional
therapies. In this context, a presentation of the most promising therapeutic solutions for targeting or
overcoming the matrix is provided. Even though several drug compounds revealed disappointing
results in clinics, other matrix factors are now becoming the focus of studies and must be further
explored to develop the optimal therapeutic strategy. Bringing novel therapeutics to PDAC patients
is challenging but crucial for effectively eradicating the disease and improving patient survival.

Abstract: The stroma is a relevant player in driving and supporting the progression of pancreatic
ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the
efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor
acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches
combining stroma-targeting and anticancer therapy constitute an appealing option for improving
drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as
the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are
responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood
vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing
drug penetration. Even though many stroma-targeting strategies have reported disappointing results
in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being
investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or
by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview
of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic
strategies for PDAC.

Keywords: extracellular matrix; stroma; stiffness; solid stress; matrix remodeling; cancer-associated
fibroblasts

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a very dramatic
clinical course and is the third largest cause of cancer-related deaths in the US, with a
5-year survival rate of lower than 10% [1]. The clinical stage of PDAC includes four
classes: 1 (resectable tumor measuring between 2 and 4 cm), 2 (tumor > 4 cm, localized
to the pancreas), 3 (unresectable tumor expanded to the nearby blood vessel or lymph
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nodes), 4 (metastatic disease) [2]. At present, the PDAC is a “silent” disease due to
the absence of biomarkers and non-specific symptoms, especially in the early stages [3].
Concordantly, 80-85% of patients display a locally advanced or metastatic disease at the
time of diagnosis, thereby making chemotherapy or radiotherapy the primary treatment
options [4]. Even for the small subset of cases eligible for surgical resection, the prognosis
remains poor and with a high risk of recurrence, especially within the first two years
post-surgery [5]. In recent years, some advancements in the chemotherapeutic regimens
have modestly improved the overall survival of patients. Conventional chemotherapeutic
monotherapy based on gemcitabine (GCB) has been widely used in the past as PDAC
standard treatment [6]. However, the therapeutic responses using GCB were disappointing.
Among the tested strategies, the combination of GCB and nab-paclitaxel was reported
as significantly improving the overall patients’ survival, progression-free survival and
response rates [7]. Moreover, a combination of chemotherapeutic drugs (FOLFIRINOX:
oxaliplatin, irinotecan, leucovorin and 5-fluorouracil) was developed and demonstrated to
prolong patients” survival when compared to GCB alone [8]. Modified (m)FOLFIRINOX
was further obtained by removing the 5-fluorouracil bolus from the regimen and became
the preferred adjuvant therapy for patients with PDAC who had undergone surgical
resection and had not received neoadjuvant chemotherapy [9]. Despite these treatments,
the drug resistance of PDAC still leads to extremely poor outcomes. The dense fibrous
stroma surrounding the tumor mass, together with the abnormal vasculature network
and the immune-suppressive microenvironment typical of this cancer type, are among
the causes of this drug resistance [10]. The tumor microenvironment (TME) in PDAC is
composed of a stiff extracellular matrix (ECM) based on collagen I, elastin and fibronectin,
as well as hyaluronan (HA) and other sulfated glycosaminoglycans, which create a dense
network together with surrounding fibroblasts, endothelial cells and infiltrating immune
cells [11]. The remarkable ECM stiffness and desmoplasia surrounding PDAC tumor cells
do not only constitute an anatomically supporting tissue, but dynamically contribute to
generate a specific microenvironment facilitating tumor growth, metastasis, and survival
(Figure 1) [12-15] and can constitute a barrier for chemotherapeutic drugs [16,17]. PDAC
stroma is hypovascularized, presenting tortuous, compressed and poorly functional blood
vessels. This phenotype is determined by different factors that can be extrinsic to blood
vessels (related to the physical and chemical properties of the ECM) or intrinsic to blood
vessels (related to endothelial cell activation and tumor angiogenesis) [18]. In recent
years, an increasing amount of scientific evidence has highlighted the influence of the
physical and mechanical properties of the tumor comprising stiffness, hypoxia and chaotic
vascularization, on the drug-resistance or metastasizing abilities which are typical of this
cancer [19-23]. Several preclinical and clinical studies have investigated numerous systems
to target the ECM in PDAC. In this review, aside from describing the principal mechanisms
and key players involved in the ECM remodeling, we focus our discussion on the existing
or future therapeutic strategies to overcome the dense ECM of PDAC.
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Figure 1. The extracellular matrix (ECM) modifications in pancreatic ductal adenocarcinoma (PDAC). In physiological

conditions, pancreatic epithelial cells are surrounded by the ECM with its molecular components; cells providing structural

and nutritive support, such as fibroblasts; and the vasculature network. During tumor transformation, the enhanced ECM

deposition by cancer-associated fibroblasts (CAFs) is aided by molecular messengers such as the tumor growth factor 3
(TGF-£) or sonic hedgehog (SHH), and forms a dense and stiff matrix around early PDAC cells. This complex meshwork,
together with the formation of new collapsed and leaky blood vessels, creates a tumor microenvironment, which favors

PDAC growth and invasiveness, activating intracellular pathways that induce pro-tumorigenic programs.

2. Cellular Component of PDAC Microenvironment: Heterogeneity and Plasticity of
Cancer-Associated Fibroblasts (CAFs)

Fibroblasts are present in all solid organs, where they release several components of
the matrix, cytokines and growth factors and play a role in the regulation of the homeostasis.
In cancer, the activated fibroblasts have an important function in the regulation of tumor
growth, dissemination and metastasis [24]. PDAC is characterized by a prominent desmo-
plasia where the stroma components occupy more than 70% of the total tumor volume [25].
Acellular components, mainly consisting of ECM, and cellular components, including
endothelial and perivascular cells, immune cells, neurons and fibroblasts, characterize the
dense desmoplastic stroma [26]. All of these components are clearly identified interacting
and participating in the promotion of the growth of PDAC [27]. Among the cellular com-
ponents ruling tumor growth and invasive behavior, cancer-associated fibroblasts (CAFs)
are one of the most important. This cell type originates from: the activated resident fibrob-
lasts [28]; the transdifferentiation of epithelial cells or pericytes; [29] the differentiation from
mesenchymal progenitor cells located into the tumor [30]; the differentiation of adipose
tissue-derived stromal cells, [31] or cancer stem cells [32,33]. Moreover, CAFs can be found
within the TME or around it [34]. Several studies have shown that the differentiation of
fibroblasts into CAFs is triggered by various growth factors, chemokines or inflammatory
cytokines, such as FGF-2, TGF-8, IL-6, IL-10 or PDGF, expressed by cell components of
the TME [35-37]. CAFs can display different phenotypes and functions according to the
tumor tissue in which they are located [33,38-40]. CAFs are characterized by a certain
heterogeneity, which allows us to identify several subpopulations depending on their
biological function. Two types of CAFs have been described by Tuveson’s research group,
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using different experimental biological models including co-cultured cells and organoids,
followed by data validation in human pancreatic tumors [41]. The first type is represented
by the inflammatory CAFs (iCAFs) which display a low expression of x-smooth muscle
actin (x-SMA) and a high expression of inflammatory cytokines such as interleukin-6
(IL-6), IL-11 and leukemia inhibitory factor (LIF). The second type is represented by the
CAFs identified as myofibroblasts (myCAFs), with a high expression of «-SMA and a low
production of inflammatory cytokines. Interestingly, immunohistological studies have
indicated that there is a different localization of these two CAFs types in the TME. Indeed,
while myCAFs are located close to tumor cells, the majority of iCAFs are found to be distant
from the tumor foci [41]. Using single-cell RNA sequencing, the existence of myCAF and
iCAF is further confirmed and a gene signature is defined [42]. Using this approach, a
third class of CAFs expressing MHC class Il-related genes is identified [42]. This subclass
of CAFs named «antigen-presenting CAFs» (apCAFs) induces T-cell receptor ligation in
CD4+ T cells in an antigen-dependent manner. The existence of this heterogeneity in CAFs
and their plasticity to acquire different phenotypes is confirmed by other studies [43,44]. In
contrast to insights on the capacity of normal fibroblasts to inhibit cancer growth [45,46],
several reports demonstrate that CAFs promote tumor growth through different pathways,
including an abnormal production of ECM components, as well as matrix-remodeling
molecules such as heparanase and matrix metalloproteinases (MMP) [47-49]. CAFs also
express regulatory molecules, such as growth factors that affect tumor angiogenesis, and
participate in the activation of quiescent fibroblasts [50-52], chemokines generating an
immunosuppressive TME [53], and cytokines inducing inflammation [41,54]. All of these
characteristics make CAFs a real “cellular conductor” that truly controls tumor growth in
the primary tumor and metastases [55-57], also playing a role in the acquisition of drug
resistance [58-61]. The protumorigenic potential of CAFs has prompted studies to target
this cell type as a therapy for the PDAC.

3. Physical and Mechanical Modifications of the Matrix in PDAC
3.1. Fibrosis and ECM Remodeling Affect Pancreatic Microenvironment

Fibrosis is a pathological process that induces changes in ECM composition and
organization, leading to scar formation within tissues during dysregulated wound repair. It
brings to substitution of normal structures with fibrotic ECM, invasion and proliferation of
mesenchymal cells, completely affecting tissue functions [62]. The fibrotic process is caused
by the aberrant activity of the ECM remodeling machinery, affecting its composition and
physical properties. Consequently, the ECM modification might induce an altered cellular
response that, in the chronic wound healing processes, can culminate in the malignant
proliferation and migration of cells, which is the prelude to tumorigenesis [16,63]. Fibrosis
characterizes the desmoplasia of PDAC (Figure 1) [64]. Here, pancreatic tumor cells can
exploit fibrotic mechanisms in order to sustain and maintain an environment suitable
for their proliferation and invasiveness ability. In fact, native interstitial and basement
membrane ECM are replaced by a huge amount of fibrotic ECM, which consist of collagen,
especially type I, IIl and IV, HA, laminin and fibronectin [65]. They are mainly synthetized
by PDAC cells and CAFs, which are first recruited by tumor cells upon the secretion of sonic
hedgehog (SHH), TGFf31, FGF2 and PDGE, and subsequently stimulated by immune cells,
such as macrophages, attracted by the inflammatory environment [66,67]. CAFs acquire a
myofibroblast phenotype expressing «-smooth muscle actin (x<SMA) upon activation and
show an enhanced collagen synthesis and deposition. Moreover, they are further activated
by TGFf31 autocrine signaling, which elicits a harmful self-sustaining mechanism [68]. In
healthy conditions, type I and type III collagen fibrils are present and confer structural
thickness and stiffness to the ECM [69]. Collagen fibril assembly is favored by crosslinks
between lysine residues through a process catalyzed by extracellular enzyme lysyl-oxidases
(LOX) [70]. LOX enzymes are overexpressed in PDAC, increasing the crosslinking of
collagen fibers, thus stiffening the ECM [68,71]. Due to their intense crosslinking, LOX can
alter cell migration and invasion, and increase resistance to treatments [72]. In fact, the use
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of neutralizing antibodies versus these enzymes has shown that collagen crosslinking, as
well as the proliferation of metastases, was reduced, suggesting that LOXs exert important
roles in tumor progression and invasiveness. Moreover, after their inhibition, vessel density
increased [63,68]. In PDAC, abnormal new collagen deposition increases the density,
affects the composition and organization of the fibrils, and the interstitial ECM physical
properties are inevitably affected. Fibrillar collagen type I is one of the molecules most
involved in desmoplasia [73]. Additionally, type IV collagen and laminin are part of
the basement membrane and are similarly over synthetized, causing modifications in
the architecture of the surrounding microenvironment [69,74-76]. Particularly, laminin
proteins appear to be ubiquitously distributed within the stroma, creating a discontinuous
basement membrane [77]. Among the laminin, laminin 5 (consisting of subunits «3, 33, and
v2) has been shown to mediate proliferation, apoptosis, invasion, migration and epithelial-
to-mesenchymal transition in vitro [78,79] and it is negatively associated with patients’
survival [80]. It interacts with cells through focal adhesion and hemidesmosomes formed
via the interaction with «331 integrin and «6(34 integrin. Additionally, by interacting with
the overexpressed «631 integrin, laminin 5 induces focal adhesion kinases (FAK) and AKT
phosphorylation in a time-dependent manner, increasing cell survival [80,81].

HA has been largely investigated in PDAC, since it is overexpressed in neoplastic
and stromal cells [82]. HA is a polysaccharide and non-sulfated GAG component of ECM,
characterized by important viscoelastic properties and involved in the water uptake of
tissues [17,68,69,83,84]. Its receptor, CD44, leads to the activation of different intracellular
signaling pathways, including the PI3K-AKT ERK, RhoA and RAS pathways, thereby
promoting cell survival, invasion and epithelial-to-mesenchymal transition [85,86]. The
deposition of a high content of collagen I and HA within the neoplastic tissue (both
primary or metastatic tumor) is negatively associated with survival. Other proteins are
involved in ECM remodeling and are similarly important in PDAC progression. MMPs are
zinc-containing endopeptidases, which are responsible for ECM degradation during the
migration and invasion of cells and, therefore, allow metastasis. More specifically, MMP-2,
7,9 and 14 are identified as overexpressed in PDAC patients. Particularly, MMP2, secreted
by activated fibroblasts, turns on the membrane-associated MMP14 (also called MT1-MMP)
at the filopodia level of tumor cells, degrading the basement membrane and inducing
cell extravasation. Of note, both MMP2 and MMP14 have been shown to cleave laminin
5, exposing a domain recognized by a331 integrin and/or a634 integrin and fostering
cell migration and invasion [80,87]. Moreover, MMP7-deficient mice with Kras-driven
PDAC showed a smaller tumor mass and less liver and lymphatic metastasization, further
suggesting that they play a role in PDAC progression [88-90].

Aside from inducing new ECM deposition, stromal cells can also secrete diffusible
factors acting on blood vessels. For instance, tumor-associated macrophages (TAMs)
have been shown to produce several factors, such as the vascular endothelial growth
factor-A (VEGF-A), basic fibroblast growth factor (FGF-2), urokinase-type plasminogen
activator (uPA) and matrix metalloproteinase 9 (MMP9), promoting tumor angiogenesis
and vascular permeability [91-93]. It is important to note that FGF-2 promotes endothelial
cell migration in vitro, increases VEGF synthesis and induces the synthesis of collagen,
fibronectin and proteoglycans by endothelial cells, reinforcing both tumor angiogenesis
and the desmoplastic reaction in PDAC tumors [94,95].

3.2. ECM Stiffness, Solid Stress and Interstitial Fluid Pressure

As mentioned above, the deposition of new ECM not only affects the microarchitecture
of pancreatic tissue, but also increases the TME stiffness [63,68]. HA and collagen deposition
and intense crosslinking fibrils make ECM more dense and less porous (Figure 2). Several
studies investigated PDAC stiffness compared to normal pancreatic tissue, using direct
rheological analysis or elastography techniques. Through analysis of the steady-state
modulus, it is possible to demonstrate that PDAC biopsies are stiffer than normal pancreatic
tissues, while a map based on tissue stiffness is generated through ultrasound-based



Cancers 2021, 13, 4442

6 of 32

elastography [96-100]. In vitro analysis of both collagen I and HA hydrogels showed the
role of both polymers within the ECM. Collagen is predominant in stiffening matrices,
as its concentration increases [101]. On the contrary, HA concentration augmentation
has shown a decrease in stiffness and a shift toward fluid-like properties, but elevated
resistance to compressive stress increases failure stress [102-105]. The elevated resistance
to compression is due to the hydraulic resistance granted by HA [101].

Normal pancreatic tissue PDAC tissue

Pancreatic epithelial cells . PDAC cells /\1 Blood flow

-~ Endothelial cells

é Blood vessels

Increase of ECM
deposition and
stiffness

\ Collagen Lymphatic vessels

e Hyaluronicacid -

‘-..

Figure 2. Consequences of ECM stiffness and solid stress. In normal conditions, hyaluronic acid (HA) and collagen fibers

are well organized in the pancreatic tissue. There is no stress throughout the tissue and fluids can easily flow from the

blood vessels to the interstitium. Functional lymphatic vessels can drain out of the interstitium, keeping its fluid pressure

lower than the intravascular pressure. In PDAC, the high deposition of new ECM increases the stiffness, as well as the solid

stress within the tumor mass. Meanwhile, HA increases the osmolarity of the interstitial space, inducing an augmented

water uptake from the blood vessels. This, along with the fluid leakage and collapse of both blood and lymphatic vessels,

increases the IFP, causing an altered fluid flow.

Furthermore, as reported by Nia et al., the other two physical aberrancies can be
identified in the desmoplastic TME: elevated solid stress and elevated interstitial fluid
pressure [106-108]. If the stiffness is related to the ECM composition and organization,
then solid stress is due to the stroma cellular components. Physical forces involved in solid
stress are created by the cytoskeleton filaments involved in cell movement, migration and
proliferation; the interaction of cells (tumor cells or CAFs) with ECM; and the interplaying
forces between the host tissues and the tumor. Specifically, it is the combination of all
of the physical forces derived from the tumor growth. So, if the tumor applies a certain
force towards the host tissue, the host tissue tries to respond with similar counter forces.
Moreover, although ECM stiffness can remain similar during the tumor progression, the
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solid stress can increase, becoming less dependent on the ECM stiffness and thus inducing
the mass expansion of the tumor [107]. While in normal tissues solid stress is null, PDAC
displays an elevated solid stress [19]. In particular, primary tumors display a higher
solid stress than metastatic ones, while ECM stiffness results are similar [108]. Such high
solid stress at primary lesions leads to the collapse of lymphatic and blood vessels when
subjected to this pressure [106-109]. Previously, KrastSt-G12D/+; Typ53LSLRIZZH/+; Cre
(KPC) mice bearing PDAC tumor have mostly shown constricted and collapsed vessels
(up to 75%) within the tumor mass, and HA and especially collagen seem to contribute
to this phenomenon [17,110,111]. Therefore, both a high stiffness and solid stress cause
abnormalities in fluid flow within the tumor mass. Normally, fluid exchange between
blood vessels and interstitial space is mainly ruled by intra-vasculature pressure (IVP),
which is higher than the interstitial fluid pressure (IFP). Therefore, fluids tend to flow out of
blood vessels mainly through the convection process, reaching the interstitial space. Here,
lymphatic vessels drain the interstitium collecting the fluids. This prevents an increase
of pressure within the interstitium. As previously shown, in desmoplastic tumors, HA
participates in increasing IFP. Its high deposition induces a higher water uptake within
the tissues, swelling the fibrotic ECM and creating a gel fluid phase that contributes to the
collapse of vessels [17,112]. Oppositely, the stiff collagen matrix acts against ECM swelling,
limiting the over-absorption of fluids within the tumor [109]. In addition, since there are no
functional lymphatic vessels, the interstitium cannot be drained and IFP further increases.
On the other hand, IVP decreases in PDAC as blood vessels lose their integrity, leading to
the leakage of fluids (Figure 2) [20,108]. In this condition IFP exceeds IVDP, hindering normal
fluid flow [97]; therefore, convection transports become negligible, while diffusion is the
dominant mechanism through which exchanges occur [19]. Likewise, small molecules, as
well as macromolecules, which in normal conditions are transported through convection
mechanisms, are subjected to diffusive processes, reducing their penetration within tumor
mass. Furthermore, together these phenomena lead to the reverse of the pressure gradient,
inducing fluids to be oozed from tumor mass towards the surrounding microenvironment.
This brings tumor fluids—loaded with tumor growth factors, cytokines and cancer cells—
to be spilled out to adjacent tissues [19,106,109]. Finally, the collapsing of blood vessels
provokes a lack of nutrient and oxygen supply to tumor mass, resulting in an acidic and
hypoxic environment promoting tumor progression [113].

3.3. Cellular Response to Stiffness and Solid Stress

Some evidence demonstrated that epithelial-mesenchymal transition (EMT), which
is the prerequisite to invasion and metastasis, is also elicited by ECM stiffening. Cellular
mechanosensors are involved in these processes, including proteins at focal adhesion [65].
Among adhesion proteins, integrin 31 was shown to be overexpressed in cells cultured in a
rigid matrix [114]. Cells with a high number of focal adhesions with ECM have an elevated
cytoskeleton tension, which is reflected by a higher phosphorylation of the actomyosin
systems, responsible for cell contractility and movements [88,115]. Some heparane sulfate
proteoglycans (HSPGs) intervene by stabilizing integrin 31 interaction with ECM, allowing
tumor cells and CAFs to sense mechanical modifications: agrin and perlecan. Both were
observed as overexpressed in PDAC, through mass spectroscopy analysis. They enhance
the response to mechanical cues inducing the polymerization and reorganization of actin
during cell contraction, elevating actomyosin contractility and increasing the activation of
Yes-associated proteins (YAP) and their nuclear translocation (Figure 3) [90,116-118].
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Figure 3. PDAC cell response to stiffness and solid stress. The interaction between ECM and PDAC
cells occurs through the binding to adhesion proteins, such as integrins, expressed on the cell surface,

and it is further stabilized by proteoglycans. This interaction triggers the actomyosin contractility
and the activation of YAP/TAZ, which translocate to the nucleus to induce gene transcription.

EMT is triggered by the accumulation of YAP and the transcriptional coactivator with
the PDZ-binding motif, also known as WWTRI1 (TAZ), within the nuclei [119-123]. YAP
and TAZ need DNA-binding partners, as YAP and TAZ have no DNA binding ability. So,
according to the partner, they can induce the expression of a wide range of genes, both
tumorigenic and tumor suppressors [124]. However, when cell-cell adhesions decrease, the
nuclear activated YAP/TAZ bind to TEAD, which is a transcriptional factor, accomplishing
the expression of target genes: CTGF, CYR61, GATA3, BCL2, Vimentin, AREG, MYC, Gli2
and AXL. These are all genes involved in cell migration, proliferation, cell-ECM adhesion,
ECM remodeling, anti-apoptotic mechanisms and cell stemness [124,125]. At this step, cells
show less protein designated to maintain cell-cell interactions such as E-cadherin, causing
a loss of tissue polarity, while they increase the expression of vimentin, which is a marker
of mesenchymal cells [68,121]. YAP/TAZ nuclear translocation can be similarly induced by
the interaction of laminin 5 to «634, allowing the tumor cells to maintain their stemness, as
shown in epidermal stem cells [126]. Additionally, integrin 31 has been demonstrated to be
involved in inducing the activation of ECM-bound TGF-§ through mechanical processes.
Normally, the latent TGF-{3 binding protein (LTBP) retains inactive TGF-31 proteins bound
to ECM. During the remodeling and stiffening of the ECM, the integrin 31 of pancreatic
stellate cells (PSCs) induces the release and activation of TGF-{3. This process is induced
by the tension caused upon the activation of the actomyosin system [88,127]. Through
mechanosensor machinery, PDAC cells have the ability to migrate and invade stiffer
substrates, which is called durotaxis. Regarding this, activated PSCs have been shown
to migrate according to substrate rigidity by means of integrin 31 [128]. Additionally,
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the in vitro analysis of different pancreatic tumor cell lines in order to evaluate cellular
stiffness, has shown a growing invasiveness ability as stiffness increases [129].

Tumor solid stress can similarly induce several cell responses and can reduce cell
proliferation and induce apoptosis, suggesting its role in regulating tumor morphology
and growth. However, recently studies reported its role in the induction of pancreatic cell
migration in vitro, by affecting the cytoskeleton organization. During PDAC development,
this induces in fibroblasts an increased expression and secretion of growth differentiation
factor 15 (GDF15), which is implicated in the mechanisms of tumor cell migration and
invasion [107,130].

4. Pharmacological Tools Targeting the Stromal Barrier: From CAFs to ECM
Components and Vessels Normalization

4.1. CAF Targeting as Therapeutic Strategy: A Double-Edged Sword

While many studies have focused on epithelial cells in the search for anti-PDAC ther-
apy for several years, more recently a large number of therapeutic strategies targeting CAFs
has been developed and tested (Table 1; Figure 4). The rationale of these studies comes from
their tumor-promoting functions, their ability to produce tumor stromal constituents and
their association with poor prognosis in cancer patients [34,131,132]. Several approaches
have been undertaken, including the inhibition or the reprogramming of CAFs toward a
normal phenotype. CAFs activation might be prevented by targeting the SHH signaling
pathway. With this in mind, cyclopamine was proposed. It is a natural steroidal alkaloid
which is able to reduce fibronectin content and to improve tumor vascularization in a
PDAC xenograft mouse model. Moreover, in combination with PTX-NPs, it increases the
inhibition of tumor growth by 63.3% [133,134]. In a preclinical murine model of pancreatic
cancer, the administration of IPI-926, an inhibitor of SHH receptors, was combined with
GCB. The treatment significantly enhanced the bioavailability of GCB in tumor tissue,
inducing tumor regression. However, data obtained from clinical studies were disap-
pointing, to the extent that the study was interrupted due to the reduced patient survival
(NCT01130142) [135]. Similar results were obtained in several clinical trials involving the
combination of GCB or FOLFIRINOX with vismodegib, another SHH inhibitor [136-139].
Another approach targeting CAFs expressing the fibroblast activation protein (FAP) has
been investigated using diphtheria toxin. The study demonstrates that the toxin is able
to enhance the anti-tumorigenic cytotoxicity of CD8" T cells and to reduce tumor growth.
Moreover, histological analysis of the tumor shows a reduction of CAFs migration toward
the metastatic niche [14,140,141]. Analogous observations have been reported in breast and
lung cancer preclinical models [14,140,142]. FAP-targeting strategies through immunother-
apy have also been proposed. Sibrotuzumab, an anti-FAP antibody, was used in a phase II
clinical study. The results obtained starkly contrasted with each other, with no significant
effect on tumor development [143].
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Table 1. List of completed, active or recruiting clinical trials for targeting the ECM in PDAC.
Drug and Study Target Design Status Phase PDAC Tumor Stage
PEGPH20 HA
NCT01959139 PEGPH20 + FOLFIRINOX Active I/1 Metastatic
NCT03193190 PEGPH20 + atezolizumab Active I/11 Metastatic
NCT01839487 PEGPH20 + GCB/nab Completed I Metastatic
NCT04058964 PEGPH20 + pembrolizumab Withdrawn II Metastatic
NCT02921022 PEGPH20 + GCB/nab + rivaroxaban Active NA Advanced
Paricalcitol CAFs
NCT03520790 Paricalcitol + GCB/nab Active I/1 Metastatic
NCT03300921 Paricalcitol + pembrolizumab Active I Resectable
NCT03883919 Liposomal Paricalcitol + 5-FU/leucovorin Active I Advanced progressed on GCB-based therapy
NCT03519308 Paricalcitol + nivolumab + GCB/nab Recruiting I Resectable
NCT04617067 Paricalcitol + GCB/nab Recruiting II Advanced
NCT04524702 Paricalcitol + Hydroxychloroquine + nab Recruiting 1II Advanced metastatic
NCT02930902 Paricalcitol + pembrolizumab + GCB/nab Active I Resectable
NCT03138720 Paricalcitol + nab + GCB + Cisplastin Active I Untreated, resectable, borderline and locally advanced
NCT03415854 Paricalcitol + Cisplatin + GCB/nab (single arm) Active I Metastatic
Xydroxychloro-quine CAFs
NCT01494155 Hydroxychloroquine + Capecitabine + Radiation (single arm) Active I Resectable
NCT04132505 Hydroxychloroquine + binimetinib Recruiting I KRAS mutated metastatic
NCT03825289 Hydroxychloroquine + trametinib Recruiting I Stage ILIILIV unresectable and metastatic
NCT04386057 Hydroxychloroquine + LY3214996 Recruiting I PDAC
NCT01506973 Hydroxychloroquine + GCB/nab Active I/11 Advanced and metastatic
ATRA CAFs
NCT04241276 ATRA + GCB/nab NA II PDAC
Losartan Collagen
NCT03563248 Losartan+nivolumab + SBRT recruiting I Localized
NCT01821729 Losartan + radiation active I PDAC
NCT04106856 Losartan + Rx after chemiotherapy recruiting I Borderline resectable or locally advanced
Volociximab a5B1 integrin
NCT00401570 Volociximab + GCB Completed I Metastatic
1P1-926 SHH
NCT01130142 IP1-926 + GCB Completed I/11 Metastatic
NCT01383538 IP1-926 + FOLFIRINOX Completed I Advanced

GCB/nab, Gemcitabine + nab-Paclitaxel; FU, Fluorouracil; SBRT, stereotactic body radiotherapy; Rx, X-radiation.



Cancers 2021, 13, 4442 11 of 32

CAF-targeting
Immunomodulators
. Vitamin D analogues
FAP-targeting (.|cipotriol, paricalcitol)
Sibrotuzumab  yjitamin A derivatives (ATRA)

Integrin-targeting SHH-inhibition
Volociximab Cyclopamine
HA-inhibition O IPI-926
HA-synthesis inhibitors ALY

: ; Vismodegib
HA-targeting enzymatic
agents (PEGPH20)

Collagen-inhibition
Collagenases
LOX-inhibitors

""" Losartan

/\ TGF-B-inhibition

Halofuginone
Fresolimumab

Tumor vessel
normalization —>
SEMAS3A re-expression
Nucleolin-inhibition
Nestin-targeting

* CAFs P T6Fp N Integrin

. PDAC cells == SHH A\\&\ Collagen

Collapsed tumor A *. Hyaluronic acid
NPT vessels o e .'-.

Figure 4. Schema of the principal drugs and pharmaceutical tools used and proposed for targeting the different components
of PDAC stroma.

The role of the stroma is controversial, since it can act not only as a barrier for drug
delivery but also as a protective defense mechanism that could prevent and restrain the
growth of PDAC tumor. A complete stroma depletion might lead to a more aggressive
cancer with a poor survival rate [26,144]. In line with these findings, other studies re-
ported that the depletion of CAFs yielded unexpected results. In a very elegant study
using transgenic approaches, mice with the ability to deplete xSMA™ myofibroblasts in
pancreatic cancer were generated. In this model, the depletion of myofibroblasts resulted
in invasive tumors with increased hypoxia and metastasis, as well as an increased infiltra-
tion of immunosuppressive cells, such as regulatory T cells, and thus decreased animal
survival [145]. Similarly, targeting SHH might lead to augmented tumor progression. In a
study, exploiting a well-defined mouse model of PDAC, SHH was deleted and the resultant
tumors were reported to be more aggressive, presenting undifferentiated histology with an
increase of tumor angiogenesis, despite the reduction of the stromal volume [146].

However, among the current therapeutic developments targeting CAFs, immunother-
apy can still bring new therapeutic hopes. Indeed, strategies aimed at a vaccination
against the FAP antigen in in vivo models of colon, breast and lung cancer have been
proposed [147,148]. Tumor reduction is observed in lung and pancreatic cancer by the im-
munogenic administration of a chimeric T antigen receptor specific for FAP [149-151]. The
targeting of CAFs either by a specific antibody or by immunotherapy remains a challenge
to be accomplished by clinical validation. Many upstream studies are still required, partic-
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ularly concerning the type of CAFs which need to be targeted. In fact, the heterogeneity
of CAFs, which is related to their plasticity, could create a specific phenotype in different
patients. Therefore, there is a necessity to address the studies of personalized medicine.

Due to the CAFs heterogeneity, several studies have been undertaken on the deac-
tivation or reprogramming of CAFs into so-called “normal” fibroblasts [30,152]. Among
the developed approaches, targeting the vitamin D receptor (VDR) through the use of ana-
logues of vitamin D resulted in a successful reduction of fibrosis. For instance, calcipotriol
reprogrammed CAFs into quiescent fibroblasts by stimulating the lipid droplets accumu-
lation of vitamin D, which normally occurs in normal fibroblasts, and by decreasing the
expression of xXSMA [68,153]. In addition, the administration of calcipotriol in combination
with GCB enhanced the survival of KPC mice [153]. Interestingly, a positive correlation
was found between patient survival and the expression level of the VDR [154]. Currently,
several trials up to phase III targeting the VDR are being investigated. For example, a
randomized phase II study is being evaluated in metastatic PDAC using the combination
of GCB, nab-paclitaxel and paricalcitol (NCT 03520790). Another phase Ib or II study
testing paricalcitol in patients with resectable pancreatic cancer is ongoing (NCT 03300921,
NCT03331562), which also uses hydroxychloroquine (NCT04524702).

Other studies have tested natural and synthetic derivatives of vitamin A, such as
all-trans retinoic acid (ATRA). These molecules are strongly involved in the control of cell
differentiation, growth and apoptosis. In an experimental KPC mouse model, it has been
shown that ATRA administration leads to the quiescence of CAFs, causing a reduction of
activated stroma, a reduction in the number of cells in the activated stroma, as well as a
reduction of cancer cell proliferation [155]. An investigation of the mechanism of action
indicates that this effect is mediated by the inhibition of Wnt [155]. Interestingly, it has also
been shown that ATRA administration increases the infiltration of CD8-positive T cells in
a KPC mouse model [156]. A randomized phase 1II trial testing the combination of ATRA
with GCB/nab paclitaxel is currently underway (NCT04241276).

4.2. Targeting ECM Components

At present, several approaches have been investigated to target the dense and stiff
matrix of PDAC. Collagen-targeting strategies were proposed to alleviate its excessive
deposition of this tumor (Figure 4). Collagenases were proposed to degrade collagen,
reducing the ECM stiffness and allowing a better delivery of drugs into the tumor site [157].
However, depending on the targeted tissues, these enzymes can have different in vivo half-
lives, causing their inactivation. Therefore, some solutions were proposed for stabilizing
these molecules and delivering them to the lesion site. For instance, Zinger et al. proposed
collagozome, which is a 100 nm liposome encapsulating collagenase. The authors demon-
strated that the treatment of the xenografts from PDAC-bearing mice with collagozome
reported a strong reduction in tumor size (by 87%) when compared to mice treated with the
empty liposomes and PTX [158]. However, collagen degradation may induce the release of
growth factors and cytokines responsible for the initiation of the inflammatory cascade and
tumor progression [159]. Therefore, the right timepoint for initiating this treatment should
be cautiously defined and validated. Another approach for reducing collagen deposition
might be to inhibit its synthesis, by blocking TGF-§3 signaling which is crucial during this
process. Halofuginone is an anticoccidial which revealed the ability to reduce collagen
synthesis by inhibiting TGF-f3 signaling in preclinical models of several solid cancers,
including PDAC [160]. Fresolimumab is a monoclonal antibody targeting TGF-f and is
currently being investigated in several clinical trials for cancer therapy (NCT01401062 and
NCT02581787) [161]. However, a treatment targeting TGF-f3 should be carefully defined
since it is involved in both inflammatory and tumor processes [162]. Another solution
for inhibiting collagen synthesis might be the use of the anti-hypertensive drug losartan,
which has contributed to the inhibition of collagen synthesis in both preclinical [163] and
clinical trials (clinicaltrials.gov identifier: NCT01821729). Furthermore, the inhibition of
collagen cross-linking by means of LOX inhibitors may represent a promising strategy to
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target ECM stiffness. Even if LOX inhibition improved the delivery of chemotherapeutic
agents in mouse models of PDAC [164], it might not work for cancers with an existing
mature collagen mesh.

The depletion of fibrotic ECM can occur also through the silencing of protein stabiliz-
ing mRNA of ECM components. The poly(rC)-binding protein 2 (xCP2, encoded by the
PCBP2 gene) stabilizes type I collagen mRNA. Li et al. proposed a siRNA for silencing the
expression of the PCBP2 gene. They evaluated the silencing effect analyzing the expression
of collagen I in human PSCs and NIH 3T3 mouse fibroblasts. The treatment with human
or mouse PCBP2 siRNA significantly silenced the gene with a 97% knockdown of PCBP2
mRNA expression [165].

SiRNA are further developed for silencing mucin (MUC) 20, which is a glycosylated
protein aberrantly expressed in PDAC. MUC20 seems to play a role in the PDAC desmo-
plasia and high MUC20 expression correlates with poor survival and recurrence rate.
MUC20 knockdown decreased the migration and invasion of PDAC cells induced by PSCs,
suggesting that MUC20 enhances PDAC progression by modulating factors secreted by
PSCs [166].

Additionally, the employment of some anti-angiotensin vasodilators has shown to
deplete stromal collagen and HA in tumors, simultaneously enhancing the penetration of
nanomaterials throughout the tumor stroma [111,167-169]. Within this context, Chen et al.
proposed a sequential delivery strategy by combining GCB to nitric oxide (NO), which
plays a role in ruling vascular tone and remodeling [170]. Indeed, NO was demonstrated to
attenuate fibrosis through the activation of cyclic guanosine monophosphate (cGMP) and
soluble guanylyl cyclase (sGC) signaling [171-173]. These pathways seem to interfere with
the activation of TGF-f signaling, inhibiting fibroblasts activation [171]. To exploit the NO
property, a system based on liposomes (Lip) loaded with S-nitroso-N-acetylpenicillamine
(SNAP), which is a stable NO donor, or GCB, has been developed. As expected, the
expression of the intratumoral ECM marker a-SMA and collagen I is significantly reduced
after treatment with Lip-SNAP and this system reported a therapeutic efficacy in vivo.

To reduce ECM stiffness, integrins have been similarly investigated as pharmaceutical
targets. At focal adhesion, they are widely expressed by cancer and stromal cells and
several preclinical studies assessed that their inhibition could strongly reduce tumor
progression [174]. Volociximab is a monoclonal antibody targeting integrin «531 and
reveals a therapeutic efficacy for the treatment of pancreatic, ovarian, peritoneal and renal
cancer patients during clinical trials [175,176]. Additionally, the silencing of FAK reveals
interesting results. As is known, cells sense the stiffness through signals from FAK, which
cooperates with integrins. The use of siRNA targeting FAK improves the sensitivity to
chemotherapeutic drugs in ovarian anc colon cancer [177], thus suggesting this approach
might be successful for targeting highly stiff tumors, such as PDAC.

In addition to the above-mentioned drugs, other pharmaceutical tools developed
to directly target PDAC stroma include MMP inhibitors. As mentioned, MMPs play an
important role in the remodeling of ECM proteins. Therefore, MMP inhibitors have been
investigated in various solid tumors due to their important role in the modulation of tumor
stroma, and the results were promising [178]. In particular, marimastat and BAY12-9566
were evaluated as inhibitors and administered to PDAC patients. However, the clinical
outcomes were disappointing since these drugs did not report a higher anticancer effect
when compared to GCB [179,180]. Moreover, the combination of anti-MMP9 antibody
(«MMP9) and nab-paclitaxel was studied in preclinical models of PDAC. The addition
of «MMP?9 further improved the animal survival, and the metastatic burden and bloody
ascites was reduced with this treatment. These findings suggested that xMMP9 might exert
specific stroma-directed effects that could be easily exploited in combination with currently
used cytotoxic drugs for improving PDAC clinical course [181]. Another approach of
interest consisted of the design of drug carriers responding to MMP. The overexpression of
the MMP-9 enzyme in the ECM of PDAC triggered the drug delivery to the tumor site. For
example, an MMP-9-cleavable lipopeptide was generated and incorporated into PEGylated
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nanosized vesicles. The PEG groups shielded the substrate lipopeptides from hydrolysis
by MMP-9. As a result, the peptide-bond cleavage led to the release of the carried content.
This system resulted in the efficient delivery of GCB in vitro and in vivo [182].

4.3. Reducing the Interstitial Fluid Pressure in the TME

As previously mentioned, both small and large molecules reach the tumor site mainly
through diffusion because the desmoplastic stroma may influence their distribution in
the tumor. Similarly, drug transport can be considerably reduced [183,184]. Among the
pharmaceutical tools developed with the aim of targeting the ECM components, different
strategies were proposed to reduce the IFP and to bypass the ECM physical barrier (Table 1;
Figure 4). A formulation encapsulating pegylated recombinant human hyaluronidase
20 (PEGPH20) was proposed to enable the degradation of HA [17,185]. Its administration
to tumor-bearing KC and KPC mice could deplete HA in the stroma resulting in a decreased
IFP and increased diameter of intratumor vessels. PEGPH20 in combination with GCB was
used in preclinical settings showing an important reduction of tumor volume, demonstrat-
ing that the tumor perfusion of chemotherapeutic agents was enhanced by the treatment.
Additionally, a clinical trial (phase Ib/II) was performed using PEGPH20 combined with
mFOLFIRINOX in 138 metastatic PDAC patients [186]. Unfortunately, the median survival
rate was lower in this group of patients, compared to the only mFOLFIRINOX-receiving
group. However, four patients receiving the combined treatment were the only patients,
among the total 138, who reported a complete response, which is an extremely rare event
in PDAC.

The randomized, double-blinded phase III study HALO-301 compared PEGPH20 plus
nab-paclitaxel / gemcitabine (AG) with a placebo plus AG [187]. The objective response
rate was higher with PEGPH20 plus AG, but there was no improvement in the duration
of the response. The safety outcomes were consistent with the established profiles of
PEGPH20 and AG [7,188,189]. However, the addition of PEGPH20 did not improve the
overall survival in the group of treated patients. Only 494 patients were enrolled and
surely a larger study would have had a different outcome. These findings strengthen the
concept that more preclinical or retrospective studies need to be performed to reduce the
IFP, thus targeting the stroma remodeling. However, the concept of reducing the IFP can
be promising in order to overcome the ECM physical barrier and new pharmaceutical tools
still need to be explored.

4.4. Tumor Vessels Normalization

To date, it seems that none of the therapies based on anti-angiogenic agents used
alone or in combination with other antitumor therapies significantly improve the over-
all survival of PDAC patients, underlying the urgent need to design new strategies to
overcome vascular-induced resistance to pancreatic cancer therapy. Within this context,
vascular normalization has the aim of restoring tumor vessel structure and functions to
decrease the hypoxia-induced mechanisms of resistance to treatment (Figure 4). Struc-
turally, it has been shown in several tumor models that vessel normalization (i) improves
the shapes and junctions between endothelial cells (ECs), (ii) promotes the covering of
vessels by perivascular cells, and (iii) restores the composition and rigidity of the basement
membrane [190]. Functionally, vascular normalization has been shown (iv) to improve
tumor oxygenation and therefore decrease hypoxia and angiogenesis; (v) to improve tumor
perfusion, promoting chemotherapy and immunotherapy access to cancer cells; (vi) to limit
the intravasation of cancer cells and metastasis; and (vii) to increase the anti-tumor immune
response by promoting tumor infiltration by anti-tumor T lymphocytes and polarization
of macrophages from the pro-tumor type M2 phenotype, toward the anti-tumor type M1
phenotype [190].

It has been shown that semaphorin 3A (Sema3A) is expressed in ECs during an-
giogenesis, where it serves as an endogenous inhibitor of angiogenesis that is present
in premalignant lesions and lost during tumor progression in human uterine cervical
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cancer [191]. The genomic and transcriptional analyses of a wide cohort of PDAC pa-
tients identified SEMA3A gene as a transcriptional target that was downregulated by
N-terminally truncated p63 (TP63AN) in the squamous PDAC subtype [192]. Maione et al.
showed that the long-term re-expression of Sema3A induces vascular normalization in
RIP-Tag2 pancreatic tumor mouse models [191]. On the contrary, some molecules are
upregulated during tumor progression. Nucleolin is a glycoprotein located in the nucleus
of resting cells but translocated to the cell surface and the cytoplasm of proliferative cells,
such as cancer cells and activated ECs [193-195]. Nucleolin is a cell marker of angiogenic
vessels [195] and its expression is significantly increased in PDAC patients [196]. Nucleolin
targeting by a synthetic antagonist, N6L, inhibits Ang-2 secretion and participates in a
program of EC loss-of-activation that increases the recruitment of perivascular cells and
normalizes tumor vessels [196]. Nestin is a class VI intermediate filament protein reported
to be a progenitor cell marker in various tissues. The expression level of nestin increases
in various tumor cells and its expression proliferates vascular ECs [197-199]. The expres-
sion of nestin is exclusive to small, highly proliferative blood vessels in PDAC tissues,
whereas CD34 is expressed in all-sized vessels [200]. Micro-vessel density (MVD) is often
reported to correlate with prognosis in various gastrointestinal cancers [201,202]. Future
studies could clarify if nestin can be a predictive and prognostic marker of MVD [203].
Furthermore, nestin targeting via small interfering RNA (siRNA) has a tumor inhibitory
effect in vivo via the inhibition of tumor angiogenesis in a mouse model of pancreatic
cancer [200], suggesting that nestin could be a potential therapeutic target of tumor an-
giogenesis. It is interesting to note that nucleolin and nestin are expressed both by tumor
cells and angiogenic ECs in pancreatic tumors, suggesting that potential targeted therapies
could act via different cell types of the TME.

5. Identifying New ECM Targets

Different strategies have been developed to identify and characterize the principal
players involved in the ECM remodeling. The proteomic approach has been explored
for comprehensively profiling the dynamic changes in the composition of the ECM. New
proteomic protocols and pipelines were developed to selectively enrich ECM proteins
based on their insolubility compared to the intracellular proteins [204-206]. The proteomic
approach may be combined with bioinformatic pipelines to reconstitute the concept of
the matrisome, which refers to both ECM and ECM-associated proteins. The matrisome
project aims to generate different reference matrisomes for the organisms (MatrisomeDB;
http:/ /matrisomeproject.mit.edu/ accessed on 2 July 2021) by giving information about
proteins genomically predicted to encode ECM proteins, as defined by InterPro domain-
based structures which represent a classical hallmark of matrix proteins [207]. Fifty five
domains were found in matrix proteins and the aim was to map the expression patterns
related to organ development and disease. Based on these findings, the ECM Atlas was
constituted through the compilation of proteomic data sets of ECM molecules obtained
from different tissues and diseases. This platform would furnish an interesting reference to
access and use information from a huge pool of data [208]. To understand how the ECM
regulates disease progression, the following step regards the determination of novel ECM
proteins and modulators in tissue samples from tumor progression models. Indeed, Pearce
et al. defined a matrix index useful for predicting poor prognosis in high-grade serous
ovarian cancer [209]. The technique of Matrix-assisted laser desorption/ionization mass
spectrometry imaging (MALDI-MSI) has gained interest as it combines the specificity and
sensitivity of mass spectrometry with spatial information, in order to map the distribution
of molecules in the tissue [210,211]. Since cancer samples present heterogeneous histologi-
cal ECM structures, the MALDI-MSI is coupled with decellularization approaches and used
as a successful strategy. Indeed, this combination preserves the sample histological spatial
distribution and improves the identification and mapping of ECM tissue components [212].
Indeed, a better characterization of native ECM composition, distribution and organization
is important for providing a deeper understanding of its function in diseases such as can-
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cer [213]. The decellularized ECM is assumed to be identical to the composition of native
ECM and to possess native mechanical properties. The in situ decellularization of tissues
(ISDoT) was developed by Mayorca-Guiliani et al. for allowing tissue decellularization
without risking the collapse and destruction of the delicate ECM architecture [214]. They
demonstrated that ISDoT-enriched ECM molecules made it possible to perform a proteomic
analysis to register ECM changes during cancer progression. This enrichment reported a
high increase in proteomic coverage when compared to non-decellularized tissues. Using
ISDoT samples, it is possible to catalogue the ECM and to map the spatial distribution of its
components in 3D in high resolution in the normal context vs. the tumor one. The authors
provided for the first time a detailed 3D characterization of the metastatic niche in breast
cancer progression and identified several ECM components not previously described. The
ability to map the ECM from a spatial point of view is crucial for understanding how it
influences cancer cell invasiveness, and migratory and proliferative capacity.

A further approach for investigating the principal players involved in the PDAC
matrix might be to explore the signature of extracellular vesicles (EVs). As far as we know,
the cellular interactions and communication occur not only through direct contact between
cells such as cellular gap junctions, but also by EVs which include nano- or micro-vesicles
secreted by almost every cell type both in physiological and pathological conditions [215].
EVs can carry different molecules including mRNAs, miRNAs, long non-coding RNAs,
proteins, lipids and carbohydrates [216-218]. Since EVs can be easily obtained for the differ-
ent biological fluids, the detection of the molecules that they carry makes them a potential
source of biomarkers for several diseases, including cancer [215,216]. Moreover, they might
deliver aberrantly expressed genes or oncogenic proteins [219]. Interestingly, EVs contain
matrix-degrading enzymes such as matrix MMPs, heparanases, hyaluronidases, the ECM
metalloproteinase inducer (EMMPRIN) and tissue inhibitors of MMPs (TIMPs). These
MMPs presented on EV surfaces, seem to govern different proteolytic activities for the
turnover of the ECM, thus contributing to matrix remodeling [220-223]. For example, the
localization of MMP-9 or b-1 integrin and their shedding into EVs deriving from cancer
cells participate in the localized degradation and proteolysis of ECM during cell migration,
and thus metastasis [224]. Tumor-derived EVs also induced the expression of MMPs in
target cells. Indeed, EV-associated heat shock protein-90 released by cancer cells could
induce the expression of MMP-2 which activated plasmin, a protease inducing cancer cell
invasion [225]. The presence of hyaluronidase Hyall in EVs derived from prostate cancer
induce the prostate stromal cell motility by activating FAK-mediated integrin signaling,
reporting that the high Hyall promotes the progression of this cancer [226].

As previously discussed, the potency of cancer cells to migrate and invade other
tissues is largely due to the acquisition of a mesenchymal cell state. The EMT is often
characterized by the secretion of MMPs, which can weaken the intercellular adhesion and
reduce cell polarity with implications in metastasis [227-231]. Several studies evidenced
that EVs are involved in the EMT [232-234]. Indeed, once secreted from one cell type, they
can induce the EMT in the recipient cells [235]. Multiple carcinoembryonic antigen-related
cell adhesion molecules (CEACAMSs) and ECM proteins were identified in the EVs isolated
from pancreatic duct fluid of PDAC patients, indicating a potential implication in the
carcinogenesis and diagnosis of PDAC [235].

As such, the presence of proteolytic molecules or proteins implicated in the EMT
among EVs may constitute one of the novel sources for identifying new possible targets
which modulate the structural architecture and dynamics of ECM occurring during cancer
progression.

6. Nanomedicine as Therapeutic Strategy: Improvement of Nanoparticle-Based
Systems for by-Passing the ECM

It is well known that nanoparticles (NPs) constitute a successful platform for drug
delivery since they can improve the bioavailability and solubility of carried drugs. They can
specifically reach the tumor site due to the enhanced permeability retention (EPR) effect,
caused by the leakiness of vessels occurring during tumor angiogenesis and the impairment
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of lymphatic drainage [236]. Even though the use of NPs was largely investigated in
preclinical and clinical trials, the tools based on NPs vehiculating anticancer molecules
provided only modest benefits in terms of survival [237]. Indeed, the abnormal TME and
the heterogeneity of each tumor can negatively affect the EPR effect. The difficult tumor
vasculature and the dense basement membrane may limit the vascular and interstitial
transport of nanocarriers. In pancreatic cancer, where the interstitial space is thick and
crosslinked collagen fibers generate a stiff matrix, the extravasation of NPs into the tumor
interstitium is limited [236]. The physicochemical properties of NPs can be exploited to
overcome these limitations. Indeed, PEGylated NPs which are steric small particles with
a size < 50 nm are able to penetrate through stroma-rich tumors, as demonstrated on the
BxPC3 pancreatic cancer cell line, better than larger NPs > 50 nm [238]. Regarding particle
charge, PEGylated NPs and neutrally charged liposomes display the ability to easily diffuse
in ECM hydrogel and deep penetrate into tumors, while cationic NPs remain entrapped
in the hydrogel [239]. However, cationic NPs exhibit a better transvascular transport by
targeting endothelial cells [240]. Other studies revealed that NPs with linear and semi-
flexible shapes can diffuse and penetrate more efficiently through the interstitial matrix
compared with solid spherical NPs of similar size [236,241]. The in vivo biodistribution of
NPs can also be influenced by the interaction of NPs with biological fluids, causing them
to acquire a surface corona of biomolecules, such as proteins or lipids [242]. For example,
the FDA-approved albumin-bound form of paclitaxel, Abraxane™, was generated using
this approach, allowing it to acquire a prolonged circulation time [243].

As an acidic pH characterizes PDAC, smart NPs with ultrahigh pH sensitivity, which
change size in the acidic TME of PDAC, were developed by Lucero-Acuna and Guzman,
and with this system the penetration of encapsulated anticancer drugs was improved [244].
The pH-sensitive NPs were developed by Fan et al., who proposed a system composed of
membrane-disruptive macromolecules to facilitate the penetration of drugs through the
stromal barrier. This nano-formulation displayed an acid-activated cytotoxicity towards
both cancer cells and fibroblasts, by disrupting the cell membrane integrity in an acid-
dependent manner. Therefore, the permeabilization of the stromal barrier allowed it to
target and to inhibit cancer cells. This effect was demonstrated in vitro, using 3D spheroids
containing both BxPC-3 cells and fibroblasts, and in vivo on xenograft BxPC-3 tumor-
bearing mice, where tumor growth was strongly inhibited without severe side effects [245].

Colby et al. also proposed a novel formulation by using an expansile unit comprising
a pH-responsive group, a polymerizing methyl methacrylate group, and a hydrophilic
triol-linker. The diameter of the formulation could expand up to 10 times in water and it
was triggered by an acid environment, so that the NPs could release the drugs directly at
the tumor site. Indeed, the efficacy with paclitaxel-loaded expansile NPs was superior to
the efficacy of free paclitaxel in an in vivo model of pancreatic cancer [246].

A class of novel theranostic NPs conjugated to the insulin-like growth factor 1 (IGF1)
useful for the imaging and delivery of doxorubicin (Dox) was developed for PDAC
treatment. Iron oxide NPs (IONPs) were employed to target the IGF1 receptor (IGF1R)
which is highly expressed in many tumor cells (including PDAC), stromal fibroblasts and
macrophages [247]. Moreover, IGFIR expression increased in drug-resistant cells [248,249].
Therefore, the effect of these NPs was assessed in vivo on human pancreatic cancer patient
tissue-derived xenografts (PDXs). A near-infrared (NIR) dye was conjugated to the NPs, to
monitor the targeting by both non-invasive optical imaging and MRI. The nano-formulation
accumulated at the tumor site, which was further confirmed by histological analysis. In
line with this finding, tumor growth was significantly reduced in the animals treated with
IGF1-IONP-Dox compared to control groups. These results demonstrated that IGF1-IONPs
for theranostics was an effective system which overcame the tumor stromal barrier and
delivered Dox directly to pancreatic cancer cells [250].

As described, several efforts have been made for improving drug delivery reducing
the ECM barrier. Another strategy for employing nanocarriers regards the inhibition
of ECM material production [27]. For example, metalloproteinase (MMP)-2 peptides
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were encapsulated in hybrid liposomes for delivering an agent downregulating ECM
production—pirfenidone. In a PDAC model, this system demonstrated a reduction in the
production of ECM material, thus increasing the penetration of the small molecules [251].
Additionally, collagenase was delivered by liposomes to break down the ECM in PDAC,
so that the enzyme was protected and went to localize at the tumor. The pre-treatment
allowed paclitaxel micelles to directly reach the tumor site and the tumors of mice which
received both treatments were 87% smaller than tumors of mice which received only empty
liposomes before paclitaxel micelles [158].

7. Towards Cell Therapy-Based Approaches: Mesenchymal Stem Cells for
Drug Delivery

Another innovative system to deliver drugs into the tumor site is the system based on
mesenchymal stem cells (MSCs). MSCs have been recently investigated as cellular vehicles
for anticancer drugs, since they present several advantages, such as feasible isolation, avail-
ability, ex vivo expansion capacity, multipotent differentiation, immunomodulatory and
non-immunogenicity properties [252]. MSCs can be isolated from many sources, including
bone marrow, adipose tissue, umbilical cord tissue, placenta and amniotic fluid [253-257].
The observation that MSCs migrate toward inflammatory microenvironments and engraft
into the tumor stroma after systemic administration suggested new therapeutic approaches
for delivering anti-cancer molecules directly within the tumor. Indeed, MSCs demonstrated
a migration specifically to the tumor site, because they responded to tissue damage, hy-
poxia and inflammation. MSCs can home to the tumor stroma, being attracted to several
cytokines, growth factors and proteases of the tumor [258]. Various studies confirmed
the ability of MSCs to localize at the tumor site and to be distributed among many cancer
cell lines, including pancreatic cancer [259-261]. The high rate of migration and distri-
bution was reported in in vitro cocultures and in vivo xenografts. Several cytokines and
chemokines were found to interact with MSCs receptors [262]. A number of cytokine-
receptor pairs were found to be associated with the MSCs migratory ability, including
SDEF-1, SCF/c-Kit, HGF/c-Met, VEGF/VEGFR and adhesion molecules such as £81 and
82 integrins [263-265]. Furthermore, even though the role of MSCs in the TME still needs
to be investigated and depends on the tumor type, MSCs also reported exerting intrinsic
antitumor properties. For example, in a SCID mice model of pancreatic cancer, the tumor
growth rate was significantly reduced after the injection of MSCs [266].

Taken together, all these findings make MSCs a suitable candidate for a therapy
targeted at the tumor site. Several therapeutic approaches based on the cell-based delivery
of anti-cancer agents by MSCs have been developed. After demonstrating that Dox could
be uptaken by mouse bone-marrow-derived MSCs (BM-MSCs) in a significant amount
without showing evident signs of toxicity, Pessina et al. investigated whether human
and mouse MSCs could be loaded with the anticancer drug paclitaxel (PTX) and exert
a toxic effect towards tumor cells. Therefore, they primed the cells with a concentration
of a non-toxic drug for the MSCs, which rapidly incorporated PTX and slowly released
it in a time-dependent manner. BM-MSCs were able to acquire and exert a potent anti-
tumor and anti-angiogenic dose-dependent effect in vitro. Furthermore, when injected in
immunodeficient mouse models of melanoma, they significantly reduced tumor growth. By
confocal microscopy, PTX was seen to accumulate in hMSCs-primed cells and to co-localize
with Golgi apparatus and derived vesicles. Despite the mechanism in which the cells
release PTX, once they reached cancer cells, they released the drug in a quantity sufficient
to inhibit proliferation in vitro and in vivo. It was estimated that about 25-30% of PTX was
retained by PTX-primed BM-MSCs and never released [267].

Also adipose tissue derived MSCs (AT-MSCs) reported the ability to be loaded with
PTX and released the drug, inhibiting tumor cell proliferation in vitro [268]. AT-MSCs
were resistant to the cytotoxic effect of PTX and released the drug to a higher extent within
the first 24 h. The cell-conditioned medium (CM) collected after treatment with PTX was
tested on different models of human tumors, such as osteosarcoma and prostate cancer,
where cell proliferation was inhibited in vitro. In a coculture assay, AT-MSCs loaded with
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PTX were effective against the proliferation of a leukemia cell line. The adipose tissue
represents an attractive source of stem cells since it is ubiquitous and easily obtainable
without using invasive methods [269]. Additionally, clinical trials using AT-MSCs in
regenerative medicine have confirmed their safety so far [270,271].

Bonomi et al. demonstrated that MSCs loaded with GCB were able to inhibit the
in vitro growth of a human PDAC cell line. For the first time they showed that BM-
MSCs can be loaded in vitro with GCB. A concentration of 2000 ng/mL allowed GCB
to block cell division but maintained cell viability and drug accumulation. They could
also inhibit the proliferation of the PDAC cell line CFPAC-1. Moreover, they showed
that very high concentrations of GCB did not affect the secretome of BM-MSCs, which
was interesting in terms of its potential application in regenerative medicine, since MSCs
produce many factors with autocrine/paracrine functions. BM-MSCs seemed to regulate
the epithelial mesenchymal transition of a tumor, initiating a cell population to maintain it,
therefore a therapy based on MSCs could be integrated into the tumor mass and the drug
could be delivered in situ at very high concentrations difficult to obtain by intravenous
injection [272,273].

Human MSCs were primed in vitro with sorafenib (SFN), in the context of glioblas-
toma (GB) by Clavreul et al. After demonstrating the cytotoxicity of the released SFN
in vitro, SEN-primed MSCs were administered by intranasal delivery on an orthotopic
model of GB. MSCs could penetrate the brain from the nasal cavity and infiltrate the tumor
with a higher accumulation after 7 days. They observed that MSCs could migrate toward
large or small tumors, clinically relevant since GB is highly invasive. Even if they did
not obtain an anti-proliferative effect in vivo, the treatment with SFN-MSCs consistently
reduced tumor angiogenesis [274].

MSCs can be introduced into the body through local delivery into the tissue or sys-
temically. The vascular route is often preferable since it is more feasible and less invasive,
but with this methodology there are some hurdles to overcome in order to allow these
cells to reach the target tissue. Firstly, they have to pass through the lungs before being
distributed throughout the body. Since MSCs have a diameter of 20-50 um, while the lung
microvessels are around 10, they are often entrapped in the lungs [275-277]. Preclinical but
also clinical evidence demonstrated that the lung entrapment occurs after iv injection of
MSCs. A low engraftment level was found after the iv administration of MSCs to treat graft
versus host disease (GvHD), or when co-infused with hematopoietic stem cells (HSCs) to
promote HSC engraftment [278,279]. The addition of a vasodilator may solve the problem
of MSC entrapment in microvessels. Moreover, since MSCs secrete mediators that exert
a paracrine effect on nearby cells and tissues, they may need to be administered in very
close proximity to the injury site [280]. The intrahepatic arterial injection of MSCs bypassed
the lung vasculature [281]. Additionally, the intracoronary injection of MSCs resulted in a
significant cell retention in the cardiac tissue [282].

Moreover, current developed techniques allow us to easily detect and track MSCs
once injected in vivo. Previously, the in vivo cell tracking required a post mortem analysis
of sectioned tissues, but the developments in recent years in whole body and vital in vivo
imaging have allowed a higher resolution and more accurate long-term analyses. MSCs
can be fluorescently labelled using fluorophores linked to a specific molecule on target
cells or transduced with a bioluminescent protein reporter gene. These methods require
an ex vivo cell preparation before administration but are well characterized and largely
employed [283-285].

For many diseases, a clinical utility of MSCs has been published. Several clinical
trials reported interesting results in terms of the safety and efficacy of MSCs in patients
with GvHD, autism, Crohn’s disease, multiple sclerosis, systemic lupus erythematosus
and type 1 diabetes. A successful use of these cells has been observed in multiple organs
regarding the repair of cardiovascular, spinal and lung injuries, and bone and cartilage
diseases [286—289]. Therefore, thanks to the versatility of these cells, they may constitute
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a promising strategy for an anticancer therapy specifically directed to the tumor site
by-passing the dense ECM barrier.

8. Conclusions

The high ECM stiffness typical of PDAC allows the tumor to displace the host tissue
and grow in an uncontrolled manner. Indeed, PDAC cells take advantage of the fibrotic
mechanisms occurring in the ECM for sustaining and maintaining an optimal environment
for their proliferation. Moreover, the desmoplastic stroma acts as a physical barrier im-
pairing the delivery of anticancer molecules to the tumor site. The compression of blood
vessels exerted by the stroma, together with the poor tumor perfusion, limit the access of
chemotherapeutic compounds, reducing their effectiveness. In recent years, several drugs
targeting the ECM components and the CAFs have been developed and most of them are
currently under preclinical or clinical investigation. In fact, by targeting the stroma, the
penetration of anticancer agents would be enhanced. Additionally, the improvement of
NP-based systems by exploiting their physicochemical properties, such as size, charge or
pH-responsiveness, increases drug delivery. Furthermore, the use of MSCs for drug deliv-
ery is interesting since it presents several advantages in terms of feasibility and intrinsic
properties. Altogether, the initial results of these strategies seem to be promising, even
though deeper research is required to characterize new therapeutic targets in the ECM and
to improve the existing systems.
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